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The mi
rostru
ture of Lips
hitz solutionsfor a one-dimensional logarithmi
 di�usion equationNi
ole S
hadewaldtAbstra
t. We 
onsider the initial-boundary-value problem for the one-dimen-sional fast di�usion equation ut = [sign(ux) log juxj℄x on QT = [0; T ℄ � [0; l℄.For monotone initial data the existen
e of 
lassi
al solutions is known. The
ase of non-monotone initial data is deli
ate sin
e the equation is singular atux = 0. We `expli
itly' 
onstru
t in�nitely many weak Lips
hitz solutions tonon-monotone initial data following an approa
h to the Perona-Malik equation.For this 
onstru
tion we rephrase the problem as a di�erential in
lusion whi
henables us to use methods from the des
ription of material mi
rostru
tures. TheLips
hitz solutions are 
onstru
ted iteratively by adding ever �ner os
illations toan approximate solution.These �ne stru
tures a

ount for the fa
t that solutions are not 
ontinuouslydi�erentiable in any open subset of QT and that the derivative ux is not ofbounded variation in any su
h open set. We derive a 
hara
terization of thederivative, namely ux = d+1A + d�1B with 
ontinuous fun
tions d+ > 0 andd� < 0 and dense sets A and B, both of positive measure but with in�niteperimeter. This 
hara
terization holds for any Lips
hitz solution 
onstru
tedwith the same method, in parti
ular for the `mi
rostru
tured' Lips
hitz solutionsto the one-dimensional Perona-Malik equation.Keywords: logarithmi
 di�usion, one-dimensional, di�erential in
lusion, mi
ro-stru
tured Lips
hitz solutionsClassi�
ation: 34A05, 35B05, 35B651. Introdu
tionIn this work we 
onsider the following one-dimensional evolution equationswith logarithmi
 terms(1.1) vt = � vxjvj�x = [sign(v) log jvj℄xx;and(1.2) ut = uxxjuxj = [sign(ux) log juxj℄x;where v and u are real valued fun
tions depending on one spa
e variable x andone time variable t. Due to the logarithmi
 behavior the equations are singular
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hadewaldtat v = 0 and ux = 0. We are interested in the existen
e and properties of sign
hanging solutions of the �rst equation and non-monotone solutions of the se
ondequation, respe
tively.Both equations are limit 
ases of well-known and related equations, the porousmedium equation (1.3) and the p-Lapla
e equation (1.4).vt = �(vm) = div(mvm�1rv); m > 0(1.3) ut = �pu =: div(jrujp�2ru) = 1p� 1 �juxjp�2ux�x = juxjp�2uxx; p > 1:(1.4)Both equations are of fast di�usion type for m < 1 and p < 2 respe
tively andstudied intensively in literature, often in the same 
ontext [6℄, [7℄, [25℄, [26℄. Anexpli
it 
onne
tion between (1.3) and (1.4) exists for radially symmetri
 solutions[11℄, in the one-dimensional 
ase the 
onne
tion is most dire
t, sin
e s
aled ver-sions 
an be transformed into ea
h other. Sending m ! 0 in a s
aled version of(1.3) and p! 1 in (1.4) we obtain the pair of related one-dimensional logarithmi
di�usion equations (1.1) and (1.2).The relation between the equations is preserved as long as ux 6= 0, as oneobtains (1.1) by formally di�erentiating (1.2) and substituting v = ux. We areinterested in the evolutionary problems asso
iated with these equations and there-fore 
onsider initial values v0(x) = v(0; x) and u0(x) = u(0; x). Both logarithmi
di�usion equations are only singular in the 
ase v = ux = 0 and regular andparaboli
 otherwise. Be
ause of this the solutions of (1.1), (1.2) evolve quite dif-ferently, depending on whether the initial data v0, u0 
ross the singular valuesv = ux = 0 or stay away from them. Most physi
al settings lead to the defaultrestri
tion v � 0 and existen
e of positive solutions of (1.1) for positive initialdata v0 is known [20℄, [25℄. With u = R v dx one obtains solutions of (1.2) whi
hare monotone as a fun
tion of x. For a 
omplete mathemati
al theory, however,it is of great interest to 
over sign-
hanging initial values v0 as well, espe
iallysin
e there is no reason for (1.2) to allow only monotone initial data u0.Using methods from the study of material mi
rostru
tures we `expli
itly' 
on-stru
t weak Lips
hitz solutions of (1.2) with given non-monotone initial data u0.All results of this work will be stated and shown for equation (1.2) sin
e themethods apply to this equation only and the results are signi�
antly strongerthan for the di�erentiated problem (1.1). The translation to (1.1) is shortly de-s
ribed after the proofs at the end of Se
tion 3.For the 
onstru
tion we �nd an approximate solution, add a sequen
e of ever�ner os
illations and prove 
onvergen
e to a `mi
rostru
tured' Lips
hitz solutionand thus get the following existen
e result.Theorem 1. Let u0 2 C2+�0 ([0; l℄), 0 < � < 1, and (u0)xx(0) = (u0)xx(l) = 0.Let QT := [0; l℄� [0; T ℄ with real numbers 0 < l <1 and 0 < T <1. Then theinitial-boundary value problem for (1.2) with homogeneous Diri
hlet boundary
onditions has in�nitely many weak solutions u 2 W 1;1(QT ) whi
h satisfy theinitial 
ondition u(0; x) = u0(x).
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 di�usion equation 229The mi
rostru
ture of these solutions 
an be des
ribed in more details. It isknown from [20℄ that non-monotone solutions u of (1.2) 
annot be C1 in the wholedomain. Interestingly this is also known for the Perona-Malik equation [12℄, evenif the two equations are not 
losely related. Furthermore, Lips
hitz solutions thatare not even C1 in any open set have been 
onstru
ted for time independent dif-ferential in
lusion problems [23℄, [16℄, [17℄, therefore we expe
t a similar propertyfor our 
onstru
ted solutions. Indeed this is true in those parts, where the ap-proximate solution is altered by a 
onstru
tion. We prove the following spe
i�
non-smoothness result: if u 2 C1(U) for some open set U , then the solution isidenti
al with the approximate solution in U , i.e., no 
onstru
tion pro
ess has o
-
urred. Furthermore, there exists a time t0 after whi
h the 
onstru
tion pro
essis 
arried out globally, i.e., the solution is nowhere C1 in [t0; T ℄�R. This impliesthat uxx does not exist in a 
lassi
al sense, not even lo
ally. A more re�ned argu-ment proves the stronger result that no measure-theoreti
 form of uxx exists, i.e.,ux =2 BV. These proofs lead to a 
hara
terization of the derivative as the sumof two 
ontinuous, even x-di�erentiable fun
tions d+(t; x) and d�(t; x) on sets Aand B ux = d+ � 1A + d� � 1B :The sets A and B are both dense and tattered and, most importantly, are not of�nite perimeter whi
h is the reason for ux =2 BV. This 
hara
terization dependson the 
onstru
tion and thus transfers to any Lips
hitz fun
tion 
onstru
ted bythis method, espe
ially to the solutions of the Perona-Malik equation and relatedproblems [27℄, [28℄.The following paragraphs present an outline of the methods and results of thiswork.In Se
tion 2 we will give an overview of the development and relations of themethods used.Se
tion 3 is devoted to the proof of Theorem 1, i.e., the 
onstru
tion of Lips
hitzsolutions of (1.2) with the methods from material mi
rostru
tures.In Se
tion 4 we will prove the intrinsi
 properties of the `mi
rostru
tured'Lips
hitz fun
tions, all of whi
h are due to the spe
i�
 
