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Isolated points and redundan
yAlirio J. Pe~na P., Jorge VielmaAbstra
t. We des
ribe the isolated points of an arbitrary topologi
al spa
e (X; �).If the � -spe
ialization pre-order on X has enough maximal elements, then a pointx 2 X is an isolated point in (X; �) if and only if x is both an isolated point in thesubspa
es of � -kerneled points of X and in the � -
losure of fxg (a spe
ial 
ase ofthis result is proved in Mehrvarz A.A., Samei K., On 
ommutative Gelfand rings,J. S
i. Islam. Repub. Iran 10 (1999), no. 3, 193{196). This result is applied toan arbitrary subspa
e of the prime spe
trum Spe
(R) of a (
ommutative withnonzero identity) ring R, and in parti
ular, to the spa
e Spe
(R) and the maximaland minimal spe
trum of R. Dually, a prime ideal P of R is an isolated point inits Zariski-kernel if and only if P is a minimal prime ideal. Finally, some aspe
tsabout the redundan
y of (maximal) prime ideals in the (Ja
obson) prime radi
alof a ring are 
onsidered, and we 
hara
terize when Spe
(R) is a s
attered spa
e.Keywords: maximal (minimal) spe
trum of a ring, s
attered spa
e, isolated point,prime radi
al, Ja
obson radi
alClassi�
ation: 54F65, 13C05Introdu
tionIn Se
tion 1 we in
lude some preliminaries. In Se
tion 2 we des
ribe the iso-lated points of an arbitrary topologi
al spa
e (Theorem 2.1). In parti
ular, wedes
ribe the isolated points in a topologi
al spa
e (X; �) su
h that the pre-orderedset (X;�� ) has enough maximal elements, where �� is the � -spe
ialization pre-order on X (Theorem 2.2), and we apply this result to the prime spe
trum of aring (Corollary 2.1). In Se
tion 3 we 
hara
terize the isolated points in an arbi-trary subspa
e of the prime spe
trum Spe
(R) of a ring R (Theorem 3.1) and weapply this to the maximal and minimal spe
trum of R (Theorems 3.4{3.5). Also,using these results, we 
hara
terize when ea
h of these subspa
es is a dis
retespa
e (Corollaries 3.2{3.3). Further, we 
hara
terize the points whi
h are isolatedpoints in its kernel (Theorem 3.6), as well as when Spe
(R) is a s
attered spa
e(Corollary 3.5).1. PreliminariesWe denote by N := f0; 1; 2; : : :g the set of natural numbers, a set X with atopology � will be denoted by (X; �) and we assume no separation axioms, thusa point p is isolated if it is simply an open point. For every subset Y of X , wedenote by � jY the subspa
e topology on Y , by Y � the � -
losure of Y , by bY � the



146 A.J. Pe~na P., J. Vielma�-kernel of Y (the interse
tion of the � -open subsets of X 
ontaining Y ), and Y issaid to be �-kerneled if Y = bY � . Also, the �-saturation of Y is the set S y2Y y � ,and we say Y is �-saturated if it 
oin
ides with its � -saturation. In parti
ular,x � := fxg � and bx � :=dfxg � for every x 2 X .Let R be a ring. We set I � R to indi
ate that I is an ideal of R and wedenote by Spe
(R) (resp. Max(R), Min(R)) the family of prime (resp. maximal,minimal prime) ideals of R. Re
all that every proper ideal is 
ontained in amaximal ideal and every prime ideal 
ontains a minimal prime ideal ([2℄). Weset J(R) := TMax(R) the Ja
obson radi
al of R, for every I � R, we denote by�(I) the prime radi
al of I (the interse
tion of the prime ideals of R 
ontainingI) and we say I is a radi
al ideal if I = �(I). In parti
ular, �(R) := �(0) isthe prime radi
al of R, and R is 
alled a redu
ed ring if �(R) = f0g. Note that�(R) = TMin(R) and we set Ra := fra : r 2 Rg and (I : a) := fr 2 R : ra 2 Igfor every a 2 R.Let I be an ideal of a ring R. We denote by (I)0 the family of prime ideals ofR 
ontaining I and by D0(I) := Spe
(R)n(I)0. Also, (a)0 := (Ra)0 and D0(a) :=D0(Ra) for every a 2 R. It is easy to see that the family f(I)0 : I � Rg satis�esthe axioms of 
losed sets for a topology tZ on Spe
(R), the Zariski topology , andthe spa
e (Spe
(R); tZ) is the prime spe
trum of R. Note that fPg tZ = (P )0and bP � = fQ 2 Spe
