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Some �xed point theorems and existen
e ofweak solutions of Volterra integral equationunder Hensto
k-Kurzweil-Pettis integrabilityAfif Ben AmarAbstra
t. In this paper we examine the set of weakly 
ontinuous solutions fora Volterra integral equation in Hensto
k-Kurzweil-Pettis integrability settings.Our result extends those obtained in several kinds of integrability settings. Be-sides, we prove some new �xed point theorems for fun
tion spa
es relative to theweak topology whi
h are basi
 in our 
onsiderations and 
omprise the theory ofdi�erential and integral equations in Bana
h spa
es.Keywords: �xed point theorems, Hensto
k-Kurzweil-Pettis integral, Volterra equa-tion, measure of weak non
ompa
tnessClassi�
ation: 47H10, 28B05, 45D05, 45N05, 26A391. Introdu
tionThe resolution of di�erential and integral problems in a Bana
h spa
e relativeto the strong topology, has been the subje
t of many papers (see [23℄, [25℄, [45℄).Besides, some results have been obtained for equations in Bana
h spa
es relative tothe weak topology (see [4℄, [7℄, [8℄, [9℄, [20℄, [21℄, [24℄, [28℄, [35℄, [43℄). Some exam-inations of these problems were given under hypotheses of Lebesgue integrabilityon the real line, respe
tively Bo
hner, weak Riemann integral and Pettis integral,in the ve
tor 
ase. Re
ently, for problems involving highly os
illating fun
tions,many authors have examined the existen
e of solutions under Hensto
k-Kurzweil[5℄, [14℄, [15℄, [32℄, [33℄, [36℄, [37℄, [38℄, [40℄, [41℄ and Hensto
k-Kurzweil-Pettis in-tegrability [1℄, [6℄, [30℄, [31℄, [39℄, [42℄. Motivated by those examinations, we �rstprove some Sadovskii �xed point type results for fun
tion spa
es whi
h guaranteean existen
e result for the general operator equationx(t) = Fx(t); t 2 [0; T ℄; T > 0relative to the weak uniform 
onvergen
e topology whi
h is not metrizable. Theseresults improve and extend those in [28℄. Then by using those results, we giveexisten
e 
riteria of weak solutions for the Volterra integral equationx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on [0; T ℄; T > 0