onstru
tion.Se
tion 5 summarizes the results of this work.2. Ba
kgroundThe parti
ular 
ases of one-dimensional logarithmi
 di�usion (1.1), (1.2) arestudied thoroughly by Rodriguez and V�azquez in [20℄. They show that for non-negative v0 the Cau
hy problem of the di�erentiated equation (1.1) has in�nitelymany positive 
lassi
al solutions whi
h vanish after �nite time. Only one of themexists globally in time and is 
hara
terized by 
onservation of mass. Furthermorethey show that for sign-
hanging initial data v0 there exists no 
ontinuous solu-tion, whi
h is one of the few results on sign-
hanging initial data for logarithmi
di�usion equations. However, they also give an example of a weak sign-
hanging
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hadewaldtsolution of (1.1) with a jump dis
ontinuity. Translating these results to the in-tegrated problem (1.2) with v = ux they 
on
lude that for non-monotone initialdata u0 there are no C1-solutions of the Cau
hy problem to (1.2), but weak Lip-s
hitz solutions may exist. They also prove that unique solutions for monotoneinitial data u0 
an be re
overed as limits of solutions to the s
aled p-Lapla
eequation (1.4) as p ! 1. It remains open if 
ontinuous weak solutions for thelogarithmi
 di�usion equation (1.2) exist for given non-monotone initial data u0.For the 
onstru
tion of su
h solutions we use a method established by Zhang[27℄ for the one-dimensional Perona-Malik model [19℄. The method leads to the�rst and only non-trivial existen
e result in the one-dimensional 
ase. It hasevolved from the study of material mi
rostru
tures whi
h in turn originated fromthe study of di�erential in
lusion problemsru 2 K with matrix valued derivativesru and non-
onvex sets K. The basi
 idea is to 
onsider the rank-one-
onvex hullof K, where two matri
es A and B are rank-one-
onne
ted if rank(A � B) = 1.Then ea
h point in the rank-one-
onvex hull is represented as a 
onvex 
ombi-nation of points in K. As a one-dimensional example one may 
onsider a set K
onsisting of two points and then approximate K from a point ru in betweenby pushing the value ru alternately to a 
lose neighborhood of the left or theright point of the target set K, 
ompare Figure 2.1(a). In fa
t, it is ne
essaryto 
onsider ru inside an `in-approximation' of K, whi
h is an "-neighborhood ofK interse
ted with its rank-one-
onvex hull. For matrix-valued ru the pushingis a
hieved by alternately taking one or the other aÆne fun
tion to approximateu, 
ompare Figure 2.1(b), whi
h is 
alled lamination. The 
onstru
tion is onlypossible if the aÆne segments mat
h along an interfa
e whi
h is equivalent to theproperty of the matrix-valued derivatives to be rank-one-
onne
ted.PSfrag repla
ements
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ru KK(b)(
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PSfrag repla
ements(a)ruK(b)(
) (d)Figure 2.1. (a) Convex integration for di�erential in
lusion with aset K 
onsisting of two points (b) Lamination of two aÆne fun
tions(
) Generating Young measure solutions (d) Generating Lips
hitz fun
-tions.Laminations as des
ribed above appear as mi
rostru
tures in elasti
 materials.Su
h elasti
 materials 
an often be des
ribed as minimizers of variational prob-lems with two-well or multi-well potentials, the minima of the potential beingthe non-
onvex target set K [3℄, [14℄. A mathemati
al des
ription of arbitrarily�ne mi
rostru
tures is a
hieved by 
onsidering sequen
es of laminations (see Fi-gure 2.1(
)). The sequen
es of derivatives of the lamination fun
tions u do not
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onverge strongly in Lp in general. But a 
onvergen
e to generalized measurevalued fun
tions is a
hieved, the so 
alled Young measure solutions of the 
orre-sponding variational problem [2℄, [24℄, [18℄, [13℄. For di�erential equations it isne
essary to 
onvert the problem to an arti�
ial di�erential in
lusion problem inorder to allow room for a laminating approximation from within an appropriatelamination 
onvex hull. Then it is possible to re�ne the lamination 
onstru
tion toa
hieve a 
onvergen
e to Lips
hitz fun
tions. The basi
 prin
iple is to add lamina-tions on top of the previous ones (
ompare Figure 2.1(d)) and to 
arefully 
ontrolthe derivatives in order to a
hieve 
onvergen
e [4℄, [17℄, [27℄, [28℄, [23℄. The nestedlamination pro
ess results in highly irregular Lips
hitz fun
tions, \mi
rostru
-tured' Lips
hitz fun
tions', whi
h do not possess higher regularity in general.There exist examples whi
h are not C1 in any open set [23℄, [17℄.We remark that an alternative, more fun
tional analyti
 approa
h to showthe existen
e of Lips
hitz solutions has been established by Da
orogna and Mar-
ellini [5℄. They use a Baire-
ategory approa
h, whi
h might provide less 
lues onthe nature of the Lips
hitz solutions.In [27℄ Zhang has re�ned this 
onstru
tion method in order to 
onstru
t Lip-s
hitz solutions of the Perona-Malik equation [19℄. In previous publi
ations Lip-s
hitz solutions had only been 
onstru
ted for steady-state problems with ut = 0.An ex
eption is the pioneering work of H�ollig, who des
ribed Lips
hitz solutionsfor a spe
i�
 pie
ewise linear forward-ba
kward di�usion equation [10℄. However,this 
onstru
tion relies heavily on the pie
ewise aÆne stru
ture of the equation
onsidered. The 
exible method of Zhang is adequate for the quasilinear Perona-Malik equation and appli
able to arbitrary initial values whi
h is the main noveltyof this 
onstru
tion.The logarithmi
 di�usion equation (1.2) is of type ut = [�(ux)℄x like the Perona-Malik equation, so that it is possible to transfer the method and to 
onstru
tLips
hitz solutions of (1.2). As a basis for the 
onstru
tion a start fun
tion isfound su
h that its derivative is either in the target set or in its rank-one-
onvexhull, we 
all this the approximate solution. Laminations are then added iterativelyon those subsets of QT on whi
