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Some �xed point theorems and existene ofweak solutions of Volterra integral equationunder Henstok-Kurzweil-Pettis integrabilityAfif Ben AmarAbstrat. In this paper we examine the set of weakly ontinuous solutions fora Volterra integral equation in Henstok-Kurzweil-Pettis integrability settings.Our result extends those obtained in several kinds of integrability settings. Be-sides, we prove some new �xed point theorems for funtion spaes relative to theweak topology whih are basi in our onsiderations and omprise the theory ofdi�erential and integral equations in Banah spaes.Keywords: �xed point theorems, Henstok-Kurzweil-Pettis integral, Volterra equa-tion, measure of weak nonompatnessClassi�ation: 47H10, 28B05, 45D05, 45N05, 26A391. IntrodutionThe resolution of di�erential and integral problems in a Banah spae relativeto the strong topology, has been the subjet of many papers (see [23℄, [25℄, [45℄).Besides, some results have been obtained for equations in Banah spaes relative tothe weak topology (see [4℄, [7℄, [8℄, [9℄, [20℄, [21℄, [24℄, [28℄, [35℄, [43℄). Some exam-inations of these problems were given under hypotheses of Lebesgue integrabilityon the real line, respetively Bohner, weak Riemann integral and Pettis integral,in the vetor ase. Reently, for problems involving highly osillating funtions,many authors have examined the existene of solutions under Henstok-Kurzweil[5℄, [14℄, [15℄, [32℄, [33℄, [36℄, [37℄, [38℄, [40℄, [41℄ and Henstok-Kurzweil-Pettis in-tegrability [1℄, [6℄, [30℄, [31℄, [39℄, [42℄. Motivated by those examinations, we �rstprove some Sadovskii �xed point type results for funtion spaes whih guaranteean existene result for the general operator equationx(t) = Fx(t); t 2 [0; T ℄; T > 0relative to the weak uniform onvergene topology whih is not metrizable. Theseresults improve and extend those in [28℄. Then by using those results, we giveexistene riteria of weak solutions for the Volterra integral equationx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on [0; T ℄; T > 0



178 A. Ben Amarinvolving the Henstok-Kurzweil-Pettis integral and we prove the existene ofa non-empty and ompat set of weak solutions on a losed subinterval of [0; T ℄.The main tools used in our study are assoiated with the tehniques of measure ofweak nonompatness, properties of the weak uniform onvergene topology realbounded variation funtions and Henstok-Kurzweil-Pettis integrals. This resultgeneralizes and improves the orresponding results in [4℄, [28℄. We notie in ourstudy that the tehniques developed in [42℄ whih are based on �xed point theoryfor weakly sequentially ontinuous mappings de�ned on domains of a metrizableloally onvex topologial vetor spae are not useful in establishing existenepriniples for the problem we are interested in. The major problem enounteredis that we are working in funtion spaes under weak uniform onvergene topol-ogy features. However, we know that weak uniform onvergene topology is notmetrizable. Also our theory provides an uni�ed line to the theory of di�erentialand integral equations in Banah spaes relative to the weak topology and underseveral well known kinds of integrability settings.2. Preliminaries