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Near heapsIan Hawthorn, Tim StokesAbstrat. On any involuted semigroup (S; �;0 ), de�ne the ternary operation[ab℄ := a � b0 �  for all a; b;  2 S. The resulting ternary algebra (S; [ ℄) satis�esthe para-assoiativity law [[ab℄de℄ = [a[db℄e℄ = [ab[de℄℄, whih de�nes the vari-ety of semiheaps. Important subvarieties inlude generalised heaps, whih arisefrom inverse semigroups, and heaps, whih arise from groups. We onsider theintermediate variety of near heaps, de�ned by the additional laws [aaa℄ = a and[aab℄ = [baa℄. Every Cli�ord semigroup is a near heap when viewed as a semi-heap, and we show that the Cli�ord semigroup operations are determined by thesemiheap operation. We show that near heaps are exatly strong semilatties ofheaps, parallelling a known result for Cli�ord semigroups. We haraterise thosenear heaps whih arise diretly from Cli�ord semigroups, and show that all nearheaps are embeddable in suh examples, extending known results of this kindrelating heaps to groups, generalised heaps to inverse semigroups, and generalsemiheaps to involuted semigroups.Keywords: Cli�ord semigroups, semiheaps, generalised heaps, heapsClassi�ation: Primary 20N10; Seondary 20M111. Bakground on semiheapsWe begin with a review of some established de�nitions and results.A heap H is a non-empty set with ternary operation [ ℄ satisfying the followinglaws. � [[ab℄de℄ = [a[db℄e℄ = [ab[de℄℄ (para-assoiative law)� [aab℄ = [baa℄ = bWe all the one-element heap the trivial heap. Every group gives a heap underthe ternary operation [ab℄ := ab�1, a onstrution �rst onsidered in the settingof abelian groups by Pr�ufer in [4℄. Conversely, a group arises from a heap H byhoosing any element e 2 H and de�ning a binary operation x � y := [xey℄; theelement e beomes the identity of the onstruted group and [exe℄ the inverse of x.These onstrutions are mutually inverse up to isomorphism. Hene the varietiesof groups and pointed heaps are term equivalent, as shown by Baer in [1℄.A semiheap H is a non-empty set with a ternary operation [ ℄ satisfying onlythe para-assoiative law above. Semiheaps were �rst onsidered by Wagner in [5℄.A similar onstrution gives a semiheap when S is an involuted semigroup, thatis a semigroup equipped with a unary operation 0 for whih the following laws aresatis�ed:



164 I. Hawthorn, T. Stokes� a00 = a� (ab)0 = b0a0.If S is an involuted semigroup, setting [ab℄ := ab0 for all a; b;  2 S gives asemiheap operation on S. Denote by [S℄ the semiheap obtained from S in thisway. Every semiheap an be embedded in [S℄ for some involuted semigroup S: seeSetion 2 of [5℄.An idempotent semiheap is a semiheap satisfying� [aaa℄ = a (idempoteny law).These were studied in [2℄. If S is an involuted semigroup, the semiheap [S℄ isidempotent if and only if aa0a = a (see [3℄). An involuted semigroup with thisproperty is alled an involuted I-semigroup. Every idempotent semiheap an beembedded in [S℄ for some involuted I-semigroup S. (This spei� result does notappear in the literature, but the proof of the analogous result for generalised heapsin [5℄ is easily modi�ed to show it.)A generalised heap is an idempotent semiheap satisfying� [aa[bb℄℄ = [bb[aa℄℄ and [[abb℄℄ = [[a℄bb℄ (generalised heap axiom).These were onsidered by Wagner in [5℄. They arise naturally in the setting ofatlases in di�erential geometry; see [6℄. An inverse semigroup is an involutedsemigroup satisfying� aa0a = a (idempoteny)� aa0bb0 = bb0aa0Omitting the law (ab)0 = b0a0, whih follows from the others, gives Howie's de�-nition as on page 145 of [3℄. It an be shown that the set of idempotents of aninverse semigroup S is E(S) = fa0a j a 2 Sg so that idempotents ommute in aninverse semigroup. If S is an involuted semigroup, the semiheap [S℄ is a gener-alised heap if an only if S is an inverse semigroup, and all generalised heaps anbe embedded in a generalised heap onstruted in this way (see Setion 3 of [5℄).We now summarize these results.Proposition 1. Let S be an involuted semigroup.(1) [S℄ is a semiheap. Every semiheap an be embedded in a semiheap of thistype.(2) [S℄ is an idempotent semiheap if and only if S is an I-semigroup. Everyidempotent semiheap an be embedded in an idempotent semiheap of thistype.(3) [S℄ is a generalised heap if and only if S is an inverse semigroup. Everygeneralised heap an be embedded in a generalised heap of this type.(4) [S℄ is a heap if and only if S is a group. All heaps are of this type.The orrespondenes an be tightened further, to resemble the situation forheaps and groups, if a further assumption is made. If H is a semiheap, we saye 2 H is bi-unitary if [aee℄ = [eea℄ = a for all a 2 H . A semiheap is a heap if and