h the approximate solution is not a solution. This
reates a sequen
e 
onverging to a solution in L1. It requires some extra 
are toadd laminates to the non-aÆne approximate solution and still a
hieve 
onvergen
eof the derivative [27℄, [28℄.The adaptation of the method to logarithmi
 di�usion is presented in the nextse
tion.3. Lips
hitz solutions for the Diri
hlet-Problem of logarithmi
 di�u-sionFollowing the approa
h of Zhang [27℄, we write the logarithmi
 di�usion equa-tion (1.2) in divergen
e form so that we 
an reformulate the problem.(3.1) ut = [�(ux)℄x; �(s) = sign(s) � log(jsj)
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Figure 3.2. Singular fun
tion �(s) of the logarithmi
 di�usion equa-tion (3.1).Now we 
an state Theorem 1 pre
isely:Theorem 1. Let u0 2 C2+�([0; l℄), 0 < � < 1, with u(t; 0) = 0 = u(t; l) and(u0)xx(0) = (u0)xx(l) = 0. Let �(s) := sign(s) log(jsj). Then the Diri
hletproblem 8><>:ut � �(ux)x = 0 (t; x) 2 QT = [0; T ℄� [0; l℄u(0; x) = u0(x) x 2 [0; l℄u(t; 0) = 0 = u(t; l) t 2 [0; T ℄has in�nitely many weak solutions u 2 W 1;1(QT ) in the sense that for every� 2 C10 (QT ): ZQT ut�+ �(ux)�x dx dt = 0:The Diri
hlet boundary 
onditions are 
hosen for te
hni
al reasons and we willassume Diri
hlet boundary 
onditions throughout this se
tion.In the proof of Theorem 1 we will re
ursively 
onstru
t a sequen
e of fun
tions
onverging to a solution. The starting fun
tion of this sequen
e is the uniquesolution to the di�erential equation ut = [��(ux)℄x with a monotone fun
tion�� and the initial data given in Theorem 1. More pre
isely we 
hoose a stri
tlymonotone interpolation fun
tion ��(s) whi
h bypasses the singularity and agreeswith �(s) for jsj � 1. For large values of s = ux, i.e., s > y with y suitable, we
ontinue linearly to a
hieve a lower bound on ��(ux)0. Figure 3.3 illustrates ��and relevant regions.Then we 
an apply the following theorem.
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yz+�y �z+Figure 3.3. Monotone interpolation fun
tion ��(s) 2 C2 of the ap-proximate equation (3.2). The fun
tions f might be a linear interpola-tion between (�z+;� log(z+)) and (z+; log(z+)) with molli�ed joints.The fun
tion p might be a tangent line with a molli�ed joint.Theorem 2. Suppose �� 2 C2(R) satis�es 0 < � � (��)0(s) � � for some
onstants 0 < � < �. Let u0 2 C2+�[0; l℄, (0 < � < 1) ful�ll Diri
hlet bound-ary 
onditions u0(0) = u0(l) = 0 and the 
ompatibility 
ondition (u0)xx(0) =(u0)xx(l) = 0. Then the problem(3.2) 8><>:ut � ��(ux)x = 0; (t; x) 2 QTu(0; x) = u0(x); x 2 [0; l℄u(t; 0) = u(t; l) = 0; t 2 [0; T ℄has a unique solution u� 2 C1+�=2;2+�(QT ) satisfying a maximum prin
iple(3.3) max(t;x)2QT ju�x(t; x)j = max0�x�l j(u0)x(x)j:A proof 
an be found in the book of Ladyzenskaja, Solonikov and Ural'
eva[15, p. 451, Theorem 6.1℄. The 
orresponding unique fun
tion u� ful�lls ju�xj < yby (3.3). It is already a solution to (3.1) for z+ < jsj = ju�xj < y, so to 
onstru
ta solution everywhere we only need to modify u� for ju�xj < z+. We 
all u� theapproximate solution.We want to modify u� by adding pie
ewise aÆne fun
tions. To allow roomfor this modi�
ation, we rephrase the original problem as a partial di�erentialin
lusion problem.
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hadewaldtSolutions to the in
lusion problem are in a 
ertain large set of fun
tions F .Loosely speaking this set F `in
ludes' the approximate solution u�. It further`in
ludes' any solutions to (3.1), of whi
h we do not know their existen
e yet, and| most importantly | it `in
ludes' a sequen
e of fun
tions 
onverging from u�to a solution u.The following subse
tions prove Theorem 1 and are organized as follows: Insubse
tion 3.1 we 
onstru
t su
h a partial di�erential in
lusion problem whosesolutions 
an be 
onverted into solutions of the original problem (3.1). We de�nea large set of fun
tions F . This in
ludes solutions to (3.1), a starting fun
tion
onstru
ted from u� and a sequen
e 
onverging to one of the solution.In subse
tion 3.2 we de�ne F" � F , where " is a parameter indi
ating how
lose elements of F are to a solution of (3.1), and we prove that F" is dense inF with respe
t to the L1-norm. The proof of the density result is 
arried out bythe repeatedly mentioned 
onstru
tion and thus is the key to all stru
tural resultsof Se
tion 4.In subse
tion 3.3 we use the density result to �nd a sequen
e of fun
tions inF1=2k . The limit of this sequen
e is a Lips
hitz fun
tion and yields a solution u ofthe original problem. We will show that u 2 W 1;1 and that there exist in�nitelymany su
h solutions.Remark. The three subse
tions are largely parallel to the work of Zhang [27℄.However, sin
e we need the notation and intermediate estimates for the stru
turalresults in Se
tion 4, we 
annot shorten this te
hni
al part.3.1 Conversion into partial di�erential in
lusion problem. The originalproblem (3.1) 
an be solved by �nding a solution to the following partial di�er-ential in
lusion problem:(3.4) Find 	 2W 1;1(QT ;R2 ) with 	(t; x) = ( (t; x); u(t; x)) su
h thatD	(t; x) = � t  xut ux� 2 ���(s) u
 s� ���� s; 
 2 R� :The se
ond 
omponent u of su
h a 	 is a solution of (3.1), as one obtains by
omparing matrix entries: The diagonal entries state that s = ux, therefore  t =�(ux). Also  x = u. Thus we have ut =  xt =  tx = �(ux)x in the distributionalsense, so u is aW 1;1 solution of (3.1) in the distributional sense. More spe
i�
ally,u is a solution to the weak formulation of the problem: RQT u�t+�(ux)�x dx dt = 08� 2 C20 (QT ).We will now de�ne sets of 2� 2 matri
es to state Problem (3.4) more pre
iselyand de�ne the set F , in whi
h the approximation pro
ess will take pla
e. Thediagonal entries of the matri
es 
orrespond to points (ux;  t) in the R2 plane asindi
ated in Figure 3.4. In the same �gure z� = e� log(z+) is pla
ed as needed for
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−1 1 