and �xed point resultsThe purpose of this setion is to give some notations and preliminaries andstate some �xed point results for funtion spaes whih will be used throughoutthis paper.Let I = [0; T ℄ be an interval of the real line equipped with the usual topology.Let E be a Banah spae with norm k�k. E� will denote the dual of E and Ew willdenote the spae E when endowed with its weak topology. On the spae C(I; Ew)of ontinuous funtions from I to Ew we de�ne a topology as follows. Let Fin(E�)be the lass of all non-empty and �nite subsets in E�, Let O 2 Fin(E�) and letus de�ne k�kO : C(I; Ew) �! R+ bykfkO := supt2I supx�2O jx�(f(t))jfor eah f 2 C(I; Ew). One may see that fk�kO;O 2 Fin(E�)g is a family ofseminorms on C(I; Ew) whih de�nes a topology of a loally onvex, separatedspae, alled the uniform weak onvergene topology. We emphasize that thistopology (exept for the ase in whih E is �nite dimensional) is not metrizable.We will denote by Cw(I; E) the spae of weakly ontinuous funtions on I withthe topology of weak uniform onvergene. For more details see [29℄. Moreover,we will denote by � the De Blasi measure of weak nonompatness [10℄. Reallthat for any nonvoid, bounded subset X of E,�(X) = inff" > 0 : there exists a weakly ompat set Ysuh that X � Y + "BEg;where BE is the losed unit ball of E. For onveniene, we bring bak someproperties of �:(i) X1 � X2 implies �(X1) � �(X2);



Some �xed point theorems and existene of weak solutions of Volterra integral equation 179(ii) �(X1) = 0 i� Xw1 is weakly ompat, here Xw1 is the weak losure of X1in E;(iii) �(X1) = �(Xw1 );(iv) �(X1 [X2) = maxf�(X1); �(X2)g;(v) �(�X1) = ��(X1) for all � > 0;(vi) �(onv(X1)) = �(X1);(vii) �(X1 +X2) � �(X1) + �(X2);(viii) �t(Sj�j�h �X1) = h�(X1).De�nition 2.1. A funtion f : I � E �! E is said to be weakly-weakly onti-nuous at (t0; x0) if given " > 0 and x� 2 E�, there exists Æ > 0 and a weakly openset U ontaining x0 suh that jx�(f(t; x) � f(t0; x0))j < " whenever jt � t0j < Æand x 2 U . }De�nition 2.2. A family F = ffi; i 2 Ig (where I is some index set) of EI issaid to be weakly equiontinuous if given " > 0, x� 2 E� there exists Æ > 0 suhthat, for t; s 2 I , if jt� sj < Æ, then jx�(fi(t)� fi(s))j < " for all i 2 I. }Next we reall the Brouwer-Shauder-Tyhono� �xed point theorem.Theorem 2.1 ([2℄). Let K be a non-empty ompat onvex subset of a loallyonvex Hausdor� spae and let f : K �! K be a ontinuous funtion. Then theset of �xed points of f is ompat and non-empty. }Our next �xed point result is motivated by the weak sequential ompatnessof weakly ompat subsets of a Banah spae.Theorem 2.2 ([3℄). LetQ be a non-empty, onvex losed set in a Banah spaeE.Assume F : Q �! Q is a weakly sequentially ontinuous map whih is also �-ondensing (i.e., �(F (X)) < �(X) for all bounded subsets X � Q suh that�(X) 6= 0). In addition, suppose that F (Q) is bounded. Then F has a �xedpoint. }The next lemma is basi for our study.Lemma 2.1. (a) Let V be a bounded subset of C(I; E). Thensupt2I �(V (t)) � �(V )where V (t) = fx(t) : x 2 V g.(b) Let V � C(I; E) be a family of strongly equiontinuous funtions. Then�(V ) = supt2I �(V (t)) = �(V (I))where V (I) = St2Ifx(t) : x 2 V g, and the funtion t 7�! �(V (t)) is ontinuous.}