Near heaps 165only if every element is bi-unitary. Note that if S is an involuted monoid withidentity 1, then 1 2 [S℄ is bi-unitary.Call a semiheap equipped with a distinguished bi-unitary element e, viewed asa nullary operation, bi-unital . The lass of bi-unital semiheaps is a variety withone ternary and one nullary operation.Let H be a bi-unital semiheap. De�ne x0 = [exe℄ for all x 2 H . Then x00 = xfor all x 2 H as is easily heked. Also de�ne a binary operation on H by settingx � y = [xey℄. Call the resulting algebra hHi. In fat hHi is an involuted monoidwith identity e, as is shown in Setion 2 of [5℄.The onstrutions S 7! [S℄ (S an involuted monoid) and H 7! hHi (H a bi-unital semiheap) are mutually inverse, leading to a term equivalene between thevarieties of involuted monoids and bi-unital semiheaps. Indeed the term equiva-lene speialises to subvarieties as summarised in the following.Proposition 2. The following subvarieties of involuted monoids and bi-unitalsemiheaps are term equivalent.bi-unital semiheap type involuted monoid typearbitrary arbitraryidempotent semiheap I-monoidgeneralised heap inverse monoidheap groupEah of these equivalenes is established in [5℄ (or follows easily from argumentsgiven there).2. Introduing near heapsHistorially, heaps were the �rst type of semiheaps onsidered. There arevarious ways to weaken the heap axioms, and we have reviewed the most importantones already. Another, �rst introdued in [2℄, gives rise to the lass of near heaps.A near heap is a semiheap satisfying the laws� [aaa℄ = a (idempotent law)� [aab℄ = [baa℄ (near heap axiom).Every heap is a near heap and every near heap is a generalised heap (see Propo-sition 15 of [2℄).Let E(S) = faa0 j a 2 Sg denote the semilattie of idempotents in the inversesemigroup S, partially ordered via e � f if and only if e = ef . A Cli�ordsemigroup S is an inverse semigroup in whih for all a 2 S and e 2 E(S), ae = ea.It is well known that this ondition is equivalent to the ondition that aa0 = a0afor all a 2 S (see [3℄ for example). It is lear that if S is a Cli�ord semigroupthen [S℄ is a near heap. The onverse is also true.Proposition 3. Let S be an involuted semigroup. Then [S℄ is a near heap if andonly if S is a Cli�ord semigroup.



166 I. Hawthorn, T. StokesProof: If S is a Cli�ord semigroup then [S℄ is a semiheap, and if a; b 2 S then[aab℄ = aa0b = baa0 = ba0a = [baa℄ so [S℄ is a near heap as laimed.Conversely assume that [S℄ is a near heap. Then S is an inverse semigroup byProposition 1. Then for all a 2 S, letting aa0 = e 2 E(S) and a0a = f 2 E(S) wehave aa0 = (aa0)(aa0) = aa0e = [aae℄ = [eaa℄ = ea0a = ef = fea0a = (a0a)(a0a) = fa0a = [faa℄ = [aaf ℄ = aa0f = ef = feso aa0 = a0a and S is a Cli�ord semigroup. �So the �rst half of a new entry in Proposition 1 an now be made. A furtherentry an also be added, by speialising near heaps in a diretion orthogonal toheaps.Semilatties may be thought of as Cli�ord semigroups in whih the law a = a0holds; by uniqueness of inverses in inverse semigroups, this is the only possibleway to de�ne 0 to yield a Cli�ord semigroup.So if S is a semilattie, the semiheap operation on [S℄ is given by [ab℄ = abfor all a; b;  2 S. The resulting near heap satis�es the law [abb℄ = [aab℄. Thefollowing easy result was stated in [2℄ (and may have �rst appeared earlier).Proposition 4. Let S be an involuted semigroup. [S℄ is a near heap satisfyingthe law [abb℄ = [aab℄ if and only if S is a semilattie. All suh near heaps are ofthis type, and the two varieties are term equivalent.From now