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Closure-preserving covers in function spaces

David Guerrero Sánchez

Abstract. It is shown that if Cp(X) admits a closure-preserving cover by closed
σ-compact sets then X is finite. If X is compact and Cp(X) has a closure-

preserving cover by separable subspaces then X is metrizable. We also prove
that if Cp(X, [0, 1]) has a closure-preserving cover by compact sets, then X is
discrete.
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Introduction

To see whether a space Z has a “nice” topological property it is often useful to
split Z into subspaces which could possibly have this property. V. Tkachuk proved
in [8] that if Cp(X) is a countable union of its subspaces with a property P ∈
{hereditary π-character ≤ κ, pseudo-character ≤ κ, Čech-completeness, tightness
≤ κ, Fréchet-Urysohn property}, then Cp(X) has P . It is easy to see that closure-
preserving covers are a generalization of countable closed covers, so the following
question arises naturally: given a topological property P assume that Cp(X) is
the union of a closure-preserving family F of closed subspaces and each element of
F has P . Does this imply that Cp(X) has P or some related topological property?

We show that if the elements of a closure-preserving cover of Cp(X) are compact
then X is finite. We also establish that a compact space X is metrizable if and
only if Cp(X) admits a closure-preserving cover by separable subspaces. We prove
that if Cp(X, [0, 1]) is a closure-preserving union of compact subspaces, then X is
discrete.

1. Notation and terminology

Every topological space in this article is assumed to be Tychonoff. Our no-
tation and terminology is standard. The set of real numbers with the natural
topology is denoted by R and the interval [0, 1] ⊂ R is represented by I. For a
space X the family of all subsets of X is denoted by exp(X), the family of all
finite subsets of X is denoted by [X ]<ω, the family of all open subsets of X is
denoted by τ(X) and τ∗(X) is the family of nonempty open subsets of X . For
C ⊂ X the family of all open sets of X that contain C is denoted by τ(C, X); if
x ∈ X then we write τ(x, X) instead of τ({x}, X). The space of all continuous
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functions from a space X into a space Y , endowed with the topology inherited
from the product space Y X , is denoted by Cp(X, Y ). The space Cp(X, R) will
be abbreviated by Cp(X). Given f ∈ Cp(X), a finite set A ⊂ X , and a positive
real ε, let O(f, A, ε) = {g ∈ Cp(X) : |g(x) − f(x)| < ε for every x ∈ A}. On the
other hand, Cu(X) denotes the space of all continuous real-valued functions on
a space X , with the topology of uniform convergence. If f ∈ Cu(X) and r > 0
then B(f, r) = {g ∈ Cu(X) : |g(x) − f(x)| < r for all x ∈ X} ∈ τ(Cu(X)) is
the open ball centered at f of radius r. For every f ∈ Cp(X, Y ), define the dual
map f∗ : Cp(Y ) → Cp(X) by f∗(g) = g ◦ f for every g ∈ Cp(Y ). A σ-compact
(σ-countably compact) space is the countable union of compact (countably com-
pact) spaces. A space is cosmic if it has a countable network. A space X is called
monolithic if, for every A ⊂ X , we have d(A) = nw(A).

2. Closure-preserving covers by closed subspaces

Suppose that F is a closure-preserving cover of a space Z and that every
element of F is closed. Then every separable subspace of Z can be covered by
a countable subfamily of F . This simple observation has strong implications for
function spaces.

Proposition 2.1. Neither Rω nor Cp(I) admits a closure-preserving cover by

closed σ-pseudocompact subspaces.

Proof: In [7, Theorem 3] Shakmatov and Tkachuk showed that Rω and Cp(I)
fail to be σ-pseudocompact, so it suffices to observe that they are both separable,
because d(Cp([0, 1])) = nw(Cp(I)) = nw(I) = ω = w(Rω). �

Remark 2.2. Note that the word “closed” cannot be omitted in the formulation
of Proposition 2.1 because Rω and Cp(I) are both separable, and therefore each
one admits a closure-preserving cover by countable subspaces. Indeed, take a
countable dense set A ⊂ Cp(I). Then the family {A ∪ {f} : f ∈ Cp(I)} is a
closure-preserving cover of Cp(I). Clearly every separable space has such a cover.