178 A. Ben Amarinvolving the Hensto
k-Kurzweil-Pettis integral and we prove the existen
e ofa non-empty and 
ompa
t set of weak solutions on a 
losed subinterval of [0; T ℄.The main tools used in our study are asso
iated with the te
hniques of measure ofweak non
ompa
tness, properties of the weak uniform 
onvergen
e topology realbounded variation fun
tions and Hensto
k-Kurzweil-Pettis integrals. This resultgeneralizes and improves the 
orresponding results in [4℄, [28℄. We noti
e in ourstudy that the te
hniques developed in [42℄ whi
h are based on �xed point theoryfor weakly sequentially 
ontinuous mappings de�ned on domains of a metrizablelo
ally 
onvex topologi
al ve
tor spa
e are not useful in establishing existen
eprin
iples for the problem we are interested in. The major problem en
ounteredis that we are working in fun
tion spa
es under weak uniform 
onvergen
e topol-ogy features. However, we know that weak uniform 
onvergen
e topology is notmetrizable. Also our theory provides an uni�ed line to the theory of di�erentialand integral equations in Bana
h spa
es relative to the weak topology and underseveral well known kinds of integrability settings.2. Preliminaries and �xed point resultsThe purpose of this se
tion is to give some notations and preliminaries andstate some �xed point results for fun
tion spa
es whi
h will be used throughoutthis paper.Let I = [0; T ℄ be an interval of the real line equipped with the usual topology.Let E be a Bana
h spa
e with norm k�k. E� will denote the dual of E and Ew willdenote the spa
e E when endowed with its weak topology. On the spa
e C(I; Ew)of 
ontinuous fun
tions from I to Ew we de�ne a topology as follows. Let Fin(E�)be the 
lass of all non-empty and �nite subsets in E�, Let O 2 Fin(E�) and letus de�ne k�kO : C(I; Ew) �! R+ bykfkO := supt2I supx�2O jx�(f(t))jfor ea
h f 2 C(I; Ew). One may see that fk�kO;O 2 Fin(E�)g is a family ofseminorms on C(I; Ew) whi
h de�nes a topology of a lo
ally 
onvex, separatedspa
e, 
alled the uniform weak 
onvergen
e topology. We emphasize that thistopology (ex
ept for the 
ase in whi
h E is �nite dimensional) is not metrizable.We will denote by Cw(I; E) the spa
e of weakly 
ontinuous fun
tions on I withthe topology of weak uniform 
onvergen
e. For more details see [29℄. Moreover,we will denote by � the De Blasi measure of weak non
ompa
tness [10℄. Re
allthat for any nonvoid, bounded subset X of E,�(X) = inff" > 0 : there exists a weakly 
ompa
t set Ysu
h that X � Y + "BEg;where BE is the 
losed unit ball of E. For 
onvenien
e, we bring ba
k someproperties of �:(i) X1 � X2 implies �(X1) � �(X2);
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ompa
t, here Xw1 is the weak 
losure of X1in E;(iii) �(X1) = �(Xw1 );(iv) �(X1 [X2) = maxf�(X1); �(X2)g;(v) �(�X1) = ��(X1) for all � > 0;(vi) �(
onv(X1)) = �(X1);(vii) �(X1 +X2) � �(X1) + �(X2);(viii) �t(Sj�j�h �X1) = h�(X1).De�nition 2.1. A fun
tion f : I � E �! E is said to be weakly-weakly 
onti-nuous at (t0; x0) if given " > 0 and x� 2 E�, there exists Æ > 0 and a weakly openset U 
ontaining x0 su
h that jx�(f(t; x) � f(t0; x0))j < " whenever jt � t0j < Æand x 2 U . }De�nition 2.2. A family F = ffi; i 2 Ig (where I is some index set) of EI issaid to be weakly equi
ontinuous if given " > 0, x� 2 E� there exists Æ > 0 su
hthat, for t; s 2 I , if jt� sj < Æ, then jx�(fi(t)� fi(s))j < " for all i 2 I. }Next we re
all the Brouwer-S
hauder-Ty
hono� �xed point theorem.Theorem 2.1 ([2℄). Let K be a non-empty 
ompa
t 
onvex subset of a lo
ally
onvex Hausdor� spa
e and let f : K �! K be a 
ontinuous fun
tion. Then theset of �xed points of f is 
ompa
t and non-empty. }Our next �xed point result is motivated by the weak sequential 
ompa
tnessof weakly 
ompa
t subsets of a Bana
h spa
e.Theorem 2.2 ([3℄). LetQ be a non-empty, 
onvex 
losed set in a Bana
h spa
eE.Assume F : Q �! Q is a weakly sequentially 
ontinuous map whi
h is also �-
ondensing (i.e., �(F (X)) < �(X) for all bounded subsets X � Q su
h that�(X) 6= 0). In addition, suppose that F (Q) is bounded. Then F has a �xedpoint. }The next lemma is basi
 for our study.Lemma 2.1. (a) Let V be a bounded subset of C(I; E). Thensupt2I �(V (t)) � �(V )where V (t) = fx(t) : x 2 V g.(b) Let V � C(I; E) be a family of strongly equi
ontinuous fun
tions. Then�(V ) = supt2I �(V (t)) = �(V (I))where V (I) = St2Ifx(t) : x 2 V g, and the fun
tion t 7�! �(V (t)) is 
ontinuous.}