on, when we use the term semilattie in the ontext of semiheaps, wemean a near heap satisfying the law [abb℄ = [aab℄. Note that the only semilattiewhih is a heap is the trivial heap, sine it satis�es a = [abb℄ = [aab℄ = b for all aand b.A new row in the table provided in Proposition 2 an also be given.Proposition 5. The variety of Cli�ord monoids is term equivalent to the varietyof bi-unital near heaps.Proof: It suÆes to show that if H is a near heap with distinguished bi-unitaryelement e, then hHi is a Cli�ord monoid (with identity e). But beauseH is a nearheap, it is a generalised heap, so hHi is an inverse semigroup by what is shown inSetion 3 of [5℄, and for any x; y, [xxy℄ = [yxx℄ so xx0y = yx0x, so letting y = xx0gives (xx0)2 = (xx0)(x0x), so in the semilattie E(S), xx0 � x0x, and symmetryestablishes the equality needed to show that hHi is a Cli�ord semigroup. �However, in the absene of a bi-unitary element, the orrespondene breaksdown, as we next show.3. Whih near heaps are [S℄ for some S?Let H be a near heap. Let � be the binary relation on H given by a � bif [abb℄ = a and [baa℄ = b. The following is shown in [2℄: see Proposition 6,Corollary 7, Lemma 18 and Theorem 19.



Near heaps 167Proposition 6. Let H be a near heap. Then � is a ongruene on H for whihH= � is a semilattie, and for every a 2 H , the ongruene lass ontaining a isa subsemiheap of H whih is a maximal subheap.From Proposition 16 of [2℄, a semilattie an ontain no non-trivial subheaps,this ongruene an be regarded as de�ning the `heap radial' of the near heap;see [2℄ for further disussion of radials of semiheaps.If H is a neap heap we all H= � the assoiated semilatttie.Proposition 7. If S is a Cli�ord semigroup, then every element of S is ongruentunder � to a unique element of E(S).Proof: Now a � aa0 2 E(S) sine[aa(aa0)℄ = aa0aa0 = aa0[(aa0)aa℄ = aa0a0a = aa0[(aa0)(aa0)a℄ = aa0aa0a = a[a(aa0)(aa0)℄ = aaa0aa0 = a:Also aa0 � bb0 implies aa0 = [(aa0)(bb0)(bb0)℄ = aa0bb0 = [(aa0)(aa0)(bb0)℄ = bb0,proving uniqueness. �The ongruene�maps E(S) bijetively onto the assoiated semilattie [S℄= �.It follows that in near heaps of the form [S℄ where S is a Cli�ord semigroup, theanonial homomorphism [S℄ �! [S℄= � is split (has a right inverse [S℄= ��![S℄). Equivalently in these near heaps there is a subsemilattie, in this ase E(S),with an element in every ongruene lass of �.We de�ne a spine for a near heap H to be a subsemilattie L of H suh thatevery element h 2 H is ongruent under � to a unique element of L. Hene aneessary ondition for a near heap H to be (isomorphi to) [S℄ for some Cli�ordsemigroup is that it has a spine.This ondition is not only neessary but also suÆient as we now show.Theorem 8. A near heap H is equal to [S℄ for some Cli�ord semigroup if andonly if it has a spine.Proof: As E(S) is a spine of [S℄, the ondition is neessary.To show that it is suÆient let H be a near heap with spine L � H . For eahelement h 2 H there is a unique eh 2 L with eh � h. De�ne a0 = [eaaea℄ anda � b = [aeab℄ = [aebb℄. We laim that (H; �;0 ) is a Cli�ord semigroup under theseoperations and that [(H; �;0 )℄ = H .First note that[aeab℄ = [aea[ebebb℄℄ = [a[ebebea℄b℄ = [a[ebeaea℄b℄ = [[aeaea℄ebb℄ = [aebb℄so the produt as stated above is well de�ned. Furthermore (a�b)� = [[aeab℄e℄ =[aea[be℄℄ = a � (b � ) so the produt is assoiative.Now let a 2 H and let e = ea to simplify the notation. Then [eea0℄ = [ee[eae℄℄ =[eae℄ = a0 and [a0a0e℄ = [[eae℄[eae℄e℄ = [[[eae℄ea℄ee℄ = [[ea[eea℄℄ee℄ = [[eaa℄ee℄ =



168 I. Hawthorn, T. Stokes[eee℄ = e. Hene a0 � e, whih gives ea0 = ea = e and a00 = [e[eae℄e℄ = a. We alsohave a � a0 � a = [[ae[eae℄℄ea℄ = a. Furthermore a � a0 = [ae[eae℄℄ = [a[aee℄e℄ =[aae℄ = e so (a � a0) � b = e � b = [eeb℄ = [bee℄ = b � (a � a0) proving the Cli�ordsemigroup ondition.At this point we have proved that H is a Cli�ord semigroup (the ondition(a � b)0 = b0 � a0 follows from the others). It remains to show that the semiheapprodut an be reovered from the Cli�ord semigroup operations. But a � b0 =[aeb0b0℄ = [aeb[ebbeb℄℄ = [abeb℄ and henea � b0 �  = [[abeb℄e℄ = [a[eebb℄℄ = [a[e[ebebeb℄b℄℄ = [a[[eebeb℄ebb℄℄= [a[[eeeb℄ebb℄℄ = [a[ee[ebebb℄℄℄ = [a[eeb℄℄ = [ab[ee℄℄= [ab℄giving [(H; �;0 )℄ = H , and ompleting the proof. �Not all near heaps have spines and therefore not all near heaps are of the form[S℄ for a Cli�ord semigroup S. An example of a near heap without a spine is thefree near heap generated by two elements. A simpler example is the free fullysymmetri near heap on two generators, whih we now onstrut.Example 9. The free fully symmetri near heap on two generators.Let a; b be two symbols and form the �nite set of stringsH(a; b) = fa; b; a2b; ab2g(where a2 denotes aa and so on), and de�ne a ternary operation on H(a; b) bysetting [w1w2w3℄ to be the result of �rst sorting into alphabetial order the lettersin the string onatenation w1w2w3 to give ambn, where m+n is neessarily odd,and then reduing to an element of H(a; b) by reduing powers modulo 2 down to1 or 2 (or else 0 if that letter did not our at all).Thus for example [aaa℄ = a, and[(aab)(b)(abb)℄! a3b4 ! ab2:It is easy to on�rm that H(a; b) is a fully symmetri semiheap in the sense that[w1w2w3℄ = [w�1w�2w�3 ℄where �1; �2; �3 is any permutation of 1; 2; 3. Moreover it is learly idempotent,and hene is a near heap.We laim that H(a; b) has no spine. The ongruene � has at least threeequivalene lasses on H(a; b), two of whih are fag and fbg. Any spine for H(a; b)must therefore inlude both a and b, although [aab℄ = a2b 6= ab2 = [abb℄ so a andb annot oexist in a subsemilattie.



Near heaps 169A similar though more ompliated argument an be used in the non-fullysymmetri ase, to establish that the free near heap on two generators is anin�nite near heap without a spine.To ompletely �t nears heaps into the pattern suggested by Proposition 1, wemust onsider whether or not all near heaps an be embedded in a near heap ofthe form [S℄ for some Cli�ord semigroup S. The answer to that question is \yes"as we shall prove.4. Near heaps as strong semilatties of heapsEvery Cli�ord semigroup S is a semilattie of groups, meaning that there isa ongruene � on S for whih eah �-lass is a group and S=� is a semilattie.By Proposition 6, every near heap is a \semilattie of heaps" in the obvioussense. But every Cli�ord semigroup is not only a semilattie of groups but astrong semilattie of groups as in [3℄; full information about the multipliation ina Cli�ord semigroup S an be obtained from suh a strong semilattie of groupdeomposition. Thus if S = Se2E(S) Se is the deomposition of S into groups Se(one for eah e 2 E(S)), then for every e; f 2 L with e � f , there is a grouphomomorphism �e;f : Se ! Sf for whih� �e;e is the identity map on Se, and� for all e; f; g 2 L for whih e � f � g, �f;g Æ �e;f = �e;g .One then �nds that for ae 2 Se and af 2 Sf , aeaf = �e;ef (ae)�f;ef (af ) as alu-lated in Sef , so that information about the multipliations in eah of the groupstogether with all the homomorphisms �e;f ompletely determines the multiplia-tion on S.One an de�ne an abstrat strong semilattie of groups to be any disjoint unionof groups S = Se2L Se, L a semilattie, equipped with homomorphisms as above,and with multipliation de�ned as follows: for all ae 2 Se and af 2 Sf ,aeaf := �e;ef (ae)�f;ef (af ) as alulated in Sef .It then follows easily that SeSf � Sef for all e; f 2 L. S an be shown to bea semigroup; indeed it is always a Cli�ord semigroup (with a0 de�ned to be theunique b 2 S suh that aba = a; bab = b). Hene every Cli�ord semigroup is astrong semilattie of groups. For the details, onsult [3℄.Of ourse, in a Cli�ord semigroup S, the semilattie L = E(S) is embedded inthe semigroup: it is both a subsemigroup and a quotient semigroup. Indeed L isthe spine of the near heap S. However, as we have seen, not all near heaps havespines. In the ases that do, there will be some sort of strong semilattie of heapsrepresentation. The interest is in the general ase.A strong semilattie of heaps is de�ned to be a disjoint union of heaps S =Se2L Se, where L is a semilattie, suh that there are heap homomorphisms�e;f : Se ! Sf for eah e; f 2 L for whih e � f , and for whih� �e;e is the identity map on Se, and� for all e; f; g 2 L for whih e � f � g, �f;g Æ �e;f = �e;g .