Lemma 2.3. If Cp(X) =
⋃

F and F is a closure-preserving family of closed

σ-pseudocompact subspaces of Cp(X), then X is pseudocompact.

Proof: If the space X is not pseudocompact, then Cp(X) contains a retract
Y homeomorphic to Rω. Let r : Cp(X) → Y be a retraction. The space Rω

is separable so we can find a countable family F ′ ⊂ F such that Y ⊂
⋃

F ′.
Then the equality Y =

⋃

{r(F ) : F ∈ F ′} shows that Y , and therefore Rω is
σ-pseudocompact which is a contradiction. �

Corollary 2.4. If Cp(X) is the union of a closure-preserving family of pseudo-

compact subsets, then X is pseudocompact.

Proof: It suffices to observe that the closure of a pseudocompact subspace of
Cp(X) is still pseudocompact and then apply Lemma 2.3. �
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Our purpose is to show that if a function space Cp(X) is a closure-preserving
union of closed σ-countably compact subspaces then X is finite. We will need the
following facts.

Proposition 2.5. Whenever Cp(X) =
⋃

F and F is a closure-preserving family

of closed σ-countably compact subspaces of Cp(X), then f(X) is finite for every

f ∈ Cp(X).

Proof: Let f ∈ Cp(X) and Y = f(X). The equality ω = w(Y ) = d(Cp(Y ))
shows that Cp(Y ) is separable. The space X being pseudocompact by Lemma 2.3,
the map f is R-quotient so the dual map f∗ embeds Cp(Y ) into Cp(X) as a closed
subspace. Therefore Cp(Y ) is covered by a closure-preserving family of its closed
σ-countably compact subspaces and hence it is σ-countably compact. It follows
from [7, Theorem 3.11] that Y is finite. �

The following lemma is a part of the folklore.

Lemma 2.6. For any space X , if f(X) is finite for every f in Cp(X), then X is

finite.

Proof: Suppose |f(X)| < ω for all f ∈ Cp(X). If X is infinite, then it is
possible to find a countable discrete subspace D = {xn : n ∈ ω} ⊂ X and a
countable family of open sets {Un : n ∈ ω} such that Un ∩ D = {xn} for each
n ∈ ω and U i ∩ Uj = ∅ if i 6= j. For every n ∈ ω there is fn ∈ C(X, I) such
that fn(xn) = 1 and fn(X \ Un) ⊂ {0}; let gn = 1

(n+1)fn. To see that the map

g =
∑

gn is continuous take an arbitrary p ∈ X . If p ∈ Un for some n ∈ ω
and V ∈ τ(g(p), I), then W = g−1(V ) ∩ Un is an open set containing p such
that g(W ) ⊂ V and hence g is continuous at p. If ε > 0 and p /∈

⋃

n∈ω Un then

g(p) = 0; let m = min{n ∈ ω : 1
n+1 < ε}. If p /∈

⋃m

0 Uj then p ∈ W = X \
⋃m

0 Uj

and g(W ) ⊂ [0, ε) which implies that g is continuous at p. Otherwise suppose that
p ∈ Uk for some k ≤ m. The set V = X \ {Uj : j 6= k and j ≤ m}, is in τ(p, X)

since U i ∩ Uj = ∅ if i 6= j. If W =
(

X \ g−1
k ([ε, 1

k+1 ])
)

∩ V , then g(W ) ⊂ [0, ε)

and therefore the map g is continuous at p. The map g is continuous and by
construction the set g(X) is infinite. This contradiction shows that the space X
is finite. �

Corollary 2.7. For a space X the following conditions are equivalent:

(a) there exists a compact closure-preserving cover of Cp(X);
(b) there exists a closed σ-compact closure-preserving cover of Cp(X);
(c) there exists a closed σ-countably compact closure-preserving cover

of Cp(X);
(d) the space X is finite.