180 A. Ben AmarProof: For a proof of laim (a), see [28℄. For a proof of laim (b), we refer to[20℄, [24℄. �We are now ready to state our �xed point results.Theorem 2.3. Let E be a Banah spae with Q a non-empty subset of C(I; E).Assume also that Q is a losed onvex subset of Cw(I; E), F : Q �! Q is onti-nuous with respet to the weak uniform onvergene topology, F (Q) is boundedand F is �-ondensing (i.e., �(F (X)) < �(X) for all bounded subsets X � Q suhthat �(X) 6= 0). In addition, suppose the family F (Q) is weakly equiontinuous.Then the set of �xed points of F is non-empty and ompat in Cw(I; E). }Proof: Let F the �xed points set of F in Q. We laim that F is non-empty.Indeed, let x0 2 F (Q) and G be the family of all losed bounded onvex subsetsD of C(I; E) suh that x0 2 D and F (D) � D. Obviously G is non-empty, sineonv(F (Q)) 2 G (the losed onvex hull of F (Q) in C(I; E)). We denote K =TD2G D. We have that K is losed onvex and x0 2 K. If x 2 K, then F (x) 2 Dfor all D 2 G and hene F (K) � K. Therefore we have that K 2 G. We laimthat K is a ompat subset of Cw(I; E). Denoting by K� = onv(F (K) [ fx0g)(the losed onvex hull of F (K) in C(I; E)), we have K� � K, whih implies thatF (K�) � F (K) � K�. Therefore K� 2 G, K � K�. Hene K = K�. Clearly K isbounded and if �(K) 6= 0, we obtain�(K) = �(onv(F (K) [ fx0g) � �(onv(F (K) [ fx0g)) � �(F (K)) < �(K);whih is a ontradition, so �(K) = 0. SineK is a weakly losed subset of C(I; E)(notie that a onvex subset of a Banah spae is losed i� it is weakly losed), Kis a weakly ompat subset of C(I; E). We laim that K is losed in Cw(I; E). Tosee this, let S = EI be endowed with the produt topology. We onsider C(I; E)as a vetor subspae of S. Hene its weak topology is the topology indued bythe weak topology of S. Suppose (x�) is a net in K with x� �! z in Cw(I; E).Then x�(t) tends weakly to z(t) for eah t 2 I . For eah t 2 I , let Ht = fx�(t)g.Clearly the weak losure of Ht is a weakly ompat subset of E. But the weaktopology of EI is the produt topology of the weak topology of E. Hene thesubset H =Qt2I Hwt is a weakly ompat subset of S by the Tyhono� theorem.Obviously the subset fx�; zg � H . The set H \K is weakly ompat in K, henein C(I; E). Using the fat that for eah x� 2 E� and t 2 I the point evaluationmapping y 7�! x�y(t) is a ontinuous linear funtional on C(I; E), we get z 2 K.Now we apply the Arzela-Asoli Theorem [19, p. 233℄. Beause the family F (Q) isweakly equiontinuous, we have by [13, Lemma 6.2℄ that the family onv(F (Q))(the losure is taken in Cw(I; E)) is weakly equiontinuous and therefore, K isweakly equiontinuous. Thus, it remains to show that for eah t 2 I , the setK(t) = fx(t); x 2 Kg is weakly relatively ompat in E. By Lemma 2.1(a),�(K(t)) � �(K). Then �(K(t)) = 0 for eah t 2 I . Thus for eah t 2 I , K(t)is weakly relatively ompat in E. Now we apply Theorem 2.1 with the loallyonvex Hausdor� spae Cw(I; E) to obtain that F 6= ;. It remains to show that



