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Near heapsIan Hawthorn, Tim StokesAbstra
t. On any involuted semigroup (S; �;0 ), de�ne the ternary operation[ab
℄ := a � b0 � 
 for all a; b; 
 2 S. The resulting ternary algebra (S; [ ℄) satis�esthe para-asso
iativity law [[ab
℄de℄ = [a[d
b℄e℄ = [ab[
de℄℄, whi
h de�nes the vari-ety of semiheaps. Important subvarieties in
lude generalised heaps, whi
h arisefrom inverse semigroups, and heaps, whi
h arise from groups. We 
onsider theintermediate variety of near heaps, de�ned by the additional laws [aaa℄ = a and[aab℄ = [baa℄. Every Cli�ord semigroup is a near heap when viewed as a semi-heap, and we show that the Cli�ord semigroup operations are determined by thesemiheap operation. We show that near heaps are exa
tly strong semilatti
es ofheaps, parallelling a known result for Cli�ord semigroups. We 
hara
terise thosenear heaps whi
h arise dire
tly from Cli�ord semigroups, and show that all nearheaps are embeddable in su
h examples, extending known results of this kindrelating heaps to groups, generalised heaps to inverse semigroups, and generalsemiheaps to involuted semigroups.Keywords: Cli�ord semigroups, semiheaps, generalised heaps, heapsClassi�
ation: Primary 20N10; Se
ondary 20M111. Ba
kground on semiheapsWe begin with a review of some established de�nitions and results.A heap H is a non-empty set with ternary operation [ ℄ satisfying the followinglaws. � [[ab
℄de℄ = [a[d
b℄e℄ = [ab[
de℄℄ (para-asso
iative law)� [aab℄ = [baa℄ = bWe 
all the one-element heap the trivial heap. Every group gives a heap underthe ternary operation [ab
℄ := ab�1
, a 
onstru
tion �rst 
onsidered in the settingof abelian groups by Pr�ufer in [4℄. Conversely, a group arises from a heap H by
hoosing any element e 2 H and de�ning a binary operation x � y := [xey℄; theelement e be
omes the identity of the 
onstru
ted group and [exe℄ the inverse of x.These 
onstru
tions are mutually inverse up to isomorphism. Hen
e the varietiesof groups and pointed heaps are term equivalent, as shown by Baer in [1℄.A semiheap H is a non-empty set with a ternary operation [ ℄ satisfying onlythe para-asso
iative law above. Semiheaps were �rst 
onsidered by Wagner in [5℄.A similar 
onstru
tion gives a semiheap when S is an involuted semigroup, thatis a semigroup equipped with a unary operation 0 for whi
h the following laws aresatis�ed:



164 I. Hawthorn, T. Stokes� a00 = a� (ab)0 = b0a0.If S is an involuted semigroup, setting [ab
℄ := ab0
 for all a; b; 
 2 S gives asemiheap operation on S. Denote by [S℄ the semiheap obtained from S in thisway. Every semiheap 
an be embedded in [S℄ for some involuted semigroup S: seeSe
tion 2 of [5℄.An idempotent semiheap is a semiheap satisfying� [aaa℄ = a (idempoten
y law).These were studied in [2℄. If S is an involuted semigroup, the semiheap [S℄ isidempotent if and only if aa0a = a (see [3℄). An involuted semigroup with thisproperty is 
alled an involuted I-semigroup. Every idempotent semiheap 
an beembedded in [S℄ for some involuted I-semigroup S. (This spe
i�
 result does notappear in the literature, but the proof of the analogous result for generalised heapsin [5℄ is easily modi�ed to show it.)A generalised heap is an idempotent semiheap satisfying� [aa[bb
℄℄ = [bb[aa
℄℄ and [[abb℄

℄ = [[a

℄bb℄ (generalised heap axiom).These were 
onsidered by Wagner in [5℄. They arise naturally in the setting ofatlases in di�erential geometry; see [6℄. An inverse semigroup is an involutedsemigroup satisfying� aa0a = a (idempoten
y)� aa0bb0 = bb0aa0Omitting the law (ab)0 = b0a0, whi
h follows from the others, gives Howie's de�-nition as on page 145 of [3℄. It 
an be shown that the set of idempotents of aninverse semigroup S is E(S) = fa0a j a 2 Sg so that idempotents 
ommute in aninverse semigroup. If S is an involuted semigroup, the semiheap [S℄ is a gener-alised heap if an only if S is an inverse semigroup, and all generalised heaps 
anbe embedded in a generalised heap 
onstru
ted in this way (see Se
tion 3 of [5℄).We now summarize these results.Proposition 1. Let S be an involuted semigroup.(1) [S℄ is a semiheap. Every semiheap 
an be embedded in a semiheap of thistype.(2) [S℄ is an idempotent semiheap if and only if S is an I-semigroup. Everyidempotent semiheap 
an be embedded in an idempotent semiheap of thistype.(3) [S℄ is a generalised heap if and only if S is an inverse semigroup. Everygeneralised heap 
an be embedded in a generalised heap of this type.(4) [S℄ is a heap if and only if S is a group. All heaps are of this type.The 
orresponden
es 
an be tightened further, to resemble the situation forheaps and groups, if a further assumption is made. If H is a semiheap, we saye 2 H is bi-unitary if [aee℄ = [eea℄ = a for all a 2 H . A semiheap is a heap if and