170 I. Hawthorn, T. StokesSuh an S is turned into a ternary algebra by setting, for all ae 2 Se, af 2 Sfand ag 2 Sg, [aeafag℄ = [�e;efg(ae)�f;efg(af )�g;efg(ag)℄:Notation: [Se; L; �e;f ℄.Theorem 10. A strong semilattie of heaps [Se; L; �e;f ℄ is a near heap whih isa semilattie of the heaps Se, with the semilattie isomorphi to L.Proof: It is obvious that the Se are losed under the ternary operation on S(and of ourse are heaps). We next show S is a semiheap.Let a� 2 S� for eah � 2 fe; f; g; h; ig. Then[[aeafag℄ahai℄= [[�e;efg(ae)�f;efg(af )�g;efg(ag)℄ahai℄= [�efg;efghi([�e;efg(ae)�f;efg(af )�g;efg(ag)℄)�h;efghi(ah)�i;efghi(ai)℄= [[�e;efghi(ae)�f;efghi(af )�g;efg(ag)℄�h;efghi(ah)�i;efghi(ai)℄= [[�e;efghi(ae)[�h;efghi(ah)�g;efg(ag)℄�f;efghi(af )℄�i;efghi(ai)℄;whih a very similar routine alulation shows is equal to [ae[ahagaf ℄ai℄, and soalso by symmetry to [aeaf [agahai℄℄, so S is a semiheap.We turn to the near heap laws. Idempotene is immediate (sine the alulationof [aeaeae℄ takes plae wholly within Se, whih is a heap). Finally,[aeaeaf ℄= [�e;ef (ae)�e;ef (ae)�f;ef (af )℄= [�e;ef (ae)�e;ef (ae)�f;ef (af )℄ sine the omputation is inside the heap Sef= [�e;ef (ae)�f;ef (af )�f;ef (af )℄ again working in Sef= [aeafaf ℄as required. It is obvious that [SeSfSg℄ � Sefg = S[efg℄ for all e; f; g 2 L, so thepartition of S into the disjoint Se is a ongruene �, and that S=� �= L. �This result justi�es the term \strong semilattie of heaps". Note that L in thisproof is not in general represented as a subset of S, only as a quotient.The following result extends Theorem 4.2.1 of [3℄ stating that every Cli�ordsemigroup is a semilattie of groups, to over \spineless" ases.Theorem 11. Let H be a ternary algebra, L a semilattie. The following areequivalent.(1) H is a near heap with L �= H= �.(2) H is a semilattie of heaps Se2LHe.(3) H is a strong semilattie of heaps [He; L; �e;f ℄.



