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On finite commutative IP-loops with elementary

abelian inner mapping groups of order p
4

Markku Niemenmaa

Abstract. We show that finite commutative inverse property loops with elementary
abelian inner mapping groups of order p4 are centrally nilpotent of class at most two.
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1. Introduction

If Q is a loop, then the two mappings La(x) = ax (left translation) and Ra(x) =
xa (right translation) are permutations on Q for every a ∈ Q. The permutation
group M(Q) = 〈La, Ra : a ∈ Q〉 is called the multiplication group of Q, the
stabilizer of the neutral element e of Q is denoted by I(Q) and we say that I(Q)
is the inner mapping group of Q. If Q is a group, then I(Q) = Inn(Q), the group
of inner automorphisms of Q. Note that I(Q) = 1 if and only if Q is an abelian
group.

The centre Z(Q) of a loop Q contains all elements a which satisfy the con-
ditions: ax = xa, (ax)y = a(xy), (xa)y = x(ay) and (xy)a = x(ya) for every
x, y ∈ Q. Clearly, Z(Q) is an abelian group. If we write Z0 = 1, Z1 = Z(Q) and
Zi/Zi−1 = Z(Q/Zi−1), then we obtain a series of normal subloops of Q. If Zn−1

is a proper subloop of Q and Zn = Q, then Q is said to be centrally nilpotent
of class n. Bruck [1] observed that if Q is centrally nilpotent of class at most
two, then I(Q) is an abelian group. Kepka and Niemenmaa [6], [7] managed to
show that if Q is a finite loop and I(Q) is abelian, then Q is a centrally nilpotent
loop. However, they did not give any bound for the nilpotency class of Q. In 2007
Csörgö [3] showed that the converse of Bruck’s result does not hold in general: she
constructed (by using connected transversals) a loop of order 128 and nilpotency
class three with an abelian inner mapping group. In Csörgö’s example I(Q) is
an elementary abelian group of order 26. In 2008 Drápal and Vojtěchovský [4]
gave several combinatorial constructions of loops of nilpotency class three with
inner mapping groups which are elementary abelian of order 26. Earlier results by
Csörgö, Kepka and Niemenmaa [2], [7] indicate that if I(Q) is elementary abelian
of order p2 or p3, then Q is centrally nilpotent of class at most two. What happens
if I(Q) is elementary abelian of order p4 or p5? The purpose of this paper is to
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investigate this question in the case that Q is a finite commutative IP-loop and
I(Q) is elementary abelian of order p4.

A loop Q is said to be an inverse property loop (in short, IP-loop) if Q has a
unique left and right inverse x−1 and x−1(xy) = y = (yx)x−1 for every x, y ∈ Q.
The smallest IP-loop that is not a group is of order 7. In the main result of this
paper we show that finite commutative IP-loops with elementary abelian inner
mapping groups of order p4 are centrally nilpotent of class at most two.

In the before mentioned construction Csörgö [3] was using the technique of
connected transversals and we also formulate our results first in terms of group
theory by using connected transversals. The loop theoretical results then follow
as direct corollaries. Section 2 thus contains some basic facts about connected
transversals and related group theoretical results. In Section 3 we prove our main
result on the nilpotency class of finite commutative IP-loops by using connected
transversals.

In this paper all groups and loops are finite. For basic facts about loop the-
ory and its connections to group theory, the reader is advised to consult [1], [5]
and [10].

2. Connected transversals

Let G be a group and H ≤ G. By HG we denote the core of H in G (the largest
normal subgroup of G contained in H). If A and B are two left transversals to
H in G and a−1b−1ab ∈ H for every a ∈ A and for every b ∈ B, then we say that
these two transversals are H-connected in G. In fact, if A and B are H-connected
transversals, then A and B are both left and right transversals to H in G ([5,
Lemma 2.1]). If A = B, then we say that A is a selfconnected transversal to H
in G. In the sequel we assume that the subgroup H has connected transversals A
and B in G.

Lemma 2.1. If HG = 1, then NG(H) = H × Z(G).

Lemma 2.2. If H is abelian and HG = 1, then the core of HZ(G) in G contains

Z(G) as a proper subgroup.

For the proofs, see [5, Proposition 2.7] and [9, Lemma 2.7].