180 A. Ben AmarProof: For a proof of 
laim (a), see [28℄. For a proof of 
laim (b), we refer to[20℄, [24℄. �We are now ready to state our �xed point results.Theorem 2.3. Let E be a Bana
h spa
e with Q a non-empty subset of C(I; E).Assume also that Q is a 
losed 
onvex subset of Cw(I; E), F : Q �! Q is 
onti-nuous with respe
t to the weak uniform 
onvergen
e topology, F (Q) is boundedand F is �-
ondensing (i.e., �(F (X)) < �(X) for all bounded subsets X � Q su
hthat �(X) 6= 0). In addition, suppose the family F (Q) is weakly equi
ontinuous.Then the set of �xed points of F is non-empty and 
ompa
t in Cw(I; E). }Proof: Let F the �xed points set of F in Q. We 
laim that F is non-empty.Indeed, let x0 2 F (Q) and G be the family of all 
losed bounded 
onvex subsetsD of C(I; E) su
h that x0 2 D and F (D) � D. Obviously G is non-empty, sin
e
onv(F (Q)) 2 G (the 
losed 
onvex hull of F (Q) in C(I; E)). We denote K =TD2G D. We have that K is 
losed 
onvex and x0 2 K. If x 2 K, then F (x) 2 Dfor all D 2 G and hen
e F (K) � K. Therefore we have that K 2 G. We 
laimthat K is a 
ompa
t subset of Cw(I; E). Denoting by K� = 
onv(F (K) [ fx0g)(the 
losed 
onvex hull of F (K) in C(I; E)), we have K� � K, whi
h implies thatF (K�) � F (K) � K�. Therefore K� 2 G, K � K�. Hen
e K = K�. Clearly K isbounded and if �(K) 6= 0, we obtain�(K) = �(
onv(F (K) [ fx0g) � �(
onv(F (K) [ fx0g)) � �(F (K)) < �(K);whi
h is a 
ontradi
tion, so �(K) = 0. Sin
eK is a weakly 
losed subset of C(I; E)(noti
e that a 
onvex subset of a Bana
h spa
e is 
losed i� it is weakly 
losed), Kis a weakly 
ompa
t subset of C(I; E). We 
laim that K is 
losed in Cw(I; E). Tosee this, let S = EI be endowed with the produ
t topology. We 
onsider C(I; E)as a ve
tor subspa
e of S. Hen
e its weak topology is the topology indu
ed bythe weak topology of S. Suppose (x�) is a net in K with x� �! z in Cw(I; E).Then x�(t) tends weakly to z(t) for ea
h t 2 I . For ea
h t 2 I , let Ht = fx�(t)g.Clearly the weak 
losure of Ht is a weakly 
ompa
t subset of E. But the weaktopology of EI is the produ
t topology of the weak topology of E. Hen
e thesubset H =Qt2I Hwt is a weakly 
ompa
t subset of S by the Ty
hono� theorem.Obviously the subset fx�; zg � H . The set H \K is weakly 
ompa
t in K, hen
ein C(I; E). Using the fa
t that for ea
h x� 2 E� and t 2 I the point evaluationmapping y 7�! x�y(t) is a 
ontinuous linear fun
tional on C(I; E), we get z 2 K.Now we apply the Arzela-As
oli Theorem [19, p. 233℄. Be
ause the family F (Q) isweakly equi
ontinuous, we have by [13, Lemma 6.2℄ that the family 
onv(F (Q))(the 
losure is taken in Cw(I; E)) is weakly equi
ontinuous and therefore, K isweakly equi
ontinuous. Thus, it remains to show that for ea
h t 2 I , the setK(t) = fx(t); x 2 Kg is weakly relatively 
ompa
t in E. By Lemma 2.1(a),�(K(t)) � �(K). Then �(K(t)) = 0 for ea
h t 2 I . Thus for ea
h t 2 I , K(t)is weakly relatively 
ompa
t in E. Now we apply Theorem 2.1 with the lo
ally
onvex Hausdor� spa
e Cw(I; E) to obtain that F 6= ;. It remains to show that