Proof: It is evident that (a) implies (b) and (b) implies (c). Apply Proposi-
tion 2.5 and Lemma 2.6 to verify that (c) implies (d). If n ∈ ω then Rn can be
covered by an increasing countable family of compact balls which shows that (d)
implies (a). �



696 D. Guerrero Sánchez

If the hypothesis that the elements of a closure-preserving cover of Cp(X) are
closed is removed, we still have the following result.

Corollary 2.8. If X is a space, and Cp(X) admits a closure-preserving cover by

countably compact subspaces then X is finite.

Proof: Let C be a closure-preserving cover of Cp(X) by countably compact sub-
spaces. Apply Corollary 2.4 to check that X is pseudocompact. So every C ∈ C
is compact by [1, Theorem III.4.23]. Using the equivalence (a)⇐⇒(d) of Corol-
lary 2.7 we conclude that X is finite. �

In the rest of this section we deal with closure-preserving covers of Cp(X) for
a compact space X .

Lemma 2.9. If X is a space and A is a countable subset of X , then there exists

g ∈ Cp(X) such that g|A is injective.

Proof: For any two distinct points x and y of X , the set P (x, y) = {f ∈ Cp(X) :
f(x) 6= f(y)} is open in Cp(X). For every finite F ⊂ A let GF = {g ∈ Cp(X) : g|F
is injective}. The equality GF =

⋂

{P (x, y) : x, y ∈ F and x 6= y} shows that
GF ∈ τ(Cp(X)). To check that each GF is dense in Cu(X) fix any open ball
B(f, ε) ∈ τ(Cu(X)) and take a finite F ⊂ A; then F = {a0, . . . , an} for some
a0, . . . , an, n ∈ ω. Let ri = f(ai) for each i ≤ n. Choose a point si ∈ (ri, ri + ε

2 )
for every i ≤ n in such a way that the points s0, . . . , sn are distinct. It is easy
to find a function g ∈ Cp(X, [0, ε

2 ]) such that g(ai) = si − ri for every i ≤ n. If
h = f + g, then h|F is injective and h ∈ B(f, ε).

Thus G = {GF : F ∈ [A]<ω} is a countable family of open dense subsets of the
complete metric space Cu(X) and therefore it has non-empty intersection. Let
g ∈

⋂

G. To check that f |A is one-to-one take two distinct points x and y in
A and let F = {x, y}. Since g ∈ GF , the function g|F is an injection, therefore
g(x) 6= g(y). �

Lemma 2.10. If X is a compact space such that w(X) > κ, for an infinite

cardinal κ, then Cp(X) does not admit a closure-preserving cover by subspaces

of density less than or equal to κ.

Proof: Suppose that Cp(X) admits a closure-preserving cover F by closed sub-
spaces of density at most κ. The space X maps continuously onto a compact
space Z such that w(Z) = κ+. The space Cp(Z) embeds as a closed subspace in
Cp(X) so we can consider that Cp(Z) ⊂ Cp(X). Since d(Cp(Z)) = κ+, there is
F0 ⊂ F such that |F0| ≤ κ+ and Cp(Z) ⊂

⋃

F0. The space Cp(X) is monolithic
because X is compact [1, Corollary II.6.19], so d(F ) = nw(F ) ≥ nw(F ∩Cp(Z)) =
d(F ∩ Cp(Z)) for each F ∈ F0. Therefore the family {F ∩ Cp(Z) : F ∈ F0} is
a closure-preserving cover of Cp(Z) by closed subspaces of density not greater
than κ. We can rewrite the family {F ∩Cp(Z) : F ∈ F0} as F ′ = {F ′

α : α < κ+}.
If for each α < κ+ we let Gα =

⋃

{F ′
β : β < α} then the family G = {Gα : α < κ+}

is an increasing closure-preserving cover of Cp(X). Moreover each Gα ∈ G has
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density less than or equal to κ for it is the union of at most κ-many spaces of
density at most κ.