(R) : Q � Pg for every P 2 Spe
(R), and in this work we
onsider the family Spe
(R) as a spa
e with the Zariski topology.2. Isolated pointsLet (X; �) be a spa
e. A point x 2 X is 
alled a kerneled (resp. isolated ,Alexandro� ) point of (X; �) if fxg = bx � (resp. fxg 2 � , bx � 2 �). The kerneledpoints of (X; �) are the maximal elements in the pre-ordered set (X;�� ), where�� is the �-spe
ialization pre-order on X , this is, x �� y in X if x 2 y � , orequivalently, y 2 bx � . Note that (X; �) is a T0-spa
e if and only if �� is a partialorder on X .Let (X;�) be a pre-ordered set. We denote by Max(X;�) the set of maximalelements in (X;�), and we say (X;�) has enough maximal elements if for everyx 2 X , there exists y 2 Max(X;�) su
h that x � y. Dually, we de�ne the setMin(X;�).The following result is well known, but we present it here for further referen
ein this paper.Theorem 2.1. Let (X; �) be a spa
e and x 2 X . Then, the following 
onditionsare equivalent.(a) x is an isolated point of (X; �).(b) Whenever A � X with x 2 A � , we have x 2 A.(
) x is both an Alexandro� point of (X; �) and a maximal element in (X;�� ).Proof: It is 
lear that (a))(b) and sin
e Max(X;�� ) is the set of kerneled pointsof (X; �), we have (
))(a). To prove that (b))(
), let y 2 bx � . Then, x 2 y � and



Isolated points and redundan
y 147thus, x = y. Hen
e, bx � = fxg and by hypothesis, the set A = Xnfxg is � -
losed(otherwise, A is � -dense and x 2 A whi
h is a 
ontradi
tion). Therefore, fxg 2 �and (
) holds. �Theorem 2.2. Let (X; �) be a spa
e su
h that (X;�� ) has enough maximalelements and x 2 X . Then, x is an isolated point of (X; �) if and only if x isboth an isolated point in Max(X;�� ) and in x � .Proof: The ne
essary 
ondition is 
lear. Suppose the suÆ
ien
y 
ondition andlet Y = Max(X;�� ) and Z = x � . Then, fxg = Y \ U = Z \ V for some pairU; V 2 � . Note that Y \ Z = fxg, sin
e if y 2 Y \ Z then y �� x and bymaximality, we have y = x. Hen
e, fxg = W \ fxg where W = U \ V 2 � . Wewill show that fxg = W , for if y 2 W then, by hypothesis, there exists z 2 Ysu
h that y �� z and thus, y 2 z � and sin
e y 2 U , we have z 2 U \ Y = fxgand thus, z = x and y �� x. Hen
e, y 2 Z \ V = fxg and y = x. �Corollary 2.1. A prime ideal P of a ring R is an isolated point of the primespe
trum of R if and only if P is an isolated point in Min(R) and in the Zariski-
losure of fPg.Proof: Use Theorem 2.2, sin
e Min(R) = Max(Spe
(R);�tZ ) and �tZ= �. �Note that Corollary 2.1 is part (2) of Proposition 3 in [4℄, and in the nextse
tion we study ea
h of the two suÆ
ient 
onditions in Corollary 2.1.3. Redundan
y and s
attered spe
tral spa
esLet Y be a nonempty family of prime ideals of a ring R and P 2 Y . An idealI of R is absolutely Y -irredu
ible if whenever F � Y with TF � I , there existsQ 2 F su
h that Q � I . If Y = Min(R) then I is said to be absolutely minimal-irredu
ible, and if Y = Max(R) then I is said to be absolutely maximal-irredu
ible([5℄). Let I(Y ) := TY be the radi
al ideal of Y and IP (Y ) := T fQ 2 Y : Q 6=Pg. Then, Y tZ = (I(Y ))0 and we say P is Y -redundant if I(Y ) = IP (Y ). Inparti
ular, if Y = Spe
(R) we have the weak �-redundan
y studied in [5℄. Also,if Y = Min(R) we speak of �-redundan
y and if Y = Max(R) we speak of J-redundan
y . We now give a des
ription of the isolated points in an arbitrarysubspa
e of Spe
(R) with at least two points. We denote by Min(Y;�) the set ofminimal elements in the poset (Y;�).Theorem 3.1. Let R be a ring, Y a non-empty subset of Spe
(R), I = TY theradi
al ideal of Y and P 2 Y . Then, the following 
onditions are equivalent.(a) P is an isolated point of Y (as subspa
e of Spe
(R)).(b) P is an absolutely Y -irredu
ible ideal of R and P 2 Min(Y;�).(
) Whenever F � Y with TF � P , we have P 2 F .(d) There exists a 2 IP (Y )nP su
h that P = (I : a).(e) P is not Y -redundant.Further, in su
h a 
ase, P = (I : a) for every a 2 IP (Y )nP .