Near heaps 165only if every element is bi-unitary. Note that if S is an involuted monoid withidentity 1, then 1 2 [S℄ is bi-unitary.Call a semiheap equipped with a distinguished bi-unitary element e, viewed asa nullary operation, bi-unital . The 
lass of bi-unital semiheaps is a variety withone ternary and one nullary operation.Let H be a bi-unital semiheap. De�ne x0 = [exe℄ for all x 2 H . Then x00 = xfor all x 2 H as is easily 
he
ked. Also de�ne a binary operation on H by settingx � y = [xey℄. Call the resulting algebra hHi. In fa
t hHi is an involuted monoidwith identity e, as is shown in Se
tion 2 of [5℄.The 
onstru
tions S 7! [S℄ (S an involuted monoid) and H 7! hHi (H a bi-unital semiheap) are mutually inverse, leading to a term equivalen
e between thevarieties of involuted monoids and bi-unital semiheaps. Indeed the term equiva-len
e spe
ialises to subvarieties as summarised in the following.Proposition 2. The following subvarieties of involuted monoids and bi-unitalsemiheaps are term equivalent.bi-unital semiheap type involuted monoid typearbitrary arbitraryidempotent semiheap I-monoidgeneralised heap inverse monoidheap groupEa
h of these equivalen
es is established in [5℄ (or follows easily from argumentsgiven there).2. Introdu
ing near heapsHistori
ally, heaps were the �rst type of semiheaps 
onsidered. There arevarious ways to weaken the heap axioms, and we have reviewed the most importantones already. Another, �rst introdu
ed in [2℄, gives rise to the 
lass of near heaps.A near heap is a semiheap satisfying the laws� [aaa℄ = a (idempotent law)� [aab℄ = [baa℄ (near heap axiom).Every heap is a near heap and every near heap is a generalised heap (see Propo-sition 15 of [2℄).Let E(S) = faa0 j a 2 Sg denote the semilatti
e of idempotents in the inversesemigroup S, partially ordered via e � f if and only if e = ef . A Cli�ordsemigroup S is an inverse semigroup in whi
h for all a 2 S and e 2 E(S), ae = ea.It is well known that this 
ondition is equivalent to the 
ondition that aa0 = a0afor all a 2 S (see [3℄ for example). It is 
lear that if S is a Cli�ord semigroupthen [S℄ is a near heap. The 
onverse is also true.Proposition 3. Let S be an involuted semigroup. Then [S℄ is a near heap if andonly if S is a Cli�ord semigroup.