On the other hand, the space Z is embeddable in Iκ+

so we can consider that

Z ⊂ Iκ+

and for each α < κ+ we can define Zα = pα(Z), where pα : Z → Iα

is the natural projection from Z to Iα. Let Mα = p∗α(Cp(Zα)). Since every
f ∈ Cp(Z) is factorizable by a projection to a countable face of Iκ according to
[1, Lemma 0.2.3], the family M = {Mα : α < κ+} is another increasing cover
of Cp(Z), and for each α < κ+ we have d(Mα) = w(Zα) ≤ κ. Hence, for each
Mα ∈ M there exists Gβ ∈ G such that Mα ⊂ Gβ . We now verify that for
each Gβ ∈ G there is Mα ∈ M such that Gβ ⊂ Mα. There is D ⊂ Gβ such

that D = Gβ and |D| ≤ κ. For each z ∈ D we can find Mξz
containing z. If

α ≥ sup{ξz : z ∈ D} then Gβ ⊂
⋃

z∈D Mξz
⊂ Mα.

Let us now note that for every α0 < κ+, there is α1 > α0 such that Gα0
⊂

Gα0
⊂ Mα1

and the natural projection pα1
α0

: Zα1
→ Zα0

is not injective, because

if pβ
α0

is an injection for each β > α0 then pα0
: Z → Iα0 is an embedding and

hence w(X) ≤ |α0| < κ+. Arguing in the same way, we obtain α2 > α1 such
that Gα0

⊂ Mα1
⊂ Gα2

and the corresponding projection pα2
α1

: Zα2
→ Zα1

is not an injection and so on. Let γ = sup{αn : n ∈ ω}; since the family G is
closure-preserving and both families G and M are ascending, we have the following
equalities Gγ =

⋃

n∈ω Gα2n
=

⋃

n∈ω Mα2n+1
=

⋃

n∈ω Gα2n
=

⋃

n∈ω Gα2n
= Gγ .

Thus we also have
⋃

n∈ω Mα2n+1
= Gγ =

⋃

n∈ω Mα2n+1
. This means that if f ∈

⋃

n∈ω Mα2n+1
, then there must be m ∈ ω such that f is in Mα2m+1

.

By the construction above for every n ∈ ω the projection p
αn+1

αn
: Zαn+1

→ Zαn

is not injective. So for each n ∈ ω there is a point yn ∈ Zαn
for which it is

possible to find two distinct points xn and zn both in Zγ such that pγ
αn

(xn) =
pγ

αn
(zn) = yn. Apply Lemma 2.9 to find g ∈ Cp(Zγ) such that g(xn) 6= g(zn)

for every n ∈ ω. This makes f = p∗γ(g) fail to be in Mα2n+1
for each n ∈ ω,

in other words f /∈ Gγ . Now, for an arbitrary finite A ⊂ Z, we can find l ∈ ω
such that pγ

αl
|A is one-to-one. Let U = O(f, A, ε) ∩ Mγ ∈ τ(f, Mγ). There

exists h′ : Zαl
→ R such that for every a ∈ A the equality h′(pγ

αl
(a)) = f(a)

holds and hence h = (pγ
αl

)∗(h′) ∈ U ∩ Mαl
⊂ Mαl

⊂ Cp(Z) This implies that

f ∈
⋃

n∈ω Mα2n+1
= Gγ = Gγ , but as noticed before, f /∈ Gγ . This contradicts

the fact that G is a closure-preserving cover of Cp(Z). �

Corollary 2.11. If X is a compact space such that w(X) > c then Cp(X) does

not admit a closure-preserving cover by subspaces of cardinality c.

