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Infinite dimensional linear groups with

a large family of G-invariant subspaces

L.A. Kurdachenko, A.V. Sadovnichenko, I.Ya. Subbotin

Abstract. Let F be a field, A be a vector space over F , GL(F, A) be the group
of all automorphisms of the vector space A. A subspace B is called almost G-
invariant, if dimF (B/ CoreG(B)) is finite. In the current article, we begin the

study of those subgroups G of GL(F, A) for which every subspace of A is almost
G-invariant. More precisely, we consider the case when G is a periodic group. We
prove that in this case A includes a G-invariant subspace B of finite codimension
whose subspaces are G-invariant.
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Introduction

Let F be a field, A be a vector space over F , GL(F, A) be the group of all
automorphisms of the vector space A. The group GL(F, A) and its subgroups
are called linear groups. The linear groups play very important role not only in
algebra but in many other branches of mathematics. If dimF A, the dimension of
A over F , is finite, say is equal to n, then G is a finite dimensional linear group.
It is then well-known that GL(F, A) can be identified with the group of n × n
matrices with entries in F . The theory of finite dimensional linear groups is one
of the best developed theories in algebra. It employs not only algebraic, but also
topological, geometrical, combinatorial, and many other methods.

However, in the case when A has infinite dimension over F , the situation be-
comes totally different. This case is much more complicated and its consideration
requires some additional restrictions allowing an effective employing of some al-
ready developed techniques. The most natural and suitable restrictions here is
the G-invariance. The following example justifies this statement.

Let G ≤ GL(F, A) and suppose that every subspace B is G-invariant. In
particular, for each element a ∈ A, the subspace aF is G-invariant. If g, x are the
arbitrary elements of G, then ag = αa, ax = βa for some elements α, β ∈ F . We
have

a(gx) = (ag)x = (αa)x = α(ax) = α(βa) = (αβ)a,
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and similarly,

a(xg) = (βα)a = (αβ)a.

Hence a(gx) = a(xg) and a[g, x] = a. Since it is valid for each element a ∈
A, [g, x] ∈ CG(A) = 〈1〉. So for this case, the group G must be abelian.

This example justifies that consideration of linear groups having a quite large
family of G-invariant subspaces could be fruitful. In the current article, we con-
sider one of such types of linear groups.

Let F be a field and G ≤ GL(F, A). If B is a subspace of A, then the sum
of an arbitrary family of G-invariant subspaces of B is G-invariant. It follows
that B has the largest G-invariant subspace CoreG(B) which is called the G-core

of B. We observe that G-core of B can be zero. A subspace B is called almost

G-invariant , if dimF (B/ CoreG(B)) is finite.
This notion has the following group-theoretical analog. In the paper [BLNSW]

the following type of subgroups was introduced. A subgroup H is called normal-
by-finite, if the index |H/ CoreG(H)| is finite. It was proved there that locally
finite groups with all subgroups normal-by-finite is abelian-by-finite.

Note that every G-invariant subspace is almost G-invariant, however the fol-
lowing simple example shows that the converse statement is not true.

Let F = Fp be a prime field of order p and let A be a vector space over F with
a basis {a, bn | n ∈ N}. Define a linear transformation gn of A by the rule:

bkgn = bk for all k ∈ N, and agn = a + bn, n ∈ N.

Clearly [gn, gm] = 1 for all n, m ∈ N and G = 〈gn | n ∈ Nt〉 = Drn∈N〈gn〉
is an infinite elementary abelian p-subgroup of GL(F, A). Put B =

⊕
n∈N bnF ,

then dimF (A/B) = 1 and B = CA(G). Let C be an arbitrary vector space of A.
Then dimF (C/(C ∩B)) = 1 and the subspace C ∩B is G-invariant. Hence every
subspace of A is almost G-invariant. But the subspace aF is not G-invariant.

In the current article we consider linear groups G for which every subspace is
G-invariant. Observe that the following result is some analog of the main result
of [BLNSW].