166 I. Hawthorn, T. StokesProof: If S is a Cli�ord semigroup then [S℄ is a semiheap, and if a; b 2 S then[aab℄ = aa0b = baa0 = ba0a = [baa℄ so [S℄ is a near heap as 
laimed.Conversely assume that [S℄ is a near heap. Then S is an inverse semigroup byProposition 1. Then for all a 2 S, letting aa0 = e 2 E(S) and a0a = f 2 E(S) wehave aa0 = (aa0)(aa0) = aa0e = [aae℄ = [eaa℄ = ea0a = ef = fea0a = (a0a)(a0a) = fa0a = [faa℄ = [aaf ℄ = aa0f = ef = feso aa0 = a0a and S is a Cli�ord semigroup. �So the �rst half of a new entry in Proposition 1 
an now be made. A furtherentry 
an also be added, by spe
ialising near heaps in a dire
tion orthogonal toheaps.Semilatti
es may be thought of as Cli�ord semigroups in whi
h the law a = a0holds; by uniqueness of inverses in inverse semigroups, this is the only possibleway to de�ne 0 to yield a Cli�ord semigroup.So if S is a semilatti
e, the semiheap operation on [S℄ is given by [ab
℄ = ab
for all a; b; 
 2 S. The resulting near heap satis�es the law [abb℄ = [aab℄. Thefollowing easy result was stated in [2℄ (and may have �rst appeared earlier).Proposition 4. Let S be an involuted semigroup. [S℄ is a near heap satisfyingthe law [abb℄ = [aab℄ if and only if S is a semilatti
e. All su
h near heaps are ofthis type, and the two varieties are term equivalent.From now on, when we use the term semilatti
e in the 
ontext of semiheaps, wemean a near heap satisfying the law [abb℄ = [aab℄. Note that the only semilatti
ewhi
h is a heap is the trivial heap, sin
e it satis�es a = [abb℄ = [aab℄ = b for all aand b.A new row in the table provided in Proposition 2 
an also be given.Proposition 5. The variety of Cli�ord monoids is term equivalent to the varietyof bi-unital near heaps.Proof: It suÆ
es to show that if H is a near heap with distinguished bi-unitaryelement e, then hHi is a Cli�ord monoid (with identity e). But be
auseH is a nearheap, it is a generalised heap, so hHi is an inverse semigroup by what is shown inSe
tion 3 of [5℄, and for any x; y, [xxy℄ = [yxx℄ so xx0y = yx0x, so letting y = xx0gives (xx0)2 = (xx0)(x0x), so in the semilatti
e E(S), xx0 � x0x, and symmetryestablishes the equality needed to show that hHi is a Cli�ord semigroup. �However, in the absen
e of a bi-unitary element, the 
orresponden
e breaksdown, as we next show.3. Whi
h near heaps are [S℄ for some S?Let H be a near heap. Let � be the binary relation on H given by a � bif [abb℄ = a and [baa℄ = b. The following is shown in [2℄: see Proposition 6,Corollary 7, Lemma 18 and Theorem 19.



Near heaps 167Proposition 6. Let H be a near heap. Then � is a 
ongruen
e on H for whi
hH= � is a semilatti
e, and for every a 2 H , the 
ongruen
e 
lass 
ontaining a isa subsemiheap of H whi
h is a maximal subheap.From Proposition 16 of [2℄, a semilatti
e 
an 
ontain no non-trivial subheaps,this 
ongruen
e 
an be regarded as de�ning the `heap radi
al' of the near heap;see [2℄ for further dis
ussion of radi
als of semiheaps.If H is a neap heap we 
all H= � the asso
iated semilattti
e.Proposition 7. If S is a Cli�ord semigroup, then every element of S is 
ongruentunder � to a unique element of E(S).Proof: Now a � aa0 2 E(S) sin
e[aa(aa0)℄ = aa0aa0 = aa0[(aa0)aa℄ = aa0a0a = aa0[(aa0)(aa0)a℄ = aa0aa0a = a[a(aa0)(aa0)℄ = aaa0aa0 = a:Also aa0 � bb0 implies aa0 = [(aa0)(bb0)(bb0)℄ = aa0bb0 = [(aa0)(aa0)(bb0)℄ = bb0,proving uniqueness. �The 
ongruen
e�maps E(S) bije
tively onto the asso
iated semilatti
e [S℄= �.It follows that in near heaps of the form [S℄ where S is a Cli�ord semigroup, the
anoni
al homomorphism [S℄ �! [S℄= � is split (has a right inverse [S℄= ��![S℄). Equivalently in these near heaps there is a subsemilatti
e, in this 
ase E(S),with an element in every 
ongruen
e 
lass of �.We de�ne a spine for a near heap H to be a subsemilatti
e L of H su
h thatevery element h 2 H is 
ongruent under � to a unique element of L. Hen
e ane
essary 
ondition for a near heap H to be (isomorphi
 to) [S℄ for some Cli�ordsemigroup is that it has a spine.This 
ondition is not only ne
essary but also suÆ
ient as we now show.Theorem 8. A near heap H is equal to [S℄ for some Cli�ord semigroup if andonly if it has a spine.Proof: As E(S) is a spine of [S℄, the 
ondition is ne
essary.To show that it is suÆ
ient let H be a near heap with spine L � H . For ea
helement h 2 H there is a unique eh 2 L with eh � h. De�ne a0 = [eaaea℄ anda � b = [aeab℄ = [aebb℄. We 
laim that (H; �;0 ) is a Cli�ord semigroup under theseoperations and that [(H; �;0 )℄ = H .First note that[aeab℄ = [aea[ebebb℄℄ = [a[ebebea℄b℄ = [a[ebeaea℄b℄ = [[aeaea℄ebb℄ = [aebb℄so the produ
t as stated above is well de�ned. Furthermore (a�b)�
 = [[aeab℄e