Proof: Suppose that F = {Fα : α ∈ I} is a closure-preserving cover of Cp(X)

by subspaces of cardinality c. For each α ∈ I let Cα = Fα; then C = {Cα : α ∈ I}
is a closure-preserving closed cover of Cp(X) by subspaces of density not greater
than c. We can now apply Lemma 2.10 to obtain a contradiction. �

Corollary 2.12. For a compact space X , if Cp(X) admits a closure-preserving

cover by subspaces of cardinality less than or equal to c then Cp(X) has cardinality

at most c.
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Proof: Let C be a closure-preserving cover of Cp(X) by subspaces of cardinality

less than or equal to c. The family F = {C : C ∈ C} is a closure-preserving cover
of Cp(X) by closed subspaces. Applying [1, Lemma IV.11.3] we have |F | ≤ c for
every F ∈ F . It follows from Corollary 2.11 that w(X) ≤ c so d(Cp(X)) ≤ c.
Therefore the cover F has a subcover G of cardinality not greater than c and
hence |Cp(X)| ≤ c. �

At the beginning of this section we noted that it is useful to know whether a
function space Cp(X) is separable, in order to reduce any of its infinite closure-
preserving closed covers to a countable one. For the case when X is compact, we
will characterize separable function spaces by means of closure-preserving covers.

Corollary 2.13. For an infinite compact space X the following conditions are

equivalent:

(a) there exists a closure-preserving cover F of Cp(X) such that the elements

of F are cosmic;

(b) there exists a closure-preserving cover F of Cp(X) such that the elements

of F are separable;

(c) there exists a closure-preserving cover F of Cp(X) such that the elements

of F are countable;

(d) the space X is metrizable.

Proof: It is immediate that (a) implies (b), and that (c) implies (b). Now if X
is metrizable, then Cp(X) is separable, and the equality d(Cp(X)) = iw(X) =
w(X) = nw(X) = nw(Cp(X)) shows that (d) implies (a). To see that (d) im-
plies (c), let D be a countable dense subspace of Cp(X) and for every f ∈ Cp(X)
let Df = D ∪ {f}. It needs no proof that D = {Df : f ∈ Cp(X)} is a closure-
preserving cover of Cp(X) by countable subspaces. Hence it suffices to prove that
(b) implies (d). Suppose that X is not metrizable, this implies that w(X) > ω
because X is compact. Apply Lemma 2.7 to conclude that (b) cannot occur. �

Corollary 2.14. If X is an infinite compact space then Cp(X) admits a closure-

preserving cover by closed second countable subspaces if and only if X is count-

able.

Proof: If X is countable, then Cp(X) is second countable. Now suppose that
Cp(X) has a closure-preserving cover by closed second countable spaces then by
Corollary 2.13 the space X is metrizable, which means Cp(X) is separable. Hence
Cp(X) has a countable cover by closed second countable subspaces so we can
apply [10, Corollary 1.7] to see that |X | ≤ ω. �

3. Topological games and their strategies

If a space Z has a compact closure-preserving cover then a topological game
on Z can be defined in a natural way; in this game the first player has a winning
strategy. Therefore studying analogous games in function spaces gives a possibility
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to strengthen some results of the previous section. The following game is a slight
variation from the one presented by R. Telgársky in [8].

Definition 3.1. On a Tychonoff space Y , consider a family C ⊂ exp(Y ). We
define the game G(C, Y ) of two players I and II who take turns in the following
way: at the move number n, Player I chooses Cn ∈ C and Player II chooses a set
Un ∈ τ(Cn, Y ). The game ends after the n-th move of each player has been made
for every n ∈ ω and Player I wins if X =

⋃

{Un : n ∈ ω}; otherwise the winner is
Player II.

Definition 3.2. A strategy t for the first player in the game G(C, Y ) on a space
X is defined inductively in the following way. First the set t(∅) = F0 ∈ C is
chosen. An open set U0 ∈ τ(X) is legal if F0 ⊂ U0. For every legal set U0

the set t(U0) = F1 ∈ C has to be defined. Let us assume that legal sequences
(U0, . . . , Ui) and sets t(U0, . . . , Ui) have been defined for each i ≤ n. The sequence
(U0, . . . , Un+1) is legal if so is the sequence (U0, . . . , Ui) for each i ≤ n and Fn+1 =
t(U0, . . . , Un) ⊂ Un+1. A strategy t for Player I is winning if it ensures victory
for I in every play it is used.