PSfrag repla
ements ~K~E ��(s) s
�z+ �z� z� z+ y�yFigure 3.4. De�nition of ~K (bold 
urves) and ~E (shaded region).We de�ne two sets of matri
es K(u) and E(u) �M2�2(R):K(u) := ��r u
 s� ���� (s; r) 2 ~K; j
j � m�(3.5) E(u) := ��r u
 s� ���� (s; r) 2 ~E; j
j < m�(3.6)Noti
e that K(0) is 
ompa
t and E(0) is open in the spa
e of lower triangularmatri
es V � M2�2(R). We later want to use this 
ompa
tness and opennessrespe
tively, thus we will refer to the proje
tion of matri
es onto the spa
e oflower triangular matri
es. PV shall be the orthogonal proje
tion from M2�2(R)onto V . Now we 
an state the partial di�erential in
lusion problem pre
isely.(3:40) Find 	 = ( ; u) 2W 1;1(QT ;R2 ) su
h that for all (t; x) 2 QT(i) D	(t; x) 2 K(u);(ii) PV (D	(t; x)) 2 K(0) and  x = u:Formulations (i) and (ii) are equivalent, the se
ond one will be more usefullater sin
e we 
an use the 
ompa
tness of K(0). Further, let C1pw be the set ofpie
ewise C1 fun
tions, i.e., 	 2 C1pw is equivalent to 	 2 C and there exist
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hadewaldtat most 
ountably many disjoint open triangles Gi with jQT nS1i=1Gij = 0 and	j �Gi 2 C1. Then(3.7) F := 8<:	 = ( ; u) 2 C1pw(Q2T ) ������ D	 2 K(u) [ E(u) a.e. ;juj < ku�kC0(QT ) + 1;m := ku�tkC0(QT ) + 1 9=; :Noti
e the stri
t inequality on the bound for juj whi
h is ne
essary to allow modi-�
ations of any 	 2 F . Solutions to the di�erential in
lusion problem (3:40) whi
hadditionally stay within the bounds for u and m, are in F . A priori it is not 
learif su
h solutions do exist. We show �rst F 6= ; by 
onstru
ting an element of Fusing the approximate solution u�: Sin
e u� 2 C1;2 a