℄ =[aea[be

℄℄ = a � (b � 
) so the produ
t is asso
iative.Now let a 2 H and let e = ea to simplify the notation. Then [eea0℄ = [ee[eae℄℄ =[eae℄ = a0 and [a0a0e℄ = [[eae℄[eae℄e℄ = [[[eae℄ea℄ee℄ = [[ea[eea℄℄ee℄ = [[eaa℄ee℄ =



168 I. Hawthorn, T. Stokes[eee℄ = e. Hen
e a0 � e, whi
h gives ea0 = ea = e and a00 = [e[eae℄e℄ = a. We alsohave a � a0 � a = [[ae[eae℄℄ea℄ = a. Furthermore a � a0 = [ae[eae℄℄ = [a[aee℄e℄ =[aae℄ = e so (a � a0) � b = e � b = [eeb℄ = [bee℄ = b � (a � a0) proving the Cli�ordsemigroup 
ondition.At this point we have proved that H is a Cli�ord semigroup (the 
ondition(a � b)0 = b0 � a0 follows from the others). It remains to show that the semiheapprodu
t 
an be re
overed from the Cli�ord semigroup operations. But a � b0 =[aeb0b0℄ = [aeb[ebbeb℄℄ = [abeb℄ and hen
ea � b0 � 
 = [[abeb℄e

℄ = [a[e
ebb℄
℄ = [a[e
[ebebeb℄b℄
℄ = [a[[e
ebeb℄ebb℄
℄= [a[[e
e
eb℄ebb℄
℄ = [a[e
e
[ebebb℄℄
℄ = [a[e
e
b℄
℄ = [ab[e
e

℄℄= [ab
℄giving [(H; �;0 )℄ = H , and 
ompleting the proof. �Not all near heaps have spines and therefore not all near heaps are of the form[S℄ for a Cli�ord semigroup S. An example of a near heap without a spine is thefree near heap generated by two elements. A simpler example is the free fullysymmetri
 near heap on two generators, whi
h we now 
onstru
t.Example 9. The free fully symmetri
 near heap on two generators.Let a; b be two symbols and form the �nite set of stringsH(a; b) = fa; b; a2b; ab2g(where a2 denotes aa and so on), and de�ne a ternary operation on H(a; b) bysetting [w1w2w3℄ to be the result of �rst sorting into alphabeti
al order the lettersin the string 
on
atenation w1w2w3 to give ambn, where m+n is ne
essarily odd,and then redu
ing to an element of H(a; b) by redu
ing powers modulo 2 down to1 or 2 (or else 0 if that letter did not o

ur at all).Thus for example [aaa℄ = a, and[(aab)(b)(abb)℄! a3b4 ! ab2:It is easy to 
on�rm that H(a; b) is a fully symmetri
 semiheap in the sense that[w1w2w3℄ = [w�1w�2w�3 ℄where �1; �2; �3 is any permutation of 1; 2; 3. Moreover it is 
learly idempotent,and hen
e is a near heap.We 
laim that H(a; b) has no spine. The 
ongruen
e � has at least threeequivalen
e 
lasses on H(a; b), two of whi
h are fag and fbg. Any spine for H(a; b)must therefore in
lude both a and b, although [aab℄ = a2b 6= ab2 = [abb℄ so a andb 
annot 
oexist in a subsemilatti
e.



Near heaps 169A similar though more 
ompli
ated argument 
an be used in the non-fullysymmetri
 