148 A.J. Pe~na P., J. VielmaProof: Let t = tZ jY . To show that (a))(b), let Q 2 Y with Q � P . Then,Q 2 bP tZ \ Y = bP t = fPg and thus, Q = P and P 2 Min(Y;�). Now, let F � Ywith TF � P . Then, P 2 F tZ TY = F t and by hypothesis, fPgTF 6= ;.Hen
e, P 2 F . The impli
ation (b))(
) is 
lear. Let us show that (
))(e), andlet F = Y nfPg. Then I(Y ) 6= IP (Y ) (otherwise, we will have P 2 F whi
h is a
ontradi
tion). Hen
e, P is not Y -redundant. Let us show that (e))(a), and letH = IP (Y ). Then fPg = D0(H)TY 2 t. In fa
t, by hypothesis, P 2 D0(H)TYand if Q 2 D0(H)TY then Q = P (otherwise, H � Q whi
h is a 
ontradi
tion).Let us see (e))(d), and let a 2 IP (Y )nP . Let us show that P = (I : a). Infa
t it is 
lear that (I : a) � P and if x 2 P su
h that ax =2 I then there existsQ 2 Y with ax =2 Q. But then, Q 6= P (sin
e x 2 P ) and thus, a 2 Q whi
his a 
ontradi
tion. Finally, (d))(a) sin
e if a 2 IP (Y )nP with P = (I : a) thenfPg = Y TD0(a) 2 t. �Corollary 3.1. A prime ideal P of a ring R is an isolated point of the Zariski-
losure of fPg if and only if P is not the interse
tion of the prime ideals whi
hstri
tly 
ontain it.Corollary 3.1 is part (2) of Proposition 3 in [4℄ under the assumption that R isa redu
ed ring. Re
all that a prime ideal P of a ring R is a minimal prime idealif and only if P = S a2RnP (�(R) : a) ([2, Lemma 1.1℄). Thus it is natural to askwhen this last property holds for a non-empty family of prime ideals of R.Theorem 3.2. Let Y be a nonempty family of prime ideals of a ring R, I = TYand P 2 Y . If P = S a2RnP (I : a) then P 2 Min(Y;�). Further, the 
onverseholds in any one of the following 
ases: (a) if Y is a Zariski-kerneled set; (b) theZariski-
losure of Y 
oin
ides with its Zariski-saturation.Proof: Suppose P = S a2RnP (I : a) and that P =2 Min(Y;�). Then, there existsQ 2 Y su
h that Q $ P . Let x 2 PnQ and a 2 RnP su
h that x 2 (I : a). Then,ax 2 I � Q whi
h is a 
ontradi
tion. Conversely, suppose P 2 Min(Y;�) andeither (a) or (b) holds. It is 
lear that S a2RnP (I : a) � P . Now, suppose x 2 Psu
h that ax =2 I for every a 2 RnP . Let S = RnP and T = Sn2N Sxn. Then,S $ T and T is a multipli
atively 
losed subset of R su
h that 1 2 T . Note that0 =2 T (otherwise, sxn = 0 2 I for some s 2 S and n 2 N and sin
e I is radi
aland s =2 I , we will have xm 2 I for some integer m � 2 and thus, x 2 I whi
h is a
ontradi
tion). Hen
e, 0 =2 T and I \T = ;, and by Krull's Lemma (Theorem 2.2in Chapter VIII of [3℄), there exists a prime ideal Q of R su
h that I � Q andT \ Q = ;. But then, Q 2 Y tZ and Q � P . Now, if (a) holds then Y a lowersegment of (Spe
(R);�) and thus Q 2 Y and by minimality, P = Q whi
h is a
ontradi
tion (sin
e x 2 P and x =2 Q). On the other hand, if (b) holds thenQ 2 Y tZ = SH2Y (H)0 and there exists H 2 Y su
h that H � Q and as above,P = H = Q obtaining a 
ontradi
tion. �



Isolated points and redundan
y 149Note that 
ondition (b) in Theorem 3.2 is satis�ed if Y is either Zariski-
losedor dense with respe
t to the Alexandro� 
losure of the Zariski topology, denotedby tZ . Also, 
ondition (b) is equivalent to the following: for every prime ideal Pof R su
h that TY � P , there exists Q 2 Y su