Near heaps 171Proof: (1)) (2) has been shown already.For (2) ) (3), let H = Se2LHe be a semilattie of heaps. Let e; f 2 L, withf � e. Then for all ae 2 Se and af 2 Sf , [aeafaf ℄ 2 S[eff ℄ = Sf . So de�ne e;f : Se ! Sf by setting �e;f (ae) = [aeafaf ℄ for any af 2 Sf . This is well-de�ned (independent of the hoie of af 2 Sf ), beause if also bf 2 Sf , then,using the heap laws as needed, we have[aebfbf ℄ = [ae[afaf bf ℄[afaf bf ℄℄= [ae[bfafaf ℄[bfafaf ℄℄= [[aeafaf ℄bf [bfafaf ℄℄= [[[aeafaf ℄bf bf ℄afaf ℄= [[aeafaf ℄afaf ℄ sine [aeafaf ℄ 2 Sf= [aeafaf ℄:Now �e;e is the identity on Se beause for any ae 2 Se, �e;e(ae) = [aebebe℄ = aefor any be 2 Se.We next show �e;f is a homomorphism Se ! Sf . So let ae; be; e 2 Se, withdf 2 Sf . Then repeatedly using the heap laws in Sf ,�e;f ([aebee℄) = [[aebee℄dfdf ℄= [[[aebee℄dfdf ℄dfdf ℄ sine Se � Sf and Sf is a heap= [[ae[df ebe℄df ℄dfdf ℄= [[aedfdf ℄[df ebe℄df ℄= [[[aedfdf ℄bee℄dfdf ℄= [[aedfdf ℄bee℄:However, [�e;f (ae)�e;f (be)�e;f (e)℄ = [[aedfdf ℄[bedfdf ℄[edfdf ℄℄= [[[aedfdf ℄dfdf ℄be[edfdf ℄℄= [[aedfdf ℄be[edfdf ℄℄= [ae[bedfdf ℄[edfdf ℄℄= [[ae[bedfdf ℄e℄dfdf ℄= [[aedf [df bee℄℄dfdf ℄= [aedf [[dbbee℄dfdf ℄℄= [aedb[dbbee℄℄= [[aedfdf ℄bee℄= �e;f ([aebee℄)from the above.



172 I. Hawthorn, T. StokesFinally we must show that for all e; f; g 2 L for whih e � f � g, �f;g Æ �e;f =�e;g . So suppose e; f; g 2 L satisfy e � f � g. Then for any ae 2 Se, af 2 Sf andag 2 Sg , (�f;g Æ �e;f )(ae) = [[aeafaf ℄agag℄= [[[aeafaf ℄agag℄agag℄= [[[ae[agafaf ℄ag℄agag℄= [[aeagag℄[agafaf ℄ag℄= [[[aeagag℄afaf ℄agag℄= [[aeagag℄af [afagag℄℄= [ae[afagag℄[afagag℄℄= �e;g(ae)sine [afagag ℄ = �f;g(af ) 2 Sg. This ompletes the proof that any semilattie ofheaps is a strong semilattie of heaps.For (3) ) (1), the fat that H = [He; L; �e;f ℄ is a near heap was shown inTheorem 10. For eah a 2 H , let a� be the �-lass ontaining a. To showthat L is the same as in Proposition 6, it suÆes to show that the heaps He inH = [He; L; �e;f ℄ are preisely the subheaps a� of H . It suÆes to show that forall a 2 H , if a 2 He then a� = He. So suppose a 2 He. Of ourse He � a� bymaximality of a�. Conversely, if b 2 a�, suppose b 2 Hf . Then [abb℄ = a, so inpartiular, He 3 a = [aaa℄ = [bba℄ 2 Hef , so ef = e, as otherwise Hef \He = ;.By symmetry (sine also a 2 b�) ef = f , so e = f and b 2 He. Hene a� � He. �Note that the homomorphisms �e;f used to de�ne a given strong semilattieof heaps H = [Se; L; �e;f ℄ (that is, a near heap by the above result) are uniquelydetermined by the near heap. First, the maximal subheap deompositionSe2LHe(inluding L up to isomorphism) depends only on the struture of H , and forae 2 He and af 2 Hf , we have [aeafaf ℄ = [�e;ef (ae)�f;ef (af )�f;ef (af )℄ 2 Hef , aheap, and so [aeafaf ℄ = �e;ef (ae), so �e;ef is wholly determined by the near heapoperation. This parallels the situation for Cli�ord semigroups.However, it follows from the main result of the previous setion that for anynear heap of the form [S℄ where S is a Cli�ord semigroup, the struture of [S℄ompletely determines the Cli�ord semigroup operations on S.Corollary 12. Suppose S1 and S2 are two Cli�ord semigroups on the sameunderlying set for whih [S1℄ = [S2℄. Then S1 = S2.Proof: First, it is a routine exerise to hek that, given a representation of theCli�ord semigroup S as a strong semilattie of groups, there is an indued repre-sentation of [S℄ as a strong semilattie of heaps, using the same semilattie, thesubheaps assoiated with the subgroups, and the same homomorphisms. Then,if S1 and S2 are two Cli�ord semigroups on the same underlying set for whih[S1℄ = [S2℄, the homomorphisms inherited from S1 and S2 (as well as the Se ofourse) must be the same, and so S1 and S2 are also the same. �



Near heaps 173The orresponding fat for arbitrary involuted semigroups fails: the involutedsemigroup operations on S are not determined by the struture of [S℄. For ex-ample, the zero semiheap on a set, in whih all ternary produts are zero, arisesfrom distint, even non-isomorphi, involuted semigroups on the set. It would beinteresting to determine those varieties V of involuted semigroups for whih theoperations on S 2 V are ompletely determined by [S℄ (at least up to isomor-phism).5. Embedding near heaps in Cli�ord semigroupsAs we have seen, Cli�ord semigroups give rise to near heaps, and indeed all ofthe information present in the Cli�ord semigroup is retained by the near heap.However, not every near heap is [S℄ where S is a Cli�ord semigroup. So what anbe said? Can we give an embedding theorem for near heaps, thereby providing aompleted entry in Proposition 1?Note that the ases onsidered in Proposition 1 an all be dealt with by �rstshowing that every semiheap of a given type may be embedded in a bi-unital oneof the same type, and then invoking Proposition 2. This is the approah taken in[5℄. However, that approah does not readily extend to near heaps.First some observations about representations in terms of partial mappings.By the Wagner-Preston theorem, any inverse semigroup G is representable as asubsemigroup of the symmetri semigroup of one-to-one partial maps X ! X forsome set X . The atual representation used is a left regular one, whih mapsa 2 G to the partial map  a : G ! G given by  a(x) = ax for all x suh thata0ax = x; when this is done,  a0a is the restrition of the identity map to thedomain of  a and  aa0 is the restrition of the identity map to its range.Representing a Cli�ord semigroup in this way, the inverse semigroup of partialmaps has the property that every partial map has equal domain and range (sineaa0 = a0a), and that the partial maps having a given domain form a group (sineaa0 = a0a is an identity element). Moreover the bijetions assoiated with a0a andb0b agree on a0ab0b: the two heaps of maps restrit down to the same heap of mapson the smaller domain. This is a onrete way to interpret the fat that everyCli�ord semigroup is a semilattie of heaps: the semilattie is the set of domains(=ranges) determined by E(G) = fa0a j a 2 Gg, and the heaps are the assoiatedpartial maps with domains and ranges given by the aa0.Likewise, it is well known that every generalised heap may be represented asa semiheap of one-to-one partial maps X ! Y (where without loss of generalityevery element of x is in the domain of one of the maps and every element of y ismapped to by one of the maps): the operation on suh maps is [fgh℄ = f Æg�1Æh.Again, interpreting the near heap law shows that the maps an be organisedinto subheaps aording to their domains, and those maps with a given domainalso have idential ranges (not equal to their domains this time, sine they arein di�erent sets). For a �xed represented near heap, let LX be the olletionof domains and LY the olletion of ranges: both sets are semilatties under



174 I. Hawthorn, T. Stokesintersetion, as for generalised heaps in general. Again, it follows easily thattwo sets of heaps (orresponding to two possible domains) restrit down to thesame heap when the intersetion of their domains in LX is onsidered. Again, allof this is nothing but a onrete realisation of Theorem 11: every near heap isa semilattie of heaps.We are now in a position to give the main result of this setion.Theorem 13. Every near heap is embeddable in the semiheap obtained froma Cli�ord semigroup.Proof: Without loss of generality, let H be a near heap of partial maps X ! Yas desribed above. We shall show how to identify X and Y in suh a way thatthe resulting Cli�ord semigroup embeds the original near heap.Choosing S 2 LX , we have a �xed set (indeed heap) of bijetions HS fromS to S0 