ase, to establish that the free near heap on two generators is anin�nite near heap without a spine.To 
ompletely �t nears heaps into the pattern suggested by Proposition 1, wemust 
onsider whether or not all near heaps 
an be embedded in a near heap ofthe form [S℄ for some Cli�ord semigroup S. The answer to that question is \yes"as we shall prove.4. Near heaps as strong semilatti
es of heapsEvery Cli�ord semigroup S is a semilatti
e of groups, meaning that there isa 
ongruen
e � on S for whi
h ea
h �-
lass is a group and S=� is a semilatti
e.By Proposition 6, every near heap is a \semilatti
e of heaps" in the obvioussense. But every Cli�ord semigroup is not only a semilatti
e of groups but astrong semilatti
e of groups as in [3℄; full information about the multipli
ation ina Cli�ord semigroup S 
an be obtained from su
h a strong semilatti
e of groupde
omposition. Thus if S = Se2E(S) Se is the de
omposition of S into groups Se(one for ea
h e 2 E(S)), then for every e; f 2 L with e � f , there is a grouphomomorphism �e;f : Se ! Sf for whi
h� �e;e is the identity map on Se, and� for all e; f; g 2 L for whi
h e � f � g, �f;g Æ �e;f = �e;g .One then �nds that for ae 2 Se and af 2 Sf , aeaf = �e;ef (ae)�f;ef (af ) as 
al
u-lated in Sef , so that information about the multipli
ations in ea
h of the groupstogether with all the homomorphisms �e;f 
ompletely determines the multipli
a-tion on S.One 
an de�ne an abstra
t strong semilatti
e of groups to be any disjoint unionof groups S = Se2L Se, L a semilatti
e, equipped with homomorphisms as above,and with multipli
ation de�ned as follows: for all ae 2 Se and af 2 Sf ,aeaf := �e;ef (ae)�f;ef (af ) as 
al
ulated in Sef .It then follows easily that SeSf � Sef for all e; f 2 L. S 
an be shown to bea semigroup; indeed it is always a Cli�ord semigroup (with a0 de�ned to be theunique b 2 S su
h that aba = a; bab = b). Hen
e every Cli�ord semigroup is astrong semilatti
e of groups. For the details, 
onsult [3℄.Of 
ourse, in a Cli�ord semigroup S, the semilatti
e L = E(S) is embedded inthe semigroup: it is both a subsemigroup and a quotient semigroup. Indeed L isthe spine of the near heap S. However, as we have seen, not all near heaps havespines. In the 
ases that do, there will be some sort of strong semilatti
e of heapsrepresentation. The interest is in the general 
ase.A strong semilatti
e of heaps is de�ned to be a disjoint union of heaps S =Se2L Se, where L is a semilatti
e, su
h that there are heap homomorphisms�e;f : Se ! Sf for ea
h e; f 2 L for whi
h e � f , and for whi
h� �e;e is the identity map on Se, and� for all e; f; g 2 L for whi
h e � f � g, �f;g Æ �e;f = �e;g .



170 I. Hawthorn, T. StokesSu
h an S is turned into a ternary algebra by setting, for all ae 2 Se, af 2 Sfand ag 2 Sg, [aeafag℄ = [�e;efg(ae)�f;efg(af )�g;efg(ag)℄:Notation: [Se; L; �e;f ℄.Theorem 10. A strong semilatti
e of heaps [Se; L; �e;f ℄ is a near heap whi
h isa semilatti
e of the heaps Se, with the semilatti
e isomorphi
 to L.Proof: It is obvious that the Se are 
losed under the ternary operation on S(and of 
ourse are heaps). We next show S is a semiheap.Let a� 2 S� for ea
h � 2 fe; f; g; h; ig. Then[[aeafag℄ahai℄= [[�e;efg(ae)�f;efg(af )�g;efg(ag)℄ahai℄= [�efg;efghi([�e;efg(ae)�f;efg(af )�g;efg(ag)℄)�h;efghi(ah)�i;efghi(ai)℄= [[�e;efghi(ae)�f;efghi(af )�g;efg(ag)℄�h;efghi(ah)�i;efghi(ai)℄= [[�e;efghi(ae)[�h;efghi(ah)�g;efg(ag)℄�f;efghi(af )℄�i;efghi(ai)℄;whi
h a very similar routine 
al
ulation shows is equal to [ae[ahagaf ℄ai℄, and soalso by symmetry to [aeaf [agahai℄℄, so S is a semiheap.We turn to the near heap laws. Idempoten
e is immediate (sin
e the 
al
ulationof [aeaeae℄ takes pla
e wholly within Se, whi
h is a heap). Finally,[aeaeaf ℄= [�e;ef (ae)�e;ef (ae)�f;ef (af )℄= [�e;ef (ae)�e;ef (ae)�f;ef (af )℄ sin
e the 
omputation is inside the heap Sef= [�e;ef (ae)�f;ef (af )�f;ef (af )℄ again working in Sef= [aeafaf ℄as required. It is obvious that [SeSfSg℄ � Sefg = S[efg℄ for all e; f; g 2 L, so thepartition of S into the disjoint Se is a 
ongruen
e �, and that S=� �= L. �This result justi�es the term \strong semilatti
e of heaps". Note that L in thisproof is not in general represented as a subset of S, only as a quotient.The following result extends Theorem 4.2.1 of [3℄ stating that every Cli�ordsemigroup is a semilatti
e of groups, to 
over \spineless" 
ases.Theorem 11. Let H be a ternary algebra, L a semilatti
e. The following areequivalent.(1) H is a near heap with L �= H= �.(2) H is a semilatti
e of heaps Se2LHe.(3) H is a strong semilatti
e of heaps [He; L; �e;f ℄.