Some �xed point theorems and existen
e of weak solutions of Volterra integral equation 181F is 
ompa
t in Cw(I; E). To do this, we 
onsider H to be the family of all
losed bounded 
onvex subsets D of C(I; E) su
h that F � D and F (D) � D.Obviously H is non-empty, sin
e 
onv(F (Q)) 2 H (the 
losed 
onvex hull of F (Q)in C(I; E)). We denote R = TD2HD. Arguing as above, we prove that R is
ompa
t in Cw(I; E), F (R) � R and F � R. Finally, applying Theorem 2.1again, we dedu
e that F is 
ompa
t. �Remark 2.1. Theorem 2.3 extends and improves Theorem 2.2 in [28℄ (note thatin [28℄, Q was a 
losed bounded subset of C(I; E), whereas here Q is only a subsetof C(I; E)).Corollary 2.1. Let E be a Bana
h spa
e and Q be a non-empty subset ofC(I; E). Also assume that Q is a 
losed 
onvex subset of Cw(I; E), F : Q �! Qis 
ontinuous with respe
t to the weak uniform 
onvergen
e topology, F (Q) isbounded and F is �-
ondensing. In addition, suppose the family F (Q) is stronglyequi
ontinuous. Then the set of �xed points of F is non-empty and 
ompa
t inCw(I; E). }Proof: Thanks to Theorem 2.3, it suÆ
es to prove that the family F (Q) isweakly equi
ontinuous whi
h is the 
ase. �Corollary 2.2. Let E be a Bana
h spa
e and Q be a non-empty subset ofC(I; E). Also assume that Q is a 
losed 
onvex subset of Cw(I; E), F : Q �! Qis 
ontinuous with respe
t to the weak uniform 
onvergen
e topology and thefamily F (Q) is bounded and strongly equi
ontinuous. In addition, suppose thatfor ea
h t 2 I , F (Q)(t) is relatively weakly 
ompa
t in E.Then the set of �xed points of F is non-empty and 
ompa
t in Cw(I; E). }Proof: We 
laim that the set F (Q) is relatively weakly 
ompa
t in C(I; E).Indeed, the family F (Q) of C(I; E) is bounded and strongly equi
ontinuous, soby Lemma 2.1, we have �(F (Q)) = supt2I �(F (Q)(t)) = 0. Therefore F (Q) isa relatively weakly 
ompa
t subset of C(I; E). A

ordingly, F is �-
ondensing.The result now follows from Corollary 2.1. �Remark 2.2. If F (Q) is bounded and E is re
exive, then for ea
h t 2 I , F (Q)(t)is relatively weakly 
ompa
t in E sin
e a subset of a re
exive Bana
h spa
e isweakly 
ompa
t i� it is 
losed in the weak topology and bounded in the normtopology. }We 
lose this se
tion by stating a �xed point theorem for weakly sequentially
ontinuous mappings.Theorem 2.4. Let E a Bana
h spa
e and Q be a non-empty, 
onvex 
losed setin E. Assume F : Q �! Q is a weakly sequentially 
ontinuous map and thefamily F (Q) is bounded and strongly equi
ontinuous. In addition, suppose thatfor ea
h t 2 I , F (Q)(t) is relatively weakly 
ompa
t in E.