Definition 3.3. A strategy s for Player II in the game G(C, Y ) on a space X is
simply a function that assigns to every finite sequence (F0, . . . , Fn) of elements of
C an open set U ∈ τ(Fn, X). Such a strategy for Player II is winning if it ensures
victory for II in every play it is used.

Theorem 3.4. Given a non-empty space X , if Y = Cp(X, I) and F = {F ⊂
Y : F is nowhere dense in Cu(X, I)}, then Player II has a winning strategy in the

game G(F , Y ).

Proof: Recall that if f ∈ C(X, I) and ε ≥ 0 then the set I(f, ε) = {g ∈ Y :
|g(x) − f(x)| ≤ ε for all x ∈ X} is closed in the space Y . Define inductively a
winning strategy s for Player II in the game G(F , Y ) on Y in the following way:
let F0 ∈ F be the first move of Player I. If B0 ∈ τ∗(Cu(X, I)) is an open ball of
radius 1 in Y , then ∅ 6= (B0 \ F0) ∈ τ∗(Cu(X, I)) and therefore there is a point
f0 ∈ B0 \F0 and a positive real number ε0 < 1 such that I(f0, ε0) ⊂ B0 \F0; then
F0 ⊂ (Y \ I(f0, ε0)) ∈ τ∗(Cp(X, I)). Consequently, we can define U0 = s(F0) =
Y \ I(f0, ε0) as the first choice of Player II.

Assume that for each i ≤ j < n and every legal finite sequence (F0, . . . , Fj)
of elements of the family F selected by Player I, we have defined the set Ui =
s(F0, . . . , Fi) and the open ball Bi of radius at most 2−i, together with a positive
real number εi < 2−i as well as a function fi ∈ Y \Fi with the following properties.
If we fix j < n, then for all k < i ≤ j we have I(fi, εi) ⊂ Bi ⊂ I(fk, εk) ⊂ Bk and
Ui = Y \ I(fi, εi).

Let Fn be the n-th move of Player I. As above, if Bn ∈ τ∗(Cu(X, I)) is an open
ball of radius not greater than 2−n contained in I(fn−1, εn−1) then ∅ 6= Bn \Fn ∈
τ∗(Cu(X, I)), and hence, we can find a point fn ∈ Bn \ Fn and a positive real
number εn < 2−n such that I(fn, εn) ⊂ Bn \ Fn. The set Fn is contained in
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Y \ I(fn, εn) so we can take Un = s(Fn) = Y \ I(fn, εn) to be the n-th move of
Player II.

The definition of the strategy s is complete, let us convince ourselves that it is
a winning one. Let P = {(Fn, Un)}n∈ω be a play in which Player II applies the
strategy s. By definition of s we have the equality Un = s(Fn) = Y \ I(fn, εn)
where εn < 2−n. The family {I(fn, εn) : n ∈ ω} is a decreasing sequence of closed
non-empty subsets of the complete metric space Cu(X, I), and the corresponding
sequence of diameters converges to zero. This means that

⋂

{I(fn, εn) : n ∈ ω} 6=
∅ and therefore

⋃

{Un : n ∈ ω} 6= Y . This shows that Player II wins whenever
she (or he) applies the strategy s. �

Remark 3.5. It is possible to reformulate Theorem 3.4 for the set Y = Cp(X)
and the family F = {F ⊂ Y : F is nowhere dense in Cu(X)}, applying the same
method to prove that Player II has a winning strategy in the game G(F , Y ).

Remark 3.6. Given a space X consider the set Y = Cp(X, I) (or Y = Cp(X)),
and let F = {F ⊂ Y : F is nowhere dense in Cu(X, I)} (or F = {F ⊂ Y : F is
nowhere dense in Cu(X)}). If C is a family of non-empty closed subsets of Y for
which Player I has a winning strategy in the game G(C, Y ) then C * F .