Near heaps 171Proof: (1)) (2) has been shown already.For (2) ) (3), let H = Se2LHe be a semilatti
e of heaps. Let e; f 2 L, withf � e. Then for all ae 2 Se and af 2 Sf , [aeafaf ℄ 2 S[eff ℄ = Sf . So de�ne e;f : Se ! Sf by setting �e;f (ae) = [aeafaf ℄ for any af 2 Sf . This is well-de�ned (independent of the 
hoi
e of af 2 Sf ), be
ause if also bf 2 Sf , then,using the heap laws as needed, we have[aebfbf ℄ = [ae[afaf bf ℄[afaf bf ℄℄= [ae[bfafaf ℄[bfafaf ℄℄= [[aeafaf ℄bf [bfafaf ℄℄= [[[aeafaf ℄bf bf ℄afaf ℄= [[aeafaf ℄afaf ℄ sin
e [aeafaf ℄ 2 Sf= [aeafaf ℄:Now �e;e is the identity on Se be
ause for any ae 2 Se, �e;e(ae) = [aebebe℄ = aefor any be 2 Se.We next show �e;f is a homomorphism Se ! Sf . So let ae; be; 
e 2 Se, withdf 2 Sf . Then repeatedly using the heap laws in Sf ,�e;f ([aebe
e℄) = [[aebe
e℄dfdf ℄= [[[aebe
e℄dfdf ℄dfdf ℄ sin
e Se � Sf and Sf is a heap= [[ae[df 
ebe℄df ℄dfdf ℄= [[aedfdf ℄[df 
ebe℄df ℄= [[[aedfdf ℄be
e℄dfdf ℄= [[aedfdf ℄be
e℄:However, [�e;f (ae)�e;f (be)�e;f (
e)℄ = [[aedfdf ℄[bedfdf ℄[
edfdf ℄℄= [[[aedfdf ℄dfdf ℄be[
edfdf ℄℄= [[aedfdf ℄be[
edfdf ℄℄= [ae[bedfdf ℄[
edfdf ℄℄= [[ae[bedfdf ℄
e℄dfdf ℄= [[aedf [df be
e℄℄dfdf ℄= [aedf [[dbbe
e℄dfdf ℄℄= [aedb[dbbe
e℄℄= [[aedfdf ℄be
e℄= �e;f ([aebe
e℄)from the above.