Lemma 2.3. If HG = 1, then AZ(G) ⊆ A (and BZ(G) ⊆ B).

Proof: Let az = bh, where a, b ∈ A, z ∈ Z(G) and h ∈ H . If c ∈ B, then
(az)c = (bh)c and thus ak1z = bk2h

c, where k1, k2 ∈ H . It follows that ak1z =

azh−1k2h
c and hc = k2

−1hk1 ∈ H . Thus h ∈
⋂

c∈B Hc−1

= HG, which means
that h = 1 and az = b ∈ A. �

In the following three theorems we further assume that G = 〈A, B〉. As usual,
p denotes a prime number and Cn denotes a cyclic group of order n.
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Theorem 2.4. If H is cyclic, then G′ ≤ H .

Theorem 2.5. If H ∼= Cp × Cp or H ∼= Cp × Cp × Cp, then G′ ≤ NG(H).

Theorem 2.6. If H is an abelian p-group and HG = 1, then Z(G) > 1.

For the proofs, see [5, Theorem 3.5], [7, Lemma 4.2] and [2, Theorem 3.7] and
[10, Theorem 3.1].

Connected transversals appear in loop theory in the following way: If A =
{La : a ∈ Q} and B = {Ra : a ∈ Q}, then A and B are I(Q)-connected transver-
sals in M(Q). As M(Q) is transitive on Q, it follows that the core of I(Q) in
M(Q) is trivial. The following characterization theorem was proved by Kepka
and Niemenmaa [5, Theorem 4.1] in 1990.

Theorem 2.7. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H of G satisfying HG = 1 and H-connected

transversals A and B such that G = 〈A, B〉.

It should be noted that in the role of the loop elements we have the left cosets
of H and the subgroup H is isomorphic to the inner mapping group of the loop.
Many of the results mentioned in the introduction (on the relation between the
structures of M(Q), I(Q) and Q) were proved by using group theoretical argu-
ments and connected transversals. If Q is a commutative loop, then A = B and if,
in addition, Q is an IP-loop, then La

−1 = La−1 for every a ∈ Q, hence A = A−1.

3. Main results

We shall now consider the situation where A = B, A = A−1 and H is elemen-
tary abelian of order p4.

Theorem 3.1. Let H be an elementary abelian subgroup of order p4 of a finite

group G and let A be a selfconnected transversal to H in G. If G = 〈A〉 and

A = A−1, then G′ ≤ NG(H).

Proof: We proceed by induction on the order of G. If HG > 1, then we consider
G/HG, H/HG and AHG/HG and the claim follows from Theorems 2.4 and 2.5.
Thus we may assume that HG = 1. By Theorem 2.6, it follows that Z(G) > 1
and from Lemma 2.1 we get NG(H) = H ×Z(G). Furthermore, from Lemma 2.2
it follows that the core of HZ(G) in G is equal to KZ(G), where 1 < K ≤ H .
If |K| ≥ p3, then we consider G/KZ(G), HZ(G)/KZ(G) and AKZ(G)/KZ(G).
From Theorem 2.4 it follows that (G/KZ(G))′ ≤ HZ(G)/KZ(G), hence G′ ≤
HZ(G) = NG(H). Thus we may assume that |K| = p or |K| = p2. By applying
Theorem 2.5 and Lemma 2.1 on G/KZ(G), HZ(G)/KZ(G) and AKZ(G)/KZ(G),
we see that (G/KZ(G))′ ≤ NG/KZ(G)(HZ(G)/KZ(G)) = HZ(G)/KZ(G) ×

Z(G/KZ(G)). If we write Z(G/KZ(G)) = M/KZ(G), then G′ ≤ NG(HZ(G)) =
HM . Here M is a normal subgroup of G and M ∩ HZ(G) = KZ(G). Thus
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M = (A ∩ M)KZ(G) = (A ∩ M)K (see Lemma 2.3). We now divide the proof
into two parts:

1) Assume first that K ∼= Cp. Let a ∈ A ∩ M and b ∈ A and write ab = ch,

where c ∈ A and h ∈ H . If t ∈ A, then atbt = ctht. Thus akbu = cwht =
abh−1wht, where k ∈ K and u, w ∈ H . It follows that ht = w−1hkbu. As KZ(G)

is normal in G, it follows that kb ∈ KZ(G), hence ht = w−1hkbu ∈ HZ(G). We
conclude that ht ∈ HZ(G) for every t ∈ A. This means that h = c−1ab belongs
to the core of HZ(G) in G which is equal to KZ(G) and thus h ∈ K ∼= Cp.