Some �xed point theorems and existene of weak solutions of Volterra integral equation 181F is ompat in Cw(I; E). To do this, we onsider H to be the family of alllosed bounded onvex subsets D of C(I; E) suh that F � D and F (D) � D.Obviously H is non-empty, sine onv(F (Q)) 2 H (the losed onvex hull of F (Q)in C(I; E)). We denote R = TD2HD. Arguing as above, we prove that R isompat in Cw(I; E), F (R) � R and F � R. Finally, applying Theorem 2.1again, we dedue that F is ompat. �Remark 2.1. Theorem 2.3 extends and improves Theorem 2.2 in [28℄ (note thatin [28℄, Q was a losed bounded subset of C(I; E), whereas here Q is only a subsetof C(I; E)).Corollary 2.1. Let E be a Banah spae and Q be a non-empty subset ofC(I; E). Also assume that Q is a losed onvex subset of Cw(I; E), F : Q �! Qis ontinuous with respet to the weak uniform onvergene topology, F (Q) isbounded and F is �-ondensing. In addition, suppose the family F (Q) is stronglyequiontinuous. Then the set of �xed points of F is non-empty and ompat inCw(I; E). }Proof: Thanks to Theorem 2.3, it suÆes to prove that the family F (Q) isweakly equiontinuous whih is the ase. �Corollary 2.2. Let E be a Banah spae and Q be a non-empty subset ofC(I; E). Also assume that Q is a losed onvex subset of Cw(I; E), F : Q �! Qis ontinuous with respet to the weak uniform onvergene topology and thefamily F (Q) is bounded and strongly equiontinuous. In addition, suppose thatfor eah t 2 I , F (Q)(t) is relatively weakly ompat in E.Then the set of �xed points of F is non-empty and ompat in Cw(I; E). }Proof: We laim that the set F (Q) is relatively weakly ompat in C(I; E).Indeed, the family F (Q) of C(I; E) is bounded and strongly equiontinuous, soby Lemma 2.1, we have �(F (Q)) = supt2I �(F (Q)(t)) = 0. Therefore F (Q) isa relatively weakly ompat subset of C(I; E). Aordingly, F is �-ondensing.The result now follows from Corollary 2.1. �Remark 2.2. If F (Q) is bounded and E is reexive, then for eah t 2 I , F (Q)(t)is relatively weakly ompat in E sine a subset of a reexive Banah spae isweakly ompat i� it is losed in the weak topology and bounded in the normtopology. }We lose this setion by stating a �xed point theorem for weakly sequentiallyontinuous mappings.Theorem 2.4. Let E a Banah spae and Q be a non-empty, onvex losed setin E. Assume F : Q �! Q is a weakly sequentially ontinuous map and thefamily F (Q) is bounded and strongly equiontinuous. In addition, suppose thatfor eah t 2 I , F (Q)(t) is relatively weakly ompat in E.



182 A. Ben AmarThen F has a �xed point. }Proof: Arguing as in the proof of Corollary 2.2, we obtain that F (Q) is a re-latively weakly ompat subset of C(I; E). Hene, F is �-ondensing. It suÆesnow to apply Theorem 2.2 to prove the result. �Remark 2.3. (a) Theorem 2.4 extends and improves Theorem 3.2 in [28℄.(b) It an be proved that the set of �xed points of F is weakly ompat in C(I; E).}3. Henstok-Kurzweil-Pettis integralsIn this setion, we introdue the onept of Henstok-Kurzweil-Pettis integra-bility and give some related fats whih are useful in Setion 4. Conerning baside�nitions, we refer to [22℄ or [34℄. Throughout this setion and Setion 4, E willbe onsidered as a real Banah spae.De�nition 3.1. A funtion f : I �! E is said to be Henstok-Kurzweil-integrable, or simply HK-integrable on I , if there exists w 2 E with the followingproperty : for " > 0 there exists a gauge Æ on I suh that k�(g;P)� wk < " foreah Æ-�ne Perron partition P of I . We set w = (HK) R T0 f(s) ds. }Remark 