ording to Theorem 2, wehave u�t 2 C and u�x 2 C1. By 
onstru
tion �� 2 C2, so ��(u�x)x 2 C. We haveu�t = ��(u�x)x 2 C(QT ) and QT is simply 
onne
ted, so there exists a ve
tor �eld � 2 C1 with ( �t ;  �x) = (��(u�x); u�). Now we 
an de�ne 	� := ( �; u�) withD	� = � �t  �xu�t u�x � = � ��(u�x) u�u�t u�x �. Obviously u� and u�t stay within the boundswhi
h were set in the de�nition of F . The estimate for ju�xj in Theorem 2 gives usju�xj < s� and therefore (u�x; ��(u�x)) 2 ~K [ ~E. Thus we have 	� 2 F and F 6= ;.	� will serve as a starting point to 
onstru
t a sequen
e in F 
onverging to asolution of (3:40) in W 1;1.3.2 Constru
tion of a dense subset of solutions. For distan
es we will 
on-sider the 1-norm: dist(X;Y ) = kX � Y k1 =P jxi � yij. If x is a point and K isa set we de�ne: dist(x;K) = mink2K kx� kk1.Theorem 3. For every " > 0 the following subset F" � F is dense in F1, the
losure of F under the L1-norm:F" := �	 2 F ���� ZQT dist(D	;K(u)) dt dx < "jQT j� :We need this density result to �nd a sequen
e 	k su
h that 	k 2 F1=2k . Thelimit of this sequen
e will have a weak gradient D	 whi
h is in the target setK(u) almost everywhere. The following proof of Theorem 3 is te
hni
al, however,subse
tion 3.2 des
ribes the 
onstru
tion whi
h is essential for all stru
tural resultsof Se
tion 4 and 
annot be omitted.Proof: Given 	 2 F , " > 0 and 0 < � < 1, we need to �nd 	� 2 F" su
h thatk	 � 	�kL1 < �. The proof is divided into two parts: the 
onstru
tion of 	�and the 
on�rmation that 	� 2 F".We make two preliminary observations. First note the following simplifyingidentity for distan
esdist(D	;K(u)) = dist(PV (D	);K(0)) = dist(( t; ux); ~K):For the 
onstru
tion we will 
onsider elements in PV (D	) and ensure later( �)x = u�. Further �VE(0) will denote the boundary of E in the set of lower
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es V :�V E(0) := ��r 0
 s� ���� (s; r) 2 � ~E or j
j = m� :Se
ond, in the 
ourse of the 
onstru
tion we will repeatedly 
over a set with atmost 
ountably many s
aled sets of pres
ribed shape. This is possible due to theVitali Covering Prin
iple as established by Saks [21, p. 109℄:Lemma 4 (Vitali Covering Prin
iple). Let U; V � Rn be bounded, open setssatisfying j�U j = 0 = j�V j. Then there is a sequen
e (xi; ri) 2 Rn � (0;1),i = 1; 2; : : : su
h that(i) Ui = xi + riU � V(ii) Ui \ Uj = ; if i 6= j and(iii) jV nS1i=1 Uij = 0.Let us now pro
eed with the 
onstru
tion of an approximative fun
tion 	�.(a) Divide QT into triangles Gi.Sin
e 	 2 F � C1pw, there are at most 
ountably many triangular shaped tiles Giexhausting QT su
h that 	jGi 2 C1. We 
onsider ea
h of the Gi individually to
onstru
t a fun
tion 	� with the property RQT dist(D	�;K(u)) dt dx < " � jQT j.For this we will repeatedly exhaust tiles with other tiles, an overview is given inFigure 3.5.PSfrag repla
ements
(a)