182 A. Ben AmarThen F has a �xed point. }Proof: Arguing as in the proof of Corollary 2.2, we obtain that F (Q) is a re-latively weakly 
ompa
t subset of C(I; E). Hen
e, F is �-
ondensing. It suÆ
esnow to apply Theorem 2.2 to prove the result. �Remark 2.3. (a) Theorem 2.4 extends and improves Theorem 3.2 in [28℄.(b) It 
an be proved that the set of �xed points of F is weakly 
ompa
t in C(I; E).}3. Hensto
k-Kurzweil-Pettis integralsIn this se
tion, we introdu
e the 
on
ept of Hensto
k-Kurzweil-Pettis integra-bility and give some related fa
ts whi
h are useful in Se
tion 4. Con
erning basi
de�nitions, we refer to [22℄ or [34℄. Throughout this se
tion and Se
tion 4, E willbe 
onsidered as a real Bana
h spa
e.De�nition 3.1. A fun
tion f : I �! E is said to be Hensto
k-Kurzweil-integrable, or simply HK-integrable on I , if there exists w 2 E with the followingproperty : for " > 0 there exists a gauge Æ on I su
h that k�(g;P)� wk < " forea
h Æ-�ne Perron partition P of I . We set w = (HK) R T0 f(s) ds. }Remark 3.1. This de�nition in
ludes the generalized Riemann integral (see [17℄).In a spe
ial 
ase, when Æ is a 
onstant fun
tion, we get the Riemann integral. }The following result states that the HK-integrability for real fun
tions is pre-served under multipli
ation by fun
tions of bounded variation.Lemma 3.1 ([18, Theorem 12.21℄). Let f : I �! R be an HK-integrable fun
tionand let g : I �! R be of bounded variation. Then fg is HK-integrable. }Let us re
all the following integration by parts result inspired from the previouslemma and [18, Theorem 12.8℄:Lemma 3.2. f : [a; b℄ �! R be HK-integrable fun
tion and let g : I �! R be ofbounded variation. Then, for every t 2 [a; b℄(HK) Z ta f(s)g(s) ds = g(t)(HK) Z ta f(s) ds� Z ta �(HK) Z sa f(�) d��dg(s);the last integral being of Riemann-Stieltjes type. }The generalization of the Pettis integral obtained by repla
ing the Lebesgueintegrability of the fun
tions by the Hensto
k-Kurzweil integrability produ
es theHensto
k-Kurzweil-Pettis integral (for the de�nition of Pettis integral see [11℄).De�nition 3.2 ([6℄). A fun
tion f : I �! E is said to be Hensto
k-Kurzweil-Pettis integrable, or simply HKP-integrable, on I if there exists a fun
tion g :I �! E with the following properties:(i) 8x� 2 E�, x�f is Hensto
k-Kurzweil integrable on I ;
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e of weak solutions of Volterra integral equation 183(ii) 8 t 2 I , 8x� 2 E�, x�g(t) = (HK) R t0 x�f(s) ds.This fun
tion g will be 
alled a primitive of f and by g(T ) = R T0 f(t) dt we willdenote the Hensto
k-Kurzweil-Pettis integral of f on the interval I . }Remark 3.2. (i) Any HK-integrable fun
tion is HKP-integrable. The 
onverse isnot true (see an example in [16℄). Then the family of all Hensto
k-Kurzweil-Pettisintegrable fun
tions is larger than the family of all Hensto
k-Kurzweil integrableones.(ii) Sin
e ea
h Lebesgue integrable fun
tion is HK-integrable, we �nd that any Pet-tis integrable fun
tion is HKP-integrable. The 
onverse is not true (see also [16℄).}In the sequel we will investigate some properties of the HKP integral whi
h areimportant in the next part of the paper.Theorem 3.1. Let f : [a; b℄ �! E be HKP-integrable on [a; b℄. Then(a) for any 
ompa
t interval J of [a; b℄, f is HKP-integrable on J ;(b) if a1 = a < a2 < : : : < an = b, then R ba f(s) ds =Pni=2 R aiai�1 f(s) ds. }Proof: The proof is straightforward. �Theorem 3.2 (Mean value theorem [6℄). If the fun
tion f : [a; b℄ �! E is HKP-integrable, then ZJ f(t) dt 2 jJ j 
onv(f(J));where J is an arbitrary subinterval of [a; b℄ and jJ j is the length of J . }4. Main resultWe deal with the existen
e of weak solution of the Volterra integral equationx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on I;here \R " denotes the HKP-integral.Theorem 4.1. Let f : I �E �! E, h : I �! E and K : I � I �! R satisfy thefollowing 
onditions:(1) h is weakly 
ontinuous on I .(2) For ea
h t 2 I , K(t; �) 
ontinuous, K(t; �) 2 BV (I;R) and the mappingt 7�! K(t; �) is k�kBV -
ontinuous. (Here BV (I;R) represents the spa
e ofreal bounded variation fun
tions with its 
lassi
al norm k�kBV .)(3) f : I � E �! E is a weakly-weakly 
ontinuous fun
tion su
h that forall x 2 Cw(I; E), for all t 2 I , f(�; x(�)) and K(t; �)f(�; x(�)) are HKP-integrable on I .