3.1. This de�nition inludes the generalized Riemann integral (see [17℄).In a speial ase, when Æ is a onstant funtion, we get the Riemann integral. }The following result states that the HK-integrability for real funtions is pre-served under multipliation by funtions of bounded variation.Lemma 3.1 ([18, Theorem 12.21℄). Let f : I �! R be an HK-integrable funtionand let g : I �! R be of bounded variation. Then fg is HK-integrable. }Let us reall the following integration by parts result inspired from the previouslemma and [18, Theorem 12.8℄:Lemma 3.2. f : [a; b℄ �! R be HK-integrable funtion and let g : I �! R be ofbounded variation. Then, for every t 2 [a; b℄(HK) Z ta f(s)g(s) ds = g(t)(HK) Z ta f(s) ds� Z ta �(HK) Z sa f(�) d��dg(s);the last integral being of Riemann-Stieltjes type. }The generalization of the Pettis integral obtained by replaing the Lebesgueintegrability of the funtions by the Henstok-Kurzweil integrability produes theHenstok-Kurzweil-Pettis integral (for the de�nition of Pettis integral see [11℄).De�nition 3.2 ([6℄). A funtion f : I �! E is said to be Henstok-Kurzweil-Pettis integrable, or simply HKP-integrable, on I if there exists a funtion g :I �! E with the following properties:(i) 8x� 2 E�, x�f is Henstok-Kurzweil integrable on I ;



Some �xed point theorems and existene of weak solutions of Volterra integral equation 183(ii) 8 t 2 I , 8x� 2 E�, x�g(t) = (HK) R t0 x�f(s) ds.This funtion g will be alled a primitive of f and by g(T ) = R T0 f(t) dt we willdenote the Henstok-Kurzweil-Pettis integral of f on the interval I . }Remark 3.2. (i) Any HK-integrable funtion is HKP-integrable. The onverse isnot true (see an example in [16℄). Then the family of all Henstok-Kurzweil-Pettisintegrable funtions is larger than the family of all Henstok-Kurzweil integrableones.(ii) Sine eah Lebesgue integrable funtion is HK-integrable, we �nd that any Pet-tis integrable funtion is HKP-integrable. The onverse is not true (see also [16℄).}In the sequel we will investigate some properties of the HKP integral whih areimportant in the next part of the paper.Theorem 3.1. Let f : [a; b℄ �! E be HKP-integrable on [a; b℄. Then(a) for any ompat interval J of [a; b℄, f is HKP-integrable on J ;(b) if a1 = a < a2 < : : : < an = b, then R ba f(s) ds =Pni=2 R aiai�1 f(s) ds. }Proof: The proof is straightforward. �Theorem 3.2 (Mean value theorem [6℄). If the funtion f : [a; b℄ �! E is HKP-integrable, then ZJ f(t) dt 2 jJ j onv(f(J));where J is an arbitrary subinterval of [a; b℄ and jJ j is the length of J . }4. Main resultWe deal with the existene of weak solution of the Volterra integral equationx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on I;here \R " denotes the HKP-integral.Theorem 4.1. Let f : I �E �! E, h : I �! E and K : I � I �! R satisfy thefollowing onditions:(1) h is weakly ontinuous on I .(2) For eah t 2 I , K(t; �) ontinuous, K(t; �) 2 BV (I;R) and the mappingt 7�! K(t; �) is k�kBV -ontinuous. (Here BV (I;R) represents the spae ofreal bounded variation funtions with its lassial norm k�kBV .)(3) f : I � E �! E is a weakly-weakly ontinuous funtion suh that forall x 2 Cw(I; E), for all t 2 I , f(�; x(�)) and K(t; �)f(�; x(�)) are HKP-integrable on I .