Theorem 1. Let F be a field, A be a vector space over F , and G be a periodic

subgroup of GL(F, A). If every subspace of A is almost G-invariant, then A
includes an FG-submodule B such that dimF (A/B) is finite and every subspace

of B is G-invariant.

Corollary 1 of Theorem 1. Let F be a field, A be a vector space over F ,

and G be a periodic subgroup of GL(F, A). If every subspace of A is almost

G-invariant, then G has a series of normal subgroups E ≤ H ≤ G where G/H is

a subgroup of the multiplicative group of the field F , H/E is a locally finite and

finite dimensional linear group, and E is abelian. Moreover, if char(F ) = p > 0,

then E is elementary abelian p-subgroup; if char(F ) = 0, then E = 〈1〉.
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Corollary 2 of Theorem 1. Let F be a field, A be a vector space over F , and G
be a periodic locally soluble subgroup of GL(F, A). Suppose that every subspace

of A is almost G-invariant.

(i) If char(F ) = p > 0, then G includes a normal nilpotent bounded p-

subgroup P such that G/P is an abelian-by-finite group of finite special

rank.

(ii) If char(F ) = 0, then G is an abelian-by-finite group of finite special rank.

Preliminary results

We begin with the following result.

Lemma 1. Let F be a field, A be a vector space over F , and G be a subgroup

of GL(F, A). Suppose that char(F ) = p is a prime. If every subspace of A is

almost G-invariant, then for every p-element g ∈ G the subspace CA(g) has finite

codimension.

Proof: Let m be the order of an element g. Then m = pn for some positive
integer n. Then we can consider A as J-module where J = F 〈x〉/((xm − 1)F 〈x〉)
where the action of x on A is defined by the rule ax = ag for each a ∈ A. Then
J is an algebra of finite representation type (see for example, [PR, 7.1, Lemma]).
It follows that A =

⊕
λ∈Λ Aλ where Aλ is a cyclic uniserial module (see, for

example, [DK, Chapter X, Theorem 1.1]). In other words,

Aλ = aλ1F ⊕ aλ2F ⊕ · · · ⊕ aλd(λ)F

where d(λ) ≤ n and

aλ1(g − 1) = 0, aλ2(g − 1) = aλ1, . . . , aλd(λ)(g − 1) = aλd(λ)−1.

Let

M = {λ|λ ∈ Λ and aλ2 6= 0}.

Suppose that the subset M is infinite. Put B =
⊕

λ∈M aλ1F , C =
⊕

λ∈M aλ2F ,
and D = B ⊕ C. The subspace C is almost G-invariant. Let E = CoreG(C).
Then dimF (C/E) is finite, in particular, E is non-zero. If a is a non-zero element
of E, then

a = α1aλ(1) 2 + α2aλ(2) 2 + · · · + αtaλ(t) 2

where α1, α2, . . . , αt ∈ F, λ(1), λ(2), . . . , λ(t) ∈ M . Observe that

a(g − 1) = α1aλ(1) 1 + α2aλ(2) 1 + · · · + αtaλ(t) 1 6= 0
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is a non-zero element of B. On the other hand, a(g − 1) ∈ E ≤ C, so that
a(g−1) ∈ B∩C = 〈0〉. Thus C cannot be almost G-invariant. This contradiction
shows that the subset M is finite. Then

A =
⊕

λ∈M

Aλ ⊕
⊕

λ∈Λ\M

Aλ.

It follows that the subspace
⊕

λ∈Λ\M Aλ has a finite codimension. Now we can

observe that
⊕

λ∈Λ\M aλJ ≤ CA(g). �

Lemma 2. Let F be a field, A be a vector space over F , and G be a subgroup

of GL(F, A). Let g be an element of G having finite order. Suppose that if

char(F ) = p > 0, then g is a p′-element. If every subspace of A is almost G-

invariant, then A includes an F 〈g〉-submodule B such that dimF (A/B) is finite

and every subspace of B is 〈g〉-invariant.