QT Gi
(b)Ki Ĝi

(
)
Dki

(d)
T ki;s

Figure 3.5. Repeated exhaustion pro
ess for the 
onstru
tion of 	�:(a) Triangles Gi in QT (b) Division of Gi into Ĝi and Ki (
) Exhaus-tion of Ĝi with squares Dki (d) Exhaustion of Dki with diamonds T ki;s.(b) Divide Gi into parts Ki (no 
onstru
tion) and Ĝi (
onstru
tion).We de�ne Ki as the area, where dist(D	;K(u)) is small (in
luding D	 2 K(u)).As 	 2 C1( �Gi) we may �nd Æi > 0 su
h that the 
losed set(3.8) Ki := �(t; x) 2 Gi �� dist(PV (D	);K(0) [ �VE(0)) � Æi	
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hadewaldtsatis�es(3.9) ZKi dist(PV (D	);K(0)) dt dx < "2 � jGij:We may require that the boundary of Ĝi := GinKi has measure zero.The fun
tion 	 is 
ontinuously di�erentiable in the interior of Ki, that is,	 2 C1(�Ki). We do not want to 
hange D	 if it is already 
lose to K as on theset Ki, so we de�ne 	� := 	 on 1[i=1Ki:

1

PSfrag repla
ements
(t; x) 2 Ki(t; x) 2 Ĝi

ÆiÆi s
Figure 3.6. Illustration of the de�nition of Ki and Ĝi: For(t; x) 2 Ki the diagonal entries (ux;  t) of the matrix D	(t; x) aspoints in R2 are 
lose to the boundary of ~E. For (t; x) 2 Ĝi the
orresponding points (ux;  t) are in the interior region of ~E.Remark: On Ĝi we have dist(PV (D	);K(0) [ �VE(0)) � Æi, whi
h meansminfdist(PV (D	);K(0)); dist(( t; ux); � ~E); dist(ut;m)g � Æi:From this we 
an derive estimates for individual entries of the matrix valuedderivative D	 on Gi.(i) dist(( t; ux); ~K [ � ~E) � Æi (illustration in Figure 3.6) whi
h implies for(s; r) 2 ~K [ � ~E(3.10) minx jux � sj � Æi and minx j t � rj � Æi;
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e fun
tion is based on the 1-norm.(ii) dist(ut;m) � Æi, so(3.11) jutj � m� Æi:For later estimates we make Æi smaller if ne
essary, to have:(3.12) Æi < minf�; "2 ; 2�g;whereas � := (ku�kC0(QT )+1)�kukC0(QT ) with u the se
ond part of the fun
tion	 = ( ; u). As kuk < ku�k + 1 (see de�nition of F) and u is 
ontinuous, wehave � > 0. We need to 
onsider � as the initial distan
e of u to its bound in Fto ensure that modi�
ations stay within that bound and the modi�ed fun
tion isstill in F .(
) Divide Ĝi into squares Dki with small variation of derivatives.Sin
e 	 2 C1(Gi) and Gi is 
ompa
t, D	 is uniformly 
ontinuous on Gi. Thusthere exists a 
onstant �i su
h that kD	(t; x) � D	(s; y)k1 < �Æi if k(t; x) �(s; y)k1 < �i. The 
onstant � is needed to 
ounterbalan
e z+ and will be spe
i�edlater. Now we 
over ea
h Ĝi by at most 
ountably many disjoint squares fDki g1k=1,whose sides are parallel to the 
oordinate axes and whose side length is smallerthan �i. Let pki 2 Dki be the 
enter of Dki . Then(3.13) kD	(t; x)�D	(pki )k < �Æi on ea
h Dki :(d) Divide Dki into diamond shaped tiles T ki;s.On ea
h of the squares Dki we want to approximate 	 = ( ; u) by a tent-likefun
tion 	� = ( � ; u�). In order to do this we divide Dki into at most 
ountablymany diamond shaped tiles T ki;s. On ea
h of these tiles we �rst approximate u byadding a pie
ewise aÆne tent-like fun
tion gki;s with average zero, u� = u + gki;son T ki;s. Via the 
ondition ( �)x = u� we will then derive  �.Constru
tion of a pie
ewise aÆne fun
tion g:The 
onstru
tion of gki;s will allow us to 
ontrol the derivative (u�)x. Given a; b > 0and Æ > 0 we de�ne a standard tile T := f(t; x) j jtj � 1; jxj � Æ(t + 1)g anda 
ontinuous pie
ewise aÆne fun
tion g(t; x). For an illustration of T and g seeFigure 3.7, for the role of a and b see Figure 3.8.We spe
ify g(t; x) for the triangular upper left quarter of T �rst, i.e., 0 � x �Æ(t + 1) and �1 � t � 0. Then we extend in t-dire
tion as an even fun
tion and
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1−1