184 A. Ben Amar(4) For all r > 0 and " > 0, there exists Æ";r > 0 suh that(4.1) Z t� f(s; x(s)) ds < "; 8 jt� � j < Æ";r;8x 2 Cw(I; E); kxk � r:(5) There exists a nonnegative funtion L(�; �) suh that:(a) for eah losed subinterval J of I and bounded subset X of E,(4.2) �(f [J �X ℄) � supfL(t; �(X)); t 2 Jg;(b) the funtion s 7�! L(s; r) is ontinuous for eah r 2 [0;+1[, and(4.3) supt2I �(HK) Z t0 jK(t; s)jL(s; r) ds� < rfor all r > 0.Then there exist an interval J = [0; a℄ suh that the set of weakly ontinuoussolutions of the Volterra-type integral equation(4.4) x(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds;de�ned on J is non-empty and ompat in the spae Cw(J;E). }Remark 4.1. (a) If f(�; x(�)) is HKP-integrable on I and for all � 2 I themapping Tt;� : E� �! R, de�ned by y� 7�! (HK) R �0 K(t; s)y�f(s; x(s)) ds, isweak�-ontinuous, then K(t; �)f(�; x(�)) is HKP-integrable on I . Indeed, for � 2 I ,beause Tt;� is a linear funtional on E� that is weak�-ontinuous, then by [29,Theorem 3.10℄ there exists wt;� in E suh that Tt;�(y�) = y�wt;� for all y� 2 E�.So, (HK) R �0 K(t; s)y�f(s; x(s)) ds = (HK) R �0 y�K(t; s)f(s; x(s)) ds = y�wt;� forall y� 2 E�. Therefore K(t; �)f(�; x(�)) is HKP-integrable on I .(b) For � 2 I , if we suppose the HK-equi-integrability of the familyfy�K(t; �)f(�; x(�)); y� 2 E�; ky�k � 1g on [0; � ℄, then we guarantee the ontinuityof Tt;� with respet to weak�-topology (see [12℄). }Remark 4.2. The ondition (4.1) is satis�ed if we suppose that f(�; x(�)) isHKP-integrable on I and for all r > 0, there exists a HK-integrable funtionMr : I �! R+ suh thatkf(t; y)k �Mr(t) for all t 2 I and y 2 E; kyk � r:To see this, let r > 0 and x� 2 E� suh that kx�k � 1. For 0 � t1 < t2 �1, we have jx� R t2t1 f(s; x(s); Tx(s)) dsj � j(HK) R t2t1 x�f(s; x(s); Tx(s)) dsj. Be-ause s 7�! Mb0(s) is Henstok-Kurzweil integrable and jx�f(s; x(s); Tx(s))j �kx�kkf(s; x(s); Tx(s))k � Mb0(s) for all s 2 [0; 1℄, then by [22, Corollary 4.62℄),



Some �xed point theorems and existene of weak solutions of Volterra integral equation 185s 7�! x�f(s; x(s); Tx(s)) is absolutely Henstok-Kurzweil integrable on [t1; t2℄and ����(HK) Z t2t1 x�f(s; x(s); Tx(s)) ds���� � (HK) Z t2t1 Mb0(s) ds:Thus Z t2t1 f(s; x(s); Tx(s)) ds = supkx�k�1 ����x� Z t2t1 f(s; x(s); Tx(s)) ds����� (HK) Z t2t1 Mb0(s) ds;whih thanks to the ontinuity of the primitive in Henstok-Kurzweil integral,beomes less then " for t2 suÆiently lose to t1, and this proves the laim. }Remark 4.3. The inequality ondition in Remark 4.2 is ful�lled if we supposethat E is reexive and the funtion Mr is independent of t 2 I (see [28℄). }Proof: Let  = supt2I kh(t)k, d = supt2I kK(t; �)kBV and � > 0. There existsb > 0 suh that � < b�d . From (4.1), there exists a � T suh thatsupt2[0;a℄Z t0 f(s; x(s)) ds < �;for any x 2 Cw(I; E) satisfying kxk � b. Put J = [0; a℄, denote by Cw(J;E)the spae of weakly ontinuous