Lemma 3.7. Let Y be a space, and define C to be the family of all nonvoid

closed locally compact subspaces of Y ; let C′ be the family of all nonempty closed

discrete unions of compact subspaces of Y . If there exists a closure-preserving

compact cover F of the space Y , then Player I has a winning strategy in the

games G(C, Y ) and G(C′, Y ).

Proof: For each y ∈ Y let K(y) = Y \
⋃

{F ∈ F : y /∈ F}. In [5] it is verified that
K(y) is an open set which contains y, and if x ∈ K(y), then K(x) ⊂ K(y). Call a
point m ∈ Y maximal if K(m) is not properly contained in the set K(y) for any
y ∈ Y \ {m}. Potoczny showed in [4] that if M(Y ) is the set of all the maximal
elements of Y then M(Y ) is a discrete union of compact subspaces of Y , and
therefore M(Y ) ∈ C′ ⊂ C. Moreover in [5] it is established that if {Un : n ∈ ω} is
a family of open subsets of Y such that M(Y ) ⊂ U0, and for each n ∈ ω we have
M(Y \

⋃

{Ui : i = 0, . . . , n}) ⊂ Un+1; then Y =
⋃

{Un : n ∈ ω}. This shows that
Player I has a winning strategy in the game G(C, Y ). �

Corollary 3.8. For every space X , if the space Y = Cp(X, I) is covered by a

closure-preserving family of compact subspaces, then X is discrete.

Proof: Let C be the family of all nonempty closed discrete unions of compact
subspaces of Y . By Lemma 3.7, Player I has a winning strategy in the game
G(C, Y ). By Remark 3.6, not all members of C are nowhere dense in Cu(X, I).
Therefore there exists C ∈ C that contains an open ball B(f, 2r) ∈ τ(Cu(X, I))
and hence I(f, r) = {g ∈ Cp(X, I) : |g(x)−f(x)| ≤ r for all x ∈ X} ⊂ C. It is easy
to see using connectedness of I(f, r) that I(f, r) is compact; therefore Cp(X, I) is
also compact being homeomorphic to I(f, r) and hence X is discrete. �
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Corollary 3.9. For every space X , let Y = Cp(X, I) and let C be the family of

all σ-compact subspaces of Y . If Player I has a winning strategy on Y for the

game G(C, Y ), then the space X is discrete.

Proof: Remark 3.6 states that not every element of C is nowhere dense in
Cu(X, I). Therefore, there is a σ-compact subspace F of Y such that F con-
tains a closed subspace homeomorphic to Cp(X, I). Thus Cp(X, I) is σ-compact
and hence X is discrete by [9, Theorem 1.5.2]. �

Lemma 3.10. If C is the family of all σ-compact subspaces of Y = ωω, then

Player II has a winning strategy for the game G(C, Y ).

Proof: Suppose (F0, . . . , Fn) is any sequence of σ-compact subspaces of Y . For
the set Fn it is possible to find a countable family {Kn

m : m ∈ ω} of compact
subsets of Y such that Fn =

⋃

m∈ω Kn
m. For each m ∈ ω, let πm : Y → ω be the

natural projection from Y to the factor determined by m.
Define the finite set Cm

n =
⋃n

i=0 πn(Kn
i ), let bn

n = supCn
n + 1. For each m > n

let bn
m = supπm(Kn

m) + 1. For every m ≥ n let V n
m = {0, . . . , bn

m − 1} × ωω\{m}.
Observe that Kn

i ⊂ V n
n whenever i ≤ n and Kn

j ⊂ V n
j for all j > n. Also

if y ∈ V n
m then y(m) < bn

m for all m ≥ n. Now, let Un =
⋃

m≥n V n
m. Define

t((F0, . . . , Fn)) = Un.
To see that t is a winning strategy, take a play P = {(Fn, Un)}n∈ω in which