PSfrag repla
ements t
Æ

�Æx (aÆ; -a)
(aÆ; -a)
(-aÆ; -a)

(-aÆ; -a)(0; b)
Dg on tile T

Figure 3.7. Fun
tion g: Pie
ewise aÆne fun
tion g(t; x), diamondshaped tile T and values of Dg(t; x) in parts of T .in x-dire
tion as an odd fun
tion. Outside T the fun
tion is zero.(3.14) g(t; x) = (bx; 0 � x � aÆ(t+1)a+b ; �1 � t � 0aÆ(t+ 1)� ax; aÆ(t+1)a+b � x � Æ(t+ 1); �1 � t � 0g(�t; x) = g(t; x) (even in t-dire
tion)g(t;�x) = �g(t; x) (odd in x-dire
tion)g(t; x) = 0 8(t; x) =2 TStraightforward 
al
ulations show that g has the following properties (
ompareFigure 3.7):
(3.15) (i) g 2 C1pw and gj�T = 0(ii) jg(t; x)j � aba+bÆ � a+b4 Æ(iii) gx 2 f�a; bg and gt 2 f0;�aÆg a.e. in T(iv) line integral of g in x-dire
tion a
ross T is zero:R Æ(t+1)�Æ(t+1) g(t; x) dx = 0(v) line integral of gt in x-dire
tion a
ross T is zero:R Æ(t+1)�Æ(t+1) gt(t; x) dx = 0We need s
aled versions of g later in every tile T ki;s. So we de�ne T (p; �; �Æ)as the diamond shaped tile T 
entered at point p = (t(p); x(p)) with width � and
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 di�usion equation 241height �Æ, the standard tile is T (0; 1; Æ). Further g(a; b; �; �Æ; p; t; x) is de�ned asa s
aled version of g on the tile T (p; �; �Æ) with parameters a and b and variablest and x. The fun
tion g(a; b; �; �Æ; p; t; x) has analogous properties to g.Remark: We mention that the roles of b and �a 
an be ex
hanged. A fun
tion ~gwith the same properties 
an be 
onstru
ted with ~gx = �a in the interior diamondand ~gx = b in the exterior triangles of the tile T .For the lo
al 
onstru
tion of gki;s we �rst de
ompose Dki into at most 
ountablymany diamond shaped tiles T ki;s 
entered at pki;s with width �ki;s < 1 and height�ki;s � �Æi. For the exa
t de�nition of aki and bki we write ~K as the union of apositive and a negative part, whereas ~K+ := f(s; �(s)) j (z�� ") � s � (y+ ")gand ~K� := f(s; �(s)) j � (s; �(s)) 2 ~K+g, 
ompare Figure 3.8. Then for ea
h Dkiwith 
enter pki we 
an �nd aki and bki su
h that(3.16) dist(( t(pki ); ux(pki )� aki ); ~K�) = Æi2 ;dist(( t(pki ); ux(pki ) + bki ); ~K+) = Æi2 :We re
all that the distan
e to the upper or lower boundary of ~E is larger than Æi,see (3.10), and thus suÆ
iently large to have the above points still inside ~E.