h that Q � P . In parti
ular, any�nite subset of Spe
(R) satis�es this property. Moreover, the 
onditions (a) and(b) are independent. In fa
t, if R is a zero-dimensional ring with in�nite primeideals then Spe
(R) is not a dis
rete spa
e and there exists a Zariski-open set Ywhi
h is not Zariski-
losed (otherwise, the Zariski topology will be an Alexandro�T1-topology whi
h is dis
rete). On the other hand, if R is not a zero-dimensionalring then there exists a maximal nonminimal ideal P of R and thus, the setY = fPg satis�es trivially 
ondition (b) but not 
ondition (a).Theorem 3.3. Let Y be a nonempty family of prime ideals of a ring R, P 2 Yand a 2 RnP . If P = (I(Y ) : a) then fPg = Min(Y;�)TD0(a) and the 
onverseholds if the poset (Y;�) has enough minimal elements.Proof: If Q 2 Y with Q � P then Pa � I(Y ) � Q and sin
e a =2 Q, wehave P � Q and P = Q. Hen
e, fPg � Min(Y;�)TD0(a). Conversely, ifQ 2 Min(Y;�)TD0(a) then Pa � I(Y ) � Q and thus, P � Q and P = Q. Onthe other hand, suppose that the poset (Y;�) has enough minimal elements andfPg = Min(Y;�)TD0(a). It is 
lear that (I(Y ) : a) � P and if x 2 P withax =2 I(Y ) then there exists Q 2 Y su
h that ax =2 Q. Now, if Q0 2 Min(Y;�)su
h that Q0 � Q then ax =2 Q0 and P = Q0 whi
h is a 
ontradi
tion. Hen
e,P = (I(Y ) : a). �We now prove some more 
onsequen
es of Theorems 3.1 and 3.3.Theorem 3.4. Let R be a ring and P a prime ideal of R. Then, the following
onditions are equivalent.(a) P is an isolated point of Min(R).(b) P is both an absolutely minimal-irredu
ible and minimal prime ideal of R.(
) There exists a 2 RnP su
h that P � Q for every Q 2 D0(a).(d) There exists a 2 RnP su
h that P = (�(R) : a).(e) P is not �-redundant.(f) P is a minimal prime ideal of R and there exists a 2 RnP su
h that(�(R) : x) � (�(R) : a) for every x 2 RnP .Proof: By Theorems 3.1 and 3.3, we have (a),(b),(d),(e). Let us show that(d))(
). Suppose a 2 RnP with P = (�(R) : a) and let Q 2 D0(a). Then a =2 Qand if x 2 P then ax 2 �(R) � Q and thus, x 2 Q and P � Q. We see (
))(b).Suppose a 2 RnP su
h that P � Q for every Q 2 D0(a), and let Q0 2 Min(R)with Q0 � P . If Q0 6= P then a 2 Q0 (otherwise P � Q0 and thus P = Q0 whi
his a 
ontradi
tion). Hen
e, P 2 Min(R). Now, let F � Min(R) with TF � P .Then a =2 TF and there exists Q 2 F with a =2 Q and by hypothesis, P � Qand by minimality, P = Q. Finally, for (f),(d) use that P = S a2RnP (�(R) : a)([2℄). �



150 A.J. Pe~na P., J. VielmaCorollary 3.2. Let R be a ring. Then, Min(R) is a dis
rete spa
e if and only ifevery minimal prime ideal of R is not �-redundant if and only if the prime radi
alof R is the irredundant interse
tion of the minimal prime ideals of R.Condition (d) in Theorem 3.4 is an extension of part (3) of Proposition 4 in [4℄.Dually, we have the following two results.Theorem 3.5. Let R be a ring and P a maximal ideal of R. Then, the following
onditions are equivalent.(a) P is an isolated point of Max(R).(b) P is an absolutely maximal-irredu
ible ideal of R.(
) If F �Max(R) su
h that TF � P then P 2 F .(d) There exists a 2 IP (Max(R))nP su
h that P = (J(R) : a).(e) There exists a 2 RnP su