172 I. Hawthorn, T. StokesFinally we must show that for all e; f; g 2 L for whi
h e � f � g, �f;g Æ �e;f =�e;g . So suppose e; f; g 2 L satisfy e � f � g. Then for any ae 2 Se, af 2 Sf andag 2 Sg , (�f;g Æ �e;f )(ae) = [[aeafaf ℄agag℄= [[[aeafaf ℄agag℄agag℄= [[[ae[agafaf ℄ag℄agag℄= [[aeagag℄[agafaf ℄ag℄= [[[aeagag℄afaf ℄agag℄= [[aeagag℄af [afagag℄℄= [ae[afagag℄[afagag℄℄= �e;g(ae)sin
e [afagag ℄ = �f;g(af ) 2 Sg. This 
ompletes the proof that any semilatti
e ofheaps is a strong semilatti
e of heaps.For (3) ) (1), the fa
t that H = [He; L; �e;f ℄ is a near heap was shown inTheorem 10. For ea
h a 2 H , let a� be the �-
lass 
ontaining a. To showthat L is the same as in Proposition 6, it suÆ
es to show that the heaps He inH = [He; L; �e;f ℄ are pre
isely the subheaps a� of H . It suÆ
es to show that forall a 2 H , if a 2 He then a� = He. So suppose a 2 He. Of 
ourse He � a� bymaximality of a�. Conversely, if b 2 a�, suppose b 2 Hf . Then [abb℄ = a, so inparti
ular, He 3 a = [aaa℄ = [bba℄ 2 Hef , so ef = e, as otherwise Hef \He = ;.By symmetry (sin
e also a 2 b�) ef = f , so e = f and b 2 He. Hen
e a� � He. �Note that the homomorphisms �e;f used to de�ne a given strong semilatti
eof heaps H = [Se; L; �e;f ℄ (that is, a near heap by the above result) are uniquelydetermined by the near heap. First, the maximal subheap de
ompositionSe2LHe(in
luding L up to isomorphism) depends only on the stru
ture of H , and forae 2 He and af 2 Hf , we have [aeafaf ℄ = [�e;ef (ae)�f;ef (af )�f;ef (af )℄ 2 Hef , aheap, and so [aeafaf ℄ = �e;ef (ae), so �e;ef is wholly determined by the near heapoperation. This parallels the situation for Cli�ord semigroups.However, it follows from the main result of the previous se
tion that for anynear heap of the form [S℄ where S is a Cli�ord semigroup, the stru
ture of [S℄
ompletely determines the Cli�ord semigroup operations on S.Corollary 12. Suppose S1 and S2 are two Cli�ord semigroups on the sameunderlying set for whi
h [S1℄ = [S2℄. Then S1 = S2.Proof: First, it is a routine exer
ise to 
he
k that, given a representation of theCli�ord semigroup S as a strong semilatti
e of groups, there is an indu
ed repre-sentation of [S℄ as a strong semilatti
e of heaps, using the same semilatti
e, thesubheaps asso
iated with the subgroups, and the same homomorphisms. Then,if S1 and S2 are two Cli�ord semigroups on the same underlying set for whi
h[S1℄ = [S2℄, the homomorphisms inherited from S1 and S2 (as well as the Se of
ourse) must be the same, and so S1 and S2 are also the same. �
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orresponding fa
t for arbitrary involuted semigroups fails: the involutedsemigroup operations on S are not determined by the stru
ture of [S℄. For ex-ample, the zero semiheap on a set, in whi
h all ternary produ
ts are zero, arisesfrom distin
t, even non-isomorphi
, involuted semigroups on the set. It would beinteresting to determine those varieties V of involuted semigroups for whi
h theoperations on S 2 V are 
ompletely determined by [S℄ (at least up to isomor-phism).5. Embedding near heaps in Cli�ord semigroupsAs we have seen, Cli�ord semigroups give rise to near heaps, and indeed all ofthe information present in the Cli�ord semigroup is retained by the near heap.However, not every near heap is [S℄ where S is a Cli�ord semigroup. So what 
anbe said? Can we give an embedding theorem for near heaps, thereby providing a
ompleted entry in Proposition 1?Note that the 
ases 
onsidered in Proposition 1 
an all be dealt with by �rstshowing that every semiheap of a given type may be embedded in a bi-unital oneof the same type, and then invoking Proposition 2. This is the approa
h taken in[5℄. However, that approa
h does not readily extend to near heaps.First some observations about representations in terms of partial mappings.By the Wagner-Preston theorem, any inverse semigroup G is representable as asubsemigroup of the symmetri
 semigroup of one-to-one partial maps X ! X forsome set X . The a
tual representation used is a left regular one, whi
h mapsa 2 G to the partial map  a : G ! G given by  a(x) = ax for all x su
h thata0ax = x; when this is done,  a0a is the restri
tion of the identity map to thedomain of  a and  aa0 is the restri
tion of the identity map to its range.Representing a Cli�ord semigroup in this way, the inverse semigroup of partialmaps has the property that every partial map has equal domain and range (sin
eaa0 = a0a), and that the partial maps having a given domain form a group (sin
eaa0 = a0a is an identity element). Moreover the bije
tions asso
iated with a0a andb0b agree on a0ab0b: the two heaps of maps restri
t down to the same heap of mapson the smaller domain. This is a 
on
rete way to interpret the fa
t that everyCli�ord semigroup is a semilatti
e of heaps: the semilatti
e is the set of domains(=ranges) determined by E(G) = fa0a j a 2 Gg, and the heaps are the asso
iatedpartial maps with domains and ranges given by the aa0.Likewise, it is well known that every generalised heap may be represented asa semiheap of one-to-one partial maps X ! Y (where without loss of generalityevery element of x is in the domain of one of the maps and every element of y ismapped to by one of the maps): the operation on su
h maps is [fgh℄ = f Æg�1Æh.Again, interpreting the near heap law shows that the maps 
an be organisedinto subheaps a