184 A. Ben Amar(4) For all r > 0 and " > 0, there exists Æ";r > 0 su
h that(4.1) 



Z t� f(s; x(s)) ds



 < "; 8 jt� � j < Æ";r;8x 2 Cw(I; E); kxk � r:(5) There exists a nonnegative fun
tion L(�; �) su
h that:(a) for ea
h 
losed subinterval J of I and bounded subset X of E,(4.2) �(f [J �X ℄) � supfL(t; �(X)); t 2 Jg;(b) the fun
tion s 7�! L(s; r) is 
ontinuous for ea
h r 2 [0;+1[, and(4.3) supt2I �(HK) Z t0 jK(t; s)jL(s; r) ds� < rfor all r > 0.Then there exist an interval J = [0; a℄ su
h that the set of weakly 
ontinuoussolutions of the Volterra-type integral equation(4.4) x(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds;de�ned on J is non-empty and 
ompa
t in the spa
e Cw(J;E). }Remark 4.1. (a) If f(�; x(�)) is HKP-integrable on I and for all � 2 I themapping Tt;� : E� �! R, de�ned by y� 7�! (HK) R �0 K(t; s)y�f(s; x(s)) ds, isweak�-
ontinuous, then K(t; �)f(�; x(�)) is HKP-integrable on I . Indeed, for � 2 I ,be
ause Tt;� is a linear fun
tional on E� that is weak�-
ontinuous, then by [29,Theorem 3.10℄ there exists wt;� in E su
h that Tt;�(y�) = y�wt;� for all y� 2 E�.So, (HK) R �0 K(t; s)y�f(s; x(s)) ds = (HK) R �0 y�K(t; s)f(s; x(s)) ds = y�wt;� forall y� 2 E�. Therefore K(t; �)f(�; x(�)) is HKP-integrable on I .(b) For � 2 I , if we suppose the HK-equi-integrability of the familyfy�K(t; �)f(�; x(�)); y� 2 E�; ky�k � 1g on [0; � ℄, then we guarantee the 
ontinuityof Tt;� with respe
t to weak�-topology (see [12℄). }Remark 4.2. The 
ondition (4.1) is satis�ed if we suppose that f(�; x(�)) isHKP-integrable on I and for all r > 0, there exists a HK-integrable fun
tionMr : I �! R+ su
h thatkf(t; y)k �Mr(t) for all t 2 I and y 2 E; kyk � r:To see this, let r > 0 and x� 2 E� su
h that kx�k � 1. For 0 � t1 < t2 �1, we have jx� R t2t1 f(s; x(s); Tx(s)) dsj � j(HK) R t2t1 x�f(s; x(s); Tx(s)) dsj. Be-
ause s 7�! Mb0(s) is Hensto
k-Kurzweil integrable and jx�f(s; x(s); Tx(s))j �kx�kkf(s; x(s); Tx(s))k � Mb0(s) for all s 2 [0; 1℄, then by [22, Corollary 4.62℄),
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k-Kurzweil integrable on [t1; t2℄and ����(HK) Z t2t1 x�f(s; x(s); Tx(s)) ds���� � (HK) Z t2t1 Mb0(s) ds:Thus 



Z t2t1 f(s; x(s); Tx(s)) ds



 = supkx�k�1 ����x� Z t2t1 f(s; x(s); Tx(s)) ds����� (HK) Z t2t1 Mb0(s) ds;whi
h thanks to the 
ontinuity of the primitive in Hensto
k-Kurzweil integral,be
omes less then " for t2 suÆ
iently 
lose to t1, and this proves the 
laim. }Remark 4.3. The inequality 
ondition in Remark 4.2 is ful�lled if we supposethat E is re
exive and the fun
tion Mr is independent of t 2 I (see [28℄). }Proof: Let 
 = supt2I kh(t)k, d = supt2I kK(t; �)kBV and � > 0. There existsb > 0 su
h that � < b�
d . From (4.1), there exists a � T su
h thatsupt2[0;a℄