h that P = (J(R) : a).(f) P is not J-redundant.Corollary 3.3. Let R be a ring. Then, Max(R) is a dis
rete spa
e if and only ifevery maximal ideal of R is not J-redundant if and only if the Ja
obson radi
alof R is the irredundant interse
tion of the maximal ideals of R.Every maximal ideal of a ring R generated by an idempotent element of R is anisolated point in Max(R) and the 
onverse holds if R is a semiprimitive ring , thisis, J(R) = f0g (Lemma 2.1 in [4℄). Note that if J = J(R) then the quotient ringR=J is semiprimitive and the spa
es Max(R) and Max(R=J) are homeomorphi
.Hen
e, in general, the isolated points of the spa
e Max(R) are the maximal idealsP of R for whi
h P=J is an ideal of R=J generated by an idempotent element ofR=J .Theorem 3.6. Let P be a prime ideal of a ring R and Y = bP tZ . Then, thefollowing 
onditions are equivalent.(a) P is an isolated point of Y .(b) P is a minimal element in the poset (Y;�).(
) P is a minimal prime ideal of R.(d) P = (I(Y ) : a) for some a 2 RnP .Proof: By Theorem 3.1, (a),(b),(
) and (a))(d). To show that (d))(
), letQ 2 Min(R) su
h that Q � P . Sin
e Q 2 Y and a =2 Q, we have Pa � I(Y ) � Qand thus, P � Q and P = Q. �By Corollary 3.1, the property (a) in Theorem 3.6 is not dual. Also, for everyprime ideal P of a ring R, the family Y = bP tZ has enough minimal elementsand the radi
al ideal I(Y ) is the interse
tion of the minimal prime ideals of R
ontained in P (see Theorem 3.3).



Isolated points and redundan
y 151Theorem 3.7. Let P and Q be prime ideals of a ring R. Then P is an isolatedpoint of Q tZ if and only if P = Q and P is not the interse
tion of the primeideals whi
h stri
tly 
ontain it.Proof: The suÆ
ien
y 
ondition is a 
onsequen
e of Corollary 3.1. Conversely,suppose P is an isolated point ofQ tZ = (Q)0. By Theorem 3.1, for everyF � (Q)0with TF � P , we have P 2 F . In parti
ular, if F = fQg then P = Q. For thelast part, use Corollary 3.1. �Corollary 3.4. Let P be a prime ideal of a ring R. If the (irredu
ible Zariski-
losed) set (P )0 has an isolated point then this point is P .Re
all that (X; �) is a s
attered spa
e if every nonempty subset of X 
ontainsa point that is isolated in the relative topology. By Corollary 3.4, if Spe
(R) is as
attered spa
e and P 2 Spe
(R) then P is the unique isolated point of (P )0. ByTheorem 2.8 in [1℄, if R is a zero-dimensional ring then Spe
(R) is a s
attered spa
eif and only if every radi
al ideal of R is an irredundant interse
tion of (maximal)prime ideals of R. Compare this last result with Corollary 3.2. Further, byTheorem 3.1, we have the following result.Corollary 3.5. Let R be a ring. Then, the following 
onditions are equivalent.(a) Spe
(R) is a s
attered spa
e.(b) For every nonempty family Y of prime ideals of R, there is an absolutelyY -irredu
ible ideal of R whi
h is a minimal element in (Y;�).(
) For every nonempty family Y of prime ideals of R, there exists P 2 Ysu
h that if F � Y with TF � P , then P 2 F .(d) For every nonempty family Y of prime ideals of R, there are P 2 Y anda 2 IY (P )nP with P = (I(Y ) : a).(e) For every nonempty family Y of prime ideals of R, there exists P 2 Ywhi
h is not Y -redundant.A
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