Player II uses t. We will find a point in Y \
⋃

n∈ω Un. For every n ∈ ω there
exists xn ∈ Y such that xn(m) = bn

m for every m ≥ n. Observe that xn /∈ Un. Let
y0(0) = x0(0) + 1. Now, once the value y(n) has been determined, let y(n + 1) =

y(n) +
∑n+1

0 xi(n + 1). The point y has the property that for every n ∈ ω, if
m ≥ n then y(m) > xn(m) which implies that y /∈ Un. It has been verified that
Y 6=

⋃

n∈ω Un and therefore Player II wins the play P proving that t is a winning
strategy. �

Note that, since the elements of C in Lemma 3.10 are not necessarily closed,
such result does not follow from [8].

Corollary 3.11. If X is a non-σ-compact analytic space and C is the family of

all σ-compact subsets of X , then Player II has a winning strategy in the game

G(C, X).

Proof: Apply [6, Theorem 3.5.3] to see that X has a closed subspace Y home-
omorphic to ωω. By Lemma 3.10 Player II has a winning strategy for the game
G(C, Y ). It is easy to see that this implies that Player II has a winning strategy
in the game G(C, X). �

Corollary 3.12. For a space X , let C be the family of all σ-compact subspaces

of Cp(X). If Player I has a winning strategy on Cp(X) for the game G(C, Cp(X)),
then the space X is finite.

Proof: It is easy to see that if Y is closed in Cp(X) then Player I has a winning
strategy for the corresponding game on Y . Therefore if C′ is the family of all
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σ-compact subspaces of Cp(X, I) then Player I has a winning strategy for game
G(C′, Cp(X, I)). Now apply Corollary 3.9 to verify that X is discrete. By Corol-
lary 3.11 the space Rω does not embed into Cp(X) as a closed subspace. Thus X
is pseudocompact and hence finite. �

4. Open problems

Reminding ourselves that all spaces considered in this text are Tychonoff, let us
observe that the study of closure-preserving covers of function spaces has turned
out to be a huge task and this paper only scratches its surface. To show that the
topic is far from being exhausted, we give below a list of some interesting open
problems.

Problem 4.1. Suppose that Cp(X) is the union of a closure-preserving family of

its pseudocompact subspaces. Must Cp(X) be σ-pseudocompact?

Problem 4.2. Suppose that Cp(X, I) is the union of a closure-preserving family

of its pseudocompact subspaces. Must Cp(X, I) be pseudocompact?

Problem 4.3. Suppose that Cp(X, I) is the union of a closure-preserving family

of its closed σ-compact subspaces. Does this imply that X is discrete?

Problem 4.4. Let X be a space, not necessarily compact, such that Cp(X) is

the union of a closure-preserving family of its separable subspaces. Must Cp(X)
be separable?

Problem 4.5. Suppose that Cp(X) is the union of a closure-preserving family of

closed subspaces of cardinality c. Must Cp(X) have cardinality c?

Problem 4.6. Suppose that Cp(X) is the union of a closure-preserving family

F of its second countable subspaces. Must X be countable? What happens if all

the elements of F are closed in Cp(X)?

Problem 4.7. Suppose that Cp(X) is the union of a closure-preserving family F
of closed subspaces of countable tightness. Is it true that t(Cp(X)) = ω?

Problem 4.8. Suppose that Cp(X) is the union of a closure-preserving family of

its closed metrizable subspaces. Must X be countable?

Problem 4.9. Suppose that X is compact and Cp(X) is the union of a closure-

preserving family of its metrizable subspaces. Must X be countable?

Problem 4.10. Suppose that Cp(X) is the union of a closure-preserving family

of closed Lindelöf subspaces. Must Cp(X) be Lindelöf?

Problem 4.11. Suppose that Cp(X) is the union of a closure-preserving family

of closed Lindelöf Σ-subspaces. Must Cp(X) be Lindelöf Σ?

Problem 4.12. Can Cp(I) be represented as the union of a closure-preserving

family of its second countable subspaces?
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