ording to their domains, and those maps with a given domainalso have identi
al ranges (not equal to their domains this time, sin
e they arein di�erent sets). For a �xed represented near heap, let LX be the 
olle
tionof domains and LY the 
olle
tion of ranges: both sets are semilatti
es under
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tion, as for generalised heaps in general. Again, it follows easily thattwo sets of heaps (
orresponding to two possible domains) restri
t down to thesame heap when the interse
tion of their domains in LX is 
onsidered. Again, allof this is nothing but a 
on
rete realisation of Theorem 11: every near heap isa semilatti
e of heaps.We are now in a position to give the main result of this se
tion.Theorem 13. Every near heap is embeddable in the semiheap obtained froma Cli�ord semigroup.Proof: Without loss of generality, let H be a near heap of partial maps X ! Yas des
ribed above. We shall show how to identify X and Y in su
h a way thatthe resulting Cli�ord semigroup embeds the original near heap.Choosing S 2 LX , we have a �xed set (indeed heap) of bije
tions HS fromS to S0 2 LY . Choose x 2 X and for any S 2 LX for whi
h x 2 S, de�neTx = fp(x) j p 2 HSg, a subset of Y independent of the 
hoi
e of S by therestri
tion property. This 
an be extended to arbitrary subsets ofX in the obviousway: for W � X , de�ne T (W ) = Sx2W Tx.Likewise for y 2 Y , de�ne T 0y = fq(y) j q�1 2 HSg, where S � X is su
hthat y 2 f(S), and extend to subsets of Y as for T above to give T 0(S0). Now ifa = q�1(p(x)) 2 T 0(Tx), then q(a) = p(x) 2 Tx, so T (T 0(Tx)) � Tx, and be
ausethe opposite in
lusion obviously holds, we have T (T 0(Tx)) = Tx. It now followseasily that there is a one-to-one 
orresponden
e between subsets of the form Txin Y and T 0(Tx) in X .Now suppose x0 =2 T 0(Tx). Suppose b 2 T 0x \ Tx. So b = p1(x0) = p2(x) forsome bije
tions p1 2 HS1 (where S1 2 LX 
ontains x0) and p2 2 HS2 (whereS2 2 LX 
ontains x). Hen
e y = p�11 Æ p2(x) 2 T 0(Tx), a 
ontradi
tion. Hen
eTx \ Tx0 = ;. Similarly then, S(Tx) \ S(Tx0) = S(Tx \ Tx0) = S(;) = ;. Thus theTx form a partition of Y and the S(Tx) form a partition of X .Note that for any S 2 LX for whi
h x 2 S, if a 2 T 0(Tx), then a = q�1(p(x))for some p; q 2 HS , so a 2 S; hen
e T 0(Tx) � S for every S 2 LX 
ontainingx. Pi
k p 2 HS and de�ne  x : T 0(Tx) ! Tx by setting  x(a) = p(a) for alla 2 T 0(Tx), a one-to-one fun
tion (being a restri
tion of the bije
tive fun
tionp : S ! f(S)). It is also surje
tive, as if b 2 Tx, then a = p�1(b) 2 T 0(Tx) satis�esp(a) = b. (Hen
e only one 
hoi
e of bije
tion was really needed in de�ning Tx andso on.)We build a bije
tion  : X ! Y out of the bije
tions  x in the expe
ted way: (x) =  x(x) for all x 2 X . This works be
ause the T 0(Tx) are a partition of X(and likewise for the Tx in Y ). For 
onvenien
e we make dire
t use of the inversebije
tion � =  �1, mapping Y ! X .We now mapH into the inverse semigroup I(X) of one-to-one partial mappingson X . Thus let � be the mapping taking H into I(X) su
h that for ea
h f 2 H ,�(f) = � Æ f ; 
learly �(f) 2 I(X). We show � is an embedding of H into thegeneralised heap I(X) (equipped with its usual semiheap operation).



Near heaps 175For f; g; h 2 H , [�(f)�(g)�(h)℄ = �(f) Æ �(g)�1 Æ �(h)= �(f) Æ (� Æ g)�1 Æ � Æ h= �(f) Æ g�1 Æ ��1 Æ � Æ h= � Æ f Æ g�1 Æ h= � Æ [fgh℄= �([fgh℄):So � is a homomorphism whi
h is obviously inje
tive (sin
e � is a bije
tion).Now let M be the inverse subsemigroup of I(X) generated by H1 = f�(f) jf 2 Hg under the operations of inversion and 
omposition.Note that ea
h �(f) 2 M (where f 2 H) has equal domain and range, so�(f) Æ �(f)�1 = �(f)�1 Æ �(f), and if also g 2 H , then �(f) Æ �(f)�1 Æ �(g) =�([ffg℄) = �([gff ℄) = �(g) Æ �(f)�1 Æ �(f). A typi
al element of M is a 
ompositew = a1a2 � � � an of elements of I(X) of the form �(f) or �(f)�1 for some f 2 H ,and for su
h elements we have just shown that xx0 = x0x and xy0y = yy0x. Ittherefore follows easily that ww�1 = (a1a2 � � � an)(a�1n � � �a�12 a�11 ) whi
h easilyrearranges to (a1a�11 )(a2a�12 ) � � � (ana�1n ), whi
h by symmetry also equals w�1w.Hen
e M is a Cli�ord semigroup, embedding H . �Referen
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