Proof: We can consider A as an F 〈g〉-module. Then this module is semisimple
(see, for example, [KOS, Corollary 5.15]). In other words, A =

⊕
λ∈Λ Bλ where

Bλ is a simple F 〈g〉-submodule for every λ ∈ Λ. Put M = {λ ∈ Λ | dimF (Bλ) >
1}. Lemma 2.1 of the paper [KSaSu] proves that the set M is finite. Then
dimF (Bλ) = 1 for every λ ∈ Λ\M , and therefore we can choose elements bλ with
the property Bλ = bλF for every λ ∈ Λ\M . Suppose now that there are two
infinite subsets ∆, Σ of Λ such that bλg = γbλ for every λ ∈ ∆, bλg = ηbλ for
every λ ∈ Σ and γ 6= η. Choose in ∆ (respectively, in Σ) a countable subset
{δ(n) | n ∈ N} (respectively, {σ(n) | n ∈ N}). Put Dn = bδ(n)F ⊕ bσ(n)F ,
cn = bδ(n) + bσ(n), n ∈ N. Then cng = λbδ(n) + ηbσ(n) /∈ cnF for all n ∈ N.
Lemma 2.4 of the paper [KSaSu] shows that the subspace

⊕
n∈N Dn includes a

not almost G-invariant subspace. This contradiction shows that there exists a
subset Ξ ⊆ Λ\M such that (Λ\M)\Ξ is finite and Bλ

∼=F 〈g〉 Bµ for all λ, µ ∈ Ξ.
Then Λ\Ξ is finite and every subspace of B =

⊕
λ∈≮ Bλ is 〈g〉-invariant. The

finiteness of Λ\Ξ implies that dimF (A/B) is finite. �

Corollary 1 of Lemma 2. Let F be a field, A be a vector space over F , and G
be a periodic subgroup of GL(F, A). Suppose that g is an arbitrary element of G.

If every subspace of A is almost G-invariant, then A includes an F 〈g〉-submodule

B such that dimF (A/B) is finite and every subspace of B is 〈g〉-invariant.

Proof: If char(F ) = 0, then this assertion follows directly from Lemma 2. Sup-
pose that char(F ) = p is a prime. We have g = xy where [x, y] = 1, x is a
p-element and y is a p′-element. Put C = CA(x). Then C is 〈g〉-invariant. By
Lemma 1, dimF (A/C) is finite. Since C is almost G-invariant, C includes an
FG-submodule E such that dimF (C/E) is finite. Then dimF (A/E) is also finite.
By Lemma 2, E includes an F 〈g〉-submodule B such that dimF (E/B) is finite
and every subspace of B is 〈y〉-invariant. The inclusion E ≤ CA(x) implies that
every subspace of B is 〈g〉-invariant. Clearly dimF (A/B) is finite. �
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Corollary 2 of Lemma 2. Let F be a field, A be a vector space over F and G
be a periodic subgroup of GL(F, A). If every subspace of A is almost G-invariant,

then G is locally finite.

Proof: Let K be an arbitrary finitely generated subgroup of G, K = 〈g1, . . . , gn〉.
Corollary 1 of Lemma 2 shows that for every element gj the space A includes a
subspace Bj such that dimF (A/Bj) is finite and every subspace of Bj is 〈gj〉-
invariant, 1 ≤ j ≤ n. Put

B = B1 ∩ · · · ∩ Bn.

Then dimF (A/B) is finite, and every subspace of B is K-invariant. By Lemma 3.4
of the paper [KSaSu], K/CK(B) is isomorphic to a subgroup of U(F ). In par-
ticular, K/CK(B) is abelian. Being periodic and finitely generated, K/CK(B)
is finite. Put H = CK(B). We remind that every subgroup of finitely gene-
rated group having finite index is also finitely generated (see, for example, [RD,
Theorem 1.41]). Therefore H is also finitely generated, and B ≤ CA(H), so
that dimF (A/CA(H)) = m is finite. Thus we can consider H/CH(A/CA(H))
as a subgroup of GLm(F ). We observe now that the periodic subgroup of
GLm(F ) is locally finite (see, for example, [WB, Corollary 4.8]). If follows that
H/CH(A/CA(H)) is finite, so that CH(A/CA(H)) is finitely generated. It is not
hard to prove that this subgroup is abelian, and therefore it is finite. Hence, the
entire subgroup K is finite. �

Proof the main theorem and its corollaries

Proof of Theorem 1: If ag ∈ aF for every elements g ∈ G, a ∈ A, then
all is proved. Suppose that there exist the elements g1 ∈ G and a1 ∈ A such
that a1(g1 − 1) = b1 /∈ a1F . If follows that a1F + b1F = a1F ⊕ b1F , so that
dimF (a1F + b1F ) = 2.

By Corollary 1 of Lemma 2, A includes an F 〈g1〉-submodule E1 such that
dimF (A/E1) is finite and every subspace of E1 is 〈g1〉-invariant. Without loss
of generality, we can suppose that (a1F + b1F ) ∩ E1 = {0}. Being almost G-
invariant, E1 includes an FG-submodule L1 such that dimF (E1/L1) is finite.
Then dimF (A/L1) is finite and every subspace of L1 is 〈g1〉-invariant.

If ag ∈ aF for every elements g ∈ G, a ∈ L1, then we put B = L1 and
all is proved. Suppose that there exist elements g2 ∈ G and a2 ∈ L1 such
that a2(g2 − 1) = b2 /∈ a2F . If follows that a2F + b2F = a2F ⊕ b2F , so that
dimF (a2F + b2F ) = 2. As above, we can choose an FG-submodule L2 of L1 such
that dimF (A/L2) is finite, (a2F + b2F ) ∩ L2 = {0}, and every subspace of L2 is
〈g2〉-invariant. By the choice of L1, every subspace of L2 is also 〈g1〉-invariant.

If ag ∈ aF for every elements g ∈ G, a ∈ L2, then we put B = L2 and all is
proved. If not, we will continue this process. We have two possibilities: (i) this
process will finish after finitely many steps; and (ii) this process is infinite. In
the first case we obtain an FG-submodule B such that dimF (A/B) is finite and
every subspace of B is G-invariant. Consider the second case. Then we obtain an
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infinite subset {gn | n ∈ N} of elements of G and the infinite subset {an | n ∈ N}
of elements of A satisfying the following conditions:

(i) an(gn − 1) = bn;
(ii) anF + bnF = anF ⊕ bnF ;
(iii) (anF ⊕ bnF ) ∩

⊕
1≤k≤n−1(akF ⊕ bkF ) = {0};

(iv) angk ∈ anF , bngk ∈ bnF whenever k < n, n, k ∈ N.

Let C =
⊕

j∈N ajF , D =
⊕

j∈N bjF . Then C ∩ D = 〈0〉. Let Z = CoreG(C).

Then dimF (C/Z) is finite, in particular, Z is non-zero. The inclusion Z ≤ C
implies that Z ∩ D = 〈0〉. Let a be a non-zero element of Z. Then a =
α1ak(1) + α2ak(2) + · · · + αtak(t) for some positive integers k(1) < · · · < k(t),
and α1, α2, . . . , αt are the non-zero elements of F . We have

a(gk(1) − 1) = (α1ak(1) + α2ak(2) + · · · + αtak(t))(gk(1) − 1)

= α1ak(1)(gk(1) − 1) + · · · + αtak(t)(gk(1) − 1)

= α1bk(1) + β2ak(2) + · · · + βtak(t).

Since α1 6= 0, α1bk(1) is a non-zero element of D. On the other hand, β2ak(2) +
· · · + βtak(t) ∈ C, so that α1bk(1) + β2ak(2) + · · · + βtak(t) /∈ C ≥ Z. Hence in the
case (ii) we obtain a contradiction, which proves the result. �

Proof of Corollary 1 of Theorem 1: By Theorem 1, A includes an FG-
submodule B of finite codimension such that every subspace of B is G-invariant.
By Lemma 3.4 of the paper [KSaSu], G/CG(B) is isomorphic to a subgroup of
U(F ). Put H = CG(B). Then B ≤ CA(H), so that dimF (A/CA(H)) = m
is finite. Thus we can consider H/CH(A/CA(H)) as a subgroup of GLm(F ).
We observe that the periodic subgroup of GLm(F ) are locally finite (see, for
example, [WB, Corollary 4.8]), so that H/CH(A/CA(H)) is locally finite. Put
E = CH(A/CA(H)). It is not hard to prove that this subgroup is abelian, and
moreover, if char(F ) = p > 0, then E is an elementary abelian p-subgroup; if
char(F ) = 0, then E = 〈1〉. �

For the case when a group G is locally soluble, we can obtain a significantly
more detail description of the structure of G.

Let G be a group. We recall that G has finite special rank r(G) = r, if every
finitely generated subgroup of G can be generated by r elements and r is the least
positive integer with this property.

Proof of Corollary 2 of Theorem 1: By Theorem 1, A includes an FG-
submodule B of finite codimension such that every subspace of B is G-invariant.
Then A has a finite series of an FG-submodules

〈0〉 = B0 ≤ B = B1 ≤ B2 ≤ · · · ≤ Bn = A

such that Bj+1/Bj are finite dimensional simple FG-modules, 1 ≤ j ≤ n − 1.
By Lemma 3.4 of the paper [KSaSu], G/CG(B) is isomorphic to a subgroup of
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U(F ). By Lemma 3.5 of the paper [KSaSu], G/CG(Bj+1/Bj) is an abelian-by-
finite group of finite special rank. Let P =

⋂
0≤j≤n CG(Bj+1/Bj). By Remak’s

Theorem (see, for example, [KM, Theorem 4.3.9]), we obtain an embedding

G/P →֒ G/CG(B1/B0) × · · · × G/CG(Bn/Bn−1),

which shows that G/P is an abelian-by-finite group of finite special rank. Finally,
every element of P acts trivially on every factor Bj+1/Bj , so that P is a nilpotent
subgroup, and moreover, it is a bounded p-subgroup if char(F ) = p > 0, and
P is torsion-free if char(F ) = 0 (see, for example, [KW, Theorem 1.C.1 and
Proposition 1.C.3] and [FL, Section 8]). Since G is periodic, in the last case,
P = 〈1〉, and all is proved. �

Finally we note that the condition

(A) every subspace of a vector space A is almost G-invariant

is equivalent to the condition

(B) every subspace of A having infinite dimension, includes a non-zero G-

invariant subspace.

Indeed, it is clear that (A) implies (B). Conversely, assume that a vector space
A satisfies (B). Suppose that A includes a subspace D which is not almost G-
invariant. Clearly dimF (D) is infinite. Let K = CoreG(D). By (B), K is non-
zero. Since D is not almost G-invariant, dimF (D/K) is infinite. There exists a
subspace L such that D = K ⊕ L. Since L has infinite dimension, L includes
a non-zero G-invariant subspace T . Then K + T is a G-invariant subspace of
D, and K + T 6= K. So we obtain a contradiction with the choice of K. This
contradiction proves that every subspace of A is almost G-invariant.

References

[BLNSW] Buckley J.T., Lennox J.C., Neumann B.H., Smith H., Wiegold J., Groups with all

subgroups normal-by-finite, J. Austral. Math. Soc. Ser. A 59 (1995), 384–398.
[DK] Drozd Yu.A., Kirichenko V.V., Finite Dimensional Algebras, Vyshcha shkola, Kyiv,

1980.
[FL] Fuchs L., Infinite Abelian Groups, Vol. 1. Academic Press, New York, 1970.
[KM] Kargapolov M.I., Merzlyakov Yu.I., The Foundations of Group Theory , Nauka,

Moscow, 1982.
[KW] Kegel O.H., Wehrfritz B.A.F., Locally Finite Groups, North-Holland, Amsterdam,

1973.
[KOS] Kurdachenko L., Otal J., Subbotin I., Artinian Modules Over Group Rings, Frontiers

in Mathematics, Birkhäuser, Basel, 2007.
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