2 LY . Choose x 2 X and for any S 2 LX for whih x 2 S, de�neTx = fp(x) j p 2 HSg, a subset of Y independent of the hoie of S by therestrition property. This an be extended to arbitrary subsets ofX in the obviousway: for W � X , de�ne T (W ) = Sx2W Tx.Likewise for y 2 Y , de�ne T 0y = fq(y) j q�1 2 HSg, where S � X is suhthat y 2 f(S), and extend to subsets of Y as for T above to give T 0(S0). Now ifa = q�1(p(x)) 2 T 0(Tx), then q(a) = p(x) 2 Tx, so T (T 0(Tx)) � Tx, and beausethe opposite inlusion obviously holds, we have T (T 0(Tx)) = Tx. It now followseasily that there is a one-to-one orrespondene between subsets of the form Txin Y and T 0(Tx) in X .Now suppose x0 =2 T 0(Tx). Suppose b 2 T 0x \ Tx. So b = p1(x0) = p2(x) forsome bijetions p1 2 HS1 (where S1 2 LX ontains x0) and p2 2 HS2 (whereS2 2 LX ontains x). Hene y = p�11 Æ p2(x) 2 T 0(Tx), a ontradition. HeneTx \ Tx0 = ;. Similarly then, S(Tx) \ S(Tx0) = S(Tx \ Tx0) = S(;) = ;. Thus theTx form a partition of Y and the S(Tx) form a partition of X .Note that for any S 2 LX for whih x 2 S, if a 2 T 0(Tx), then a = q�1(p(x))for some p; q 2 HS , so a 2 S; hene T 0(Tx) � S for every S 2 LX ontainingx. Pik p 2 HS and de�ne  x : T 0(Tx) ! Tx by setting  x(a) = p(a) for alla 2 T 0(Tx), a one-to-one funtion (being a restrition of the bijetive funtionp : S ! f(S)). It is also surjetive, as if b 2 Tx, then a = p�1(b) 2 T 0(Tx) satis�esp(a) = b. (Hene only one hoie of bijetion was really needed in de�ning Tx andso on.)We build a bijetion  : X ! Y out of the bijetions  x in the expeted way: (x) =  x(x) for all x 2 X . This works beause the T 0(Tx) are a partition of X(and likewise for the Tx in Y ). For onveniene we make diret use of the inversebijetion � =  �1, mapping Y ! X .We now mapH into the inverse semigroup I(X) of one-to-one partial mappingson X . Thus let � be the mapping taking H into I(X) suh that for eah f 2 H ,�(f) = � Æ f ; learly �(f) 2 I(X). We show � is an embedding of H into thegeneralised heap I(X) (equipped with its usual semiheap operation).



Near heaps 175For f; g; h 2 H , [�(f)�(g)�(h)℄ = �(f) Æ �(g)�1 Æ �(h)= �(f) Æ (� Æ g)�1 Æ � Æ h= �(f) Æ g�1 Æ ��1 Æ � Æ h= � Æ f Æ g�1 Æ h= � Æ [fgh℄= �([fgh℄):So � is a homomorphism whih is obviously injetive (sine � is a bijetion).Now let M be the inverse subsemigroup of I(X) generated by H1 = f�(f) jf 2 Hg under the operations of inversion and omposition.Note that eah �(f) 2 M (where f 2 H) has equal domain and range, so�(f) Æ �(f)�1 = �(f)�1 Æ �(f), and if also g 2 H , then �(f) Æ �(f)�1 Æ �(g) =�([ffg℄) = �([gff ℄) = �(g) Æ �(f)�1 Æ �(f). A typial element of M is a ompositew = a1a2 � � � an of elements of I(X) of the form �(f) or �(f)�1 for some f 2 H ,and for suh elements we have just shown that xx0 = x0x and xy0y = yy0x. Ittherefore follows easily that ww�1 = (a1a2 � � � an)(a�1n � � �a�12 a�11 ) whih easilyrearranges to (a1a�11 )(a2a�12 ) � � � (ana�1n ), whih by symmetry also equals w�1w.Hene M is a Cli�ord semigroup, embedding H . �Referenes[1℄ Baer R., Zur Einf�uhrung des Sharbegri�s, J. Reine Angew. Math. 160 (1929), 199{207.[2℄ Hawthorn I., Stokes T., Radial deompositions of semiheaps, Comment. Math. Univ. Car-olin. 50 (2009), 191{208.[3℄ Howie J.M., Fundamentals of Semigroup Theory, Oxford University Press, Oxford, 1995.[4℄ Pr�ufer H., Theorie der Abelshen Gruppen, Math. Z. 20 (1924), 165{187.[5℄ Wagner V.V., The theory of generalized heaps and generalized groups (Russian), Mat.Sbornik N.S. 32 (1953), 545{632.[6℄ Wagner V.V., On the algebrai theory of oordinate atlases, II (Russian), Trudy Sem.Vektor. Tenzor. Anal. 14 (1968), 229{281.Department of Mathematis, The University of Waikato, Private Bag 3105,Hamilton, New ZealandE-mail: stokes�math.waikato.a.nz(Reeived September 15, 2010, revised February 2, 2011)