1

PSfrag repla
ements
( t; ux)aki bki ~K+~K� s

Figure 3.8. Push ux(pki;s) 
lose to ~K: Æi=2 is the distan
e ofux(pki;s)+bki to the positive part ~K+ and of ux(pki;s)�aki to the negativepart ~K�.
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hadewaldtNow we de�ne the pie
ewise aÆne fun
tions gki;s on ea
h tile T ki;s bygki;s(t; x) = g(aki ; bki ; �ki;s; �ki;s � �Æi; pki;s; t; x):We remark that for all i; k we have aki + bki � 2z+ (
ompare Figure 3.8), so withthe bounds on the fun
tions gki;s (3.15)(ii) we get(3.17) jgki;sj � z+ � � � Æi2 :We unite all fun
tions gki;s of disjoint support to a joint pie
ewise aÆne fun
tion ug,integrate to get the potential fun
tion  g and then de�ne 	� as(3.18) 	� = ( �; u�) := ( +  g ; u+ ug)with  g(t; x) := Z x0 ug(t; �) d� and ug(t; x) := Xi;k;s gki;s:We mention that this de�nition does not 
ontradi
t the previous de�nition of	� on tiles Ki. One of the properties of gki;s is that the integration in x-dire
tiona
ross 
omplete tiles T is zero (3.15)(iv). Thus for points outside the 
olle
tionof tiles,  g(t; x) = 0. Sin
e Ki is the set where no tiles are added, we still have	� = 	 on Ki. More pre
isely(3.19) (i) ugj �Ki = 0 sin
e we only used tent fun
tions gon the 
omplement of SKi;(ii)  g jKi = R x0 ug(t; �) d� = 0 sin
e if (t; x) 2 Ki then it is outsideof ST ki;s, and we have the integration property (3.15)(iv).A tedious 
al
ulation with � = 1=(3z+) 
on�rms 	� 2 F" and k	�	�kL1 < �,for details we refer to [22℄, [27℄. This 
ompletes the proof of the density resultTheorem 3. �3.3 A sequen
e 
onverging to a Lips
hitz solution. The density result issuÆ
ient to 
onstru
t a sequen
e 	k 
onverging in F1 su
h thatdist(PV (D	k);K(0)) be
omes arbitrarily small. To prove the 
onvergen
e of thederivatives D	k and thus a
hieve the limit derivative to be in K we will use thefollowing lemma established by B. Kir
hheim ([14, Lemma 3.27℄).Lemma 5. Let 
 � Rm be bounded and open. For a Lips
hitz mapping f :
! Rn and k 2 N, let r(f; k) be the supremum of all r > 0 su
h that there is a
ompa
t set K � 
 with j
nKj < 2�k andjf(x+ y)� f(x)� hDf(x); yi j � 1k jyj if x 2 K and jyj � kr:By Radema
her's Theorem, r(f; k) > 0 (e.g. [8, p. 281, Theorem 6℄). Consider asequen
e fk : 
 ! Rn of uniformly Lips
hitz mappings and suppose 0 < rk <
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 di�usion equation 243minf1=k2; r(fk ; k)g for all k. Let B1(f; r) denote the ball around f with radiusr with respe
t to the L1 norm. If f 2 Tk B1(fk; rk), then limk!1Dfk(x) !Df(x) for a.e. x 2 
 (pointwise limit).We take 	1 = 	� 2 F1 as a starting point for the sequen
e and r1 arbitrary.Given any 	k�1 2 F1 and rk�1, k � 2, we use the density result of Theorem 3with " = 1=2k and � = rk�1=2 to �nd 	k with the following properties:� 	k 2 F1=2k , i.e., ZQT dist(D	k;K(u)) dt dx < 12k jQT j;� dist(	k;	k�1) < rk�12 , i.e., 	k 2 B1(	k�1; rk�12 ) \ F1=2k .Now we �nd rk as needed in the lemma aboverk := min�r(	k ; k); rk�13 ; 1k2� :This guarantees B1(	k; rk) � B1(	k�1; rk�1), and therefore limk!1	k 2TB1(	k; rk). The sequen
e 	k = ( k; uk) is uniformly Lips
hitz, as D	k 2 Fand F is bounded (see (3.7)). Further 	k is a Cau
hy sequen
e in F1 by de�-nition, so 	k ! 	 2 F1. We now apply Lemma 5 to get limk!1D	k(t; x) =D	(t; x) for a.e. (t; x) 2 QT .As D	k(x)! D	(x) a.e., we know that the identity ( k)x = (uk) is still truefor the limit fun
tion  x = u almost everywhere. Our 
andidate for a solution toTheorem 1 is this u, but we need to 
on�rm the following statements:(i) D	 2 K(u) a.e. in QT ;(ii) u 2W 1;1;(iii) existen
e of in�nitely many su
h u;(iv) boundary 
onditions, i.e., u(t; 0) = u(t; l) = 0 8t;(v) 8� 2 C10 (QT ) : RQT [ut�+ �(ux)�x℄ dx dt = 0.(i) We know limk!1 RQT dist(D	k;K(u)) dt dx = 0. Re
all the simpli�ed no-tation for the distan
e fun
tion. As ( k)x = u and j(uk)tj < m only thetwo diagonal entries of D	k(t; x) are relevant and we have dist(D	k;K(u)) =min(s;t)2 ~Kfj( k)t � sj + j(uk)x � tjg. Sin
e ~K is 
ompa
t, the distan
e fun
tionis Lips
hitz. It is also positive and uniformly bounded from above sin
e the pair(( k)t; (uk)x) is inside ~K [ ~E. We therefore have by Lebesgue's theorem0 = limk!1 ZQT dist(D	k;K(u)) dt dx = ZQT limk!1 dist(D	k;K(u)) dt dx:With positivity and Lips
hitz 
ontinuity we getdist(D	;K(u)) = dist(limk!1D	k;K(u)) = limk!1 dist(D	k;K(u)) = 0 a.e.,) D	 2 K(u) a.e. in QT .
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e the sequen
e 	k is uniformly Lips
hitz, its limit 	 is also Lips
hitz. As�QT is pie
ewise C1 we have 	 2W 1;1(QT ), 
ompare [8, p. 279, Theorem 4℄.(iii) When 
onstru
ting the sequen
e 	k we 
an split at any 	k�1 to 
ontinueon in�nitely many di�erent sequen
es in the following way. Given 	k�1, 
hooseany 	k1 2 B1(	k�1; rk�1). Now take s1 = 13 dist(	k�1;	k1). Choose 	k2 2B1(	k�1; s1). Sin
e 	k1 =2 B1(	k�1; s1), we have 	k1 6= 	k2 . Analogouslywe 
an 
hoose s2 = 13 dist(	k�1;	k2) and 	k3 2 B1(	k�1; s2) and so on, to
onstru
t an in�nite 
olle
tion of 	ki with 	ki 6= 	kj , ea
h leading to a solution	i. As B1(	ki ; si)\B1(	kj ; sj) = ; 8i 6= j and ea
h solution 	i 2 B1(	ki ; si),we know 	i 6= 	j 8i 6= j and have found in�nitely many di�erent solutions	i = ( i; ui).Remark: Formally we just know 	i 6= 	j , but this 
ould be due to  i 6=  jand we 
ould have ui = uj . This s
enario is avoided if we take instead of theball B1(	k�1; si) the slightly smaller ball Bk