Now hb−1

= (c−1ab)b
−1

= bc−1b−1cc−1ba = bc−1b−1cc−1abl, where l ∈ H . Since

A = A−1, it follows that hb−1

∈ H∩KZ(G) = K ∼= Cp. If h 6= 1, then b ∈ NG(K)

and ht = w−1hkbu ∈ H . As ht ∈ H for every t ∈ A, we get h ∈ HG = 1,
a contradiction.

Thus we know that h = 1 and ab = c ∈ A for every a ∈ A ∩ M and for every
b ∈ A. As A = A−1, we also have a−1b−1 = d ∈ A. Then a−1b−1ab = dc ∈ H ,
which means that c ∈ d−1H , hence c = d−1 ∈ A. But then a−1b−1ab = 1 and
we conclude that a ∈ Z(〈A〉) = Z(G). Thus NG(HZ(G)) = HM = HZ(G) and
G′ ≤ HZ(G) = NG(H).

2) Then assume that K ∼= Cp ×Cp. Let a, b ∈ A and ab = ch, where c ∈ A and

h ∈ H . If d ∈ A, then hd = (c−1ab)d = h1c
−1ah2bh3 = h1hb−1h2bh3 ∈ HHbH

(here h1, h2, h3 ∈ H). Now HZ(G) is normal in HM and as Hb ≤ HM , we get

HHbH ⊆ HZ(G)Hb ≤ G. Thus h ∈ (HZ(G)Hb)d
−1

for every d ∈ A, hence

h ∈
⋂

g∈G[HZ(G)Hb]g. This intersection is a normal subgroup of G and we

denote it by N(b). Clearly, N(b) ≥ KZ(G) for every b ∈ A and ab ∈ A[N(b)∩H ].
If N(b) ∩ H = K for every b ∈ A, then A2 ⊆ AK. By Lemma 2.3, AKZ(G) =
AZ(G)K = AK and we may conclude that AK is a proper subgroup of G. But
then 〈A〉 ≤ AK < G, a contradiction.

Thus we may assume that there exists d ∈ A such that N(d) ∩ H > K. As
K ∼= Cp ×Cp, we have |N(d)∩H | ≥ p3. We now consider G/N(d), HN(d)/N(d)

and AN(d)/N(d). From Theorem 2.4 it follows that G′ ≤ HN(d) ≤ HZ(G)Hd.

This means that HZ(G)Hd and Z(HZ(G)Hd) are normal subgroups of G. As

Z(HZ(G)Hd) is a subgroup of NG(H) = HZ(G), we conclude that Z(HZ(G)Hd)
≤ KZ(G). If a ∈ A, then da−1d−1a ∈ H , since A = A−1. Thus a−1d−1ad ∈

H ∩ Hd and therefore a−1d−1ad ∈ Z(HZ(G)Hd) ≤ KZ(G) for every a ∈ A. As

G = 〈A〉, it follows that dKZ(G) ∈ Z(G/KZ(G)), hence Hd ≤ HZ(G). But

then G′ ≤ HZ(G)Hd = HZ(G) = NG(H) and the proof is complete. �

If Q is a loop and M(Q)′ ≤ NM(Q)(I(Q)) = I(Q) × Z(M(Q)), then Q is

centrally nilpotent of class at most two (see [1], also [10, Theorem 6.5]). Thus by
combining Theorem 3.1 with Theorem 2.7 we get
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Theorem 3.2. Let Q be a finite commutative IP-loop and let I(Q) be an ele-

mentary abelian group of order p4. Then Q is centrally nilpotent of class at most

two.

Remark. If Q is a commutative loop and x(xy) = y for every x, y ∈ Q, then Q is
a Steiner loop. It is not hard to show that Steiner loops are precisely IP-loops of
exponent two. Kinyon [8] has informed the author of this paper that Steiner loops
with abelian inner mapping groups are centrally nilpotent of class at most two.
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