Z t0 f(s; x(s)) ds



 < �;for any x 2 Cw(I; E) satisfying kxk � b. Put J = [0; a℄, denote by Cw(J;E)the spa
e of weakly 
ontinuous fun
tions J �! E, endowed with the topology ofweak uniform 
onvergen
e, and by eB the set of all weakly 
ontinuous fun
tionsJ �! Bb, where Bb = fy 2 E : kyk � bg. We shall 
onsider eB as a topologi
alsubspa
e of Cw(J;E). It is 
lear that the set eB is 
onvex and 
losed. PutFx(t) = h(t) + Z t0 K(t; s)f(s; x(s)) ds on J:We require that F : eB �! eB is 
ontinuous.1. Let t 2 [0; a℄. For any x� 2 E� su
h that kx�k � 1, and for any x 2 eB,x�Fx(t) = x�h(t)+ R t0 K(t; s)x�f(s; x(s)) ds. Using Lemma 3.2 and the de�nitionof the Riemann-Stieltjes integral, we obtain����Z t0 K(t; s)x�f(s; x(s)) ds����= ����K(t; t)(HK) Z t0 x�f(s; x(s))� Z t0 �(HK) Z s0 x�f(�; x(�)) d��dKt����� jK(t; t)j sup�2[0;t℄



Z �0 f(s; x(s)) ds



+ (V [Kt; 0; t℄) sups2[0;t℄



Z s0 f(�; x(�)) d�
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Z �0 f(s; x(s)) ds



+ (V [Kt; 0; t℄) sups2J 



Z s0 f(�; x(�)) d�



� kK(t; �)kBV sups2J 



Z s0 f(�; x(�)) d�



 :Here Kt(�) denotes K(t; �) and V [Kt; 0; t℄ denotes the total variation of Kt on theinterval [0; t℄. Hen
e, jx�Fx(t)j � 
+ d� � b:Then supfjx�Fx(t)j ; x� 2 E�; kx�k � 1g � b:So, Fx(t) 2 Bb.2. Now, we will show that F ( eB) is a strongly equi
ontinuous subset.Let t; � 2 J . We suppose without loss of generality that � < t and thatFx(t) 6= Fx(�). By the Hahn-Bana
h theorem, there exists x� 2 E�, su
h thatkx�k = 1 andkFx(t)� Fx(�)k = x�(Fx(t)� Fx(�))� jx�(h(t)) � x�(h(�))j + ����(HK) Z �0 (K(t; s)�K(�; s))x�f(s; x(s)) ds����+ ����(HK) Z t� K(t; s)x�f(s; x(s)) ds����� jx�(h(t)) � x�(h(�))j + kK(t; �)�K(�; �)kBV sup�2J 