funtions J �! E, endowed with the topology ofweak uniform onvergene, and by eB the set of all weakly ontinuous funtionsJ �! Bb, where Bb = fy 2 E : kyk � bg. We shall onsider eB as a topologialsubspae of Cw(J;E). It is lear that the set eB is onvex and losed. PutFx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on J:We require that F : eB �! eB is ontinuous.1. Let t 2 [0; a℄. For any x� 2 E� suh that kx�k � 1, and for any x 2 eB,x�Fx(t) = x�h(t)+ R t0 K(t; s)x�f(s; x(s)) ds. Using Lemma 3.2 and the de�nitionof the Riemann-Stieltjes integral, we obtain����Z t0 K(t; s)x�f(s; x(s)) ds����= ����K(t; t)(HK) Z t0 x�f(s; x(s))� Z t0 �(HK) Z s0 x�f(�; x(�)) d��dKt����� jK(t; t)j sup�2[0;t℄Z �0 f(s; x(s)) ds+ (V [Kt; 0; t℄) sups2[0;t℄Z s0 f(�; x(�)) d�



186 A. Ben Amar� jK(t; t)j sup�2J Z �0 f(s; x(s)) ds+ (V [Kt; 0; t℄) sups2J Z s0 f(�; x(�)) d�� kK(t; �)kBV sups2J Z s0 f(�; x(�)) d� :Here Kt(�) denotes K(t; �) and V [Kt; 0; t℄ denotes the total variation of Kt on theinterval [0; t℄. Hene, jx�Fx(t)j � + d� � b:Then supfjx�Fx(t)j ; x� 2 E�; kx�k � 1g � b:So, Fx(t) 2 Bb.2. Now, we will show that F ( eB) is a strongly equiontinuous subset.Let t; � 2 J . We suppose without loss of generality that � < t and thatFx(t) 6= Fx(�). By the Hahn-Banah theorem, there exists x� 2 E�, suh thatkx�k = 1 andkFx(t)� Fx(�)k = x�(Fx(t)� Fx(�))� jx�(h(t)) � x�(h(�))j + ����(HK) Z �0 (K(t; s)�K(�; s))x�f(s; x(s)) ds����+ ����(HK) Z t� K(t; s)x�f(s; x(s)) ds����� jx�(h(t)) � x�(h(�))j + kK(t; �)�K(�; �)kBV sup�2J Z �0 f(s; x(s)) ds+ d sup�2[�;t℄Z �� f(s; x(s)) ds :So, the result follows from hypotheses (1); (2) and (4.1).3. Now we will prove the ontinuity of F .Sine f is weakly ontinuous, we have by the Krasnoselskii type Lemma (see[44℄) that for any x� 2 E�, " > 0 and x 2 eB there exists a weak neighborhood Uof 0 in E suh that jx�(f(t; x(t))� f(t; y(t)))j � "ad for t 2 J and y 2 eB suh thatx(s)�y(s) 2 U for all s 2 J . Beause the funtion s 7�! x�(f(s; x(s))�f(s; y(s)))is HK-integrable on J and the funtion s 7�! "a d is Riemann integrable on J , thenby [22, Corollary 4.62℄, s 7�! x�(f(s; x(s)) � f(s; y(s))) is absolutely Henstok-Kurzweil-integrable on J and for all t 2 J we have:����(HK) Z t0 K(t; s)x�(f(s; x(s)) � f(s; y(s)))���� ds� sup�2I kK(�; �)kBV sup�2[0;t℄�����(HK) Z �0 x�(f(s; x(s)) � f(s; y(s))) ds�����



Some �xed point theorems and existene of weak solutions of Volterra integral equation 187� d sup�2J �(HK) Z �0 jx�(f(s; x(s)) � f(s; y(s)))j ds� � ":Thus F is ontinuous.We have already shown that F ( eB) is bounded and strongly equiontinuous,thus by Lemma 2.1 in [27℄, Q = onvF ( eB) (the losed onvex hull of F ( eB) inC(J;E)) is also bounded and strongly equiontinuous. Clearly F (Q) � Q �eB. We laim that F is �-ondensing on Q. Indeed, let V be a subset of Qsuh that �(V ) 6= 0, V (t) = fx(t); x 2 V g and F (V )(t) = fFx(t); x 2 V g.Beause V is bounded and