Z �0 f(s; x(s)) ds



+ d sup�2[�;t℄




Z �� f(s; x(s)) ds




 :So, the result follows from hypotheses (1); (2) and (4.1).3. Now we will prove the 
ontinuity of F .Sin
e f is weakly 
ontinuous, we have by the Krasnoselskii type Lemma (see[44℄) that for any x� 2 E�, " > 0 and x 2 eB there exists a weak neighborhood Uof 0 in E su
h that jx�(f(t; x(t))� f(t; y(t)))j � "ad for t 2 J and y 2 eB su
h thatx(s)�y(s) 2 U for all s 2 J . Be
ause the fun
tion s 7�! x�(f(s; x(s))�f(s; y(s)))is HK-integrable on J and the fun
tion s 7�! "a d is Riemann integrable on J , thenby [22, Corollary 4.62℄, s 7�! x�(f(s; x(s)) � f(s; y(s))) is absolutely Hensto
k-Kurzweil-integrable on J and for all t 2 J we have:����(HK) Z t0 K(t; s)x�(f(s; x(s)) � f(s; y(s)))���� ds� sup�2I kK(�; �)kBV sup�2[0;t℄�����(HK) Z �0 x�(f(s; x(s)) � f(s; y(s))) ds�����
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e of weak solutions of Volterra integral equation 187� d sup�2J �(HK) Z �0 jx�(f(s; x(s)) � f(s; y(s)))j ds� � ":Thus F is 
ontinuous.We have already shown that F ( eB) is bounded and strongly equi
ontinuous,thus by Lemma 2.1 in [27℄, Q = 
onvF ( eB) (the 
losed 
onvex hull of F ( eB) inC(J;E)) is also bounded and strongly equi
ontinuous. Clearly F (Q) � Q �eB. We 
laim that F is �-
ondensing on Q. Indeed, let V be a subset of Qsu
h that �(V ) 6= 0, V (t) = fx(t); x 2 V g and F (V )(t) = fFx(t); x 2 V g.Be
ause V is bounded and strongly equi
ontinuous, we have by Lemma 2.1(b)that supt2J �(V (t)) = �(V ) = �(V (J)). Fix t 2 J and " > 0. From the 
ontinuityof the fun
tions s 7�! K(t; s) and s 7�! L(s; �(V )) on I , it follows that thereexists Æ > 0 su
h that(4.5) jK(t; �)L(q; �(V ))�K(t; s)L(s; �(V ))j < ";if j� � sj < Æ, jq � sj < Æ, q; s; � 2 I . Divide the interval [0; t℄ into n subintervals0 = t0 < t1 : : : < tn = t so that ti� ti�1 < Æ (i = 1; : : : ; n) and put Ti = [ti�1; ti℄.For ea
h i, there exists si 2 Ti su
h that L(si; �(V )) = sups2Ti L(s; �(V )). ByTheorem 3.1(b) and Theorem 3.2, we haveFx(t) = h(t) + nXi=1 Z titi�1 K(t; s)f(s; x(s)) ds2 h(t) + nXi=1(ti � ti�1)
onvfK(t; s)f(s; x(s)); s 2 Ti; x 2 V g:Using (4.2), (4.3) and the proprieties of the measure of weak non-
ompa
tness,we have�(F (V )(t)) � nXi=1(ti � ti�1)�(
onvfK(t; s)f(s; x(s)); s 2 Ti; x 2 V g)� nXi=1(ti � ti�1)�(fK(t; s)f(s; x(s)); s 2 Ti; x 2 V g)� nXi=1(ti � ti�1) sups2Ti jK(t; s)j�(f(Ti � V (Ti)))� nXi=1(ti � ti�1) jK(t; �i)jL(si; �(V ));
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h i, �i 2 Ti is a number su
h that jK(t; �i)j = sups2Ti jK(t; s)j. Hen
e,using (4.5), we have�(F (V )(t)) � nXi=1  (HK) Z titi�1 jK(t; �i)L(si; �(V ))�K(t; s)L(s; �(V ))j ds!+ nXi=1  (HK) Z titi�1 jK(t; s)jL(s; �(V )) ds!� "t+ (HK) Z t0 jK(t; s)jL(s; �(V )) ds� "t+ sup((HK) Z t00 jK(t; s)jL(s; �(V )); t0 2 J) :As the last inequality is satis�ed for every " > 0, we get�(F (V )(t)) � sup((HK) Z t00 jK(t; s)jL(s; �(V ))ds; t0 2 J) :Applying Lemma 2.1(b) again for the bounded strongly equi
ontinuous subsetF (V ), we obtain �(F (V )) = supt2JfF (V )(t)g. A

ordingly�(F (V )) � sup((HK) Z t00 jK(t; s)jL(s; �(V )) ds; t0 2 J) < �(V );so, F is �-
ondensing on Q. Sin
e Q is a 
losed 
onvex subset of C(J;E), the setQ is weakly 
losed, and using similar arguments as in the proof of Theorem 2.2, we
an suppose that Q is a 
losed 
onvex subset of Cw(J;E) and so by Corollary 2.1the set of the �xed points of F in eB is non-empty and 
ompa
t. This means thatthere exists a set of weakly 
ontinuous solutions of the problem (4.4) on J whi
his non-empty and 
ompa
t in Cw(J;E). �Referen
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