strongly equiontinuous, we have by Lemma 2.1(b)that supt2J �(V (t)) = �(V ) = �(V (J)). Fix t 2 J and " > 0. From the ontinuityof the funtions s 7�! K(t; s) and s 7�! L(s; �(V )) on I , it follows that thereexists Æ > 0 suh that(4.5) jK(t; �)L(q; �(V ))�K(t; s)L(s; �(V ))j < ";if j� � sj < Æ, jq � sj < Æ, q; s; � 2 I . Divide the interval [0; t℄ into n subintervals0 = t0 < t1 : : : < tn = t so that ti� ti�1 < Æ (i = 1; : : : ; n) and put Ti = [ti�1; ti℄.For eah i, there exists si 2 Ti suh that L(si; �(V )) = sups2Ti L(s; �(V )). ByTheorem 3.1(b) and Theorem 3.2, we haveFx(t) = h(t) + nXi=1 Z titi�1 K(t; s)f(s; x(s)) ds2 h(t) + nXi=1(ti � ti�1)onvfK(t; s)f(s; x(s)); s 2 Ti; x 2 V g:Using (4.2), (4.3) and the proprieties of the measure of weak non-ompatness,we have�(F (V )(t)) � nXi=1(ti � ti�1)�(onvfK(t; s)f(s; x(s)); s 2 Ti; x 2 V g)� nXi=1(ti � ti�1)�(fK(t; s)f(s; x(s)); s 2 Ti; x 2 V g)� nXi=1(ti � ti�1) sups2Ti jK(t; s)j�(f(Ti � V (Ti)))� nXi=1(ti � ti�1) jK(t; �i)jL(si; �(V ));



188 A. Ben Amarhere for eah i, �i 2 Ti is a number suh that jK(t; �i)j = sups2Ti jK(t; s)j. Hene,using (4.5), we have�(F (V )(t)) � nXi=1  (HK) Z titi�1 jK(t; �i)L(si; �(V ))�K(t; s)L(s; �(V ))j ds!+ nXi=1  (HK) Z titi�1 jK(t; s)jL(s; �(V )) ds!� "t+ (HK) Z t0 jK(t; s)jL(s; �(V )) ds� "t+ sup((HK) Z t00 jK(t; s)jL(s; �(V )); t0 2 J) :As the last inequality is satis�ed for every " > 0, we get�(F (V )(t)) � sup((HK) Z t00 jK(t; s)jL(s; �(V ))ds; t0 2 J) :Applying Lemma 2.1(b) again for the bounded strongly equiontinuous subsetF (V ), we obtain �(F (V )) = supt2JfF (V )(t)g. Aordingly�(F (V )) � sup((HK) Z t00 jK(t; s)jL(s; �(V )) ds; t0 2 J) < �(V );so, F is �-ondensing on Q. Sine Q is a losed onvex subset of C(J;E), the setQ is weakly losed, and using similar arguments as in the proof of Theorem 2.2, wean suppose that Q is a losed onvex subset of Cw(J;E) and so by Corollary 2.1the set of the �xed points of F in eB is non-empty and ompat. This means thatthere exists a set of weakly ontinuous solutions of the problem (4.4) on J whihis non-empty and ompat in Cw(J;E). �Referenes[1℄ Agarwal R., O'Regan D., Sikorska-Nowak A., The set of solutions of integrodi�erentialequations and the Henstok-Kurzweil-Pettis integral in Banah spaes, Bull. Austral. Math.So. 78 (2008), 507{522.[2℄ Aliprantis C.D., Border K.C., In�nite Dimensional Analysis, third edition, Springer, Berlin,2006.[3℄ Ben Amar A., Mnif M., Leray-Shauder alternatives for weakly sequentially ontinuousmappings and appliation to transport equation, Math. Methods Appl. Si. 33 (2010),no. 1, 80{90.[4℄ Bugajewski D., On the existene of weak solutions of integral equations in Banah spaes,Comment. Math. Univ. Carolin. 35 (1994), no. 1, 35{41.[5℄ Chew T.S., Flordeliza F., On x0 = f(t; x) and Henstok-Kurzweil integrals, Di�erentialIntegral Equations 4 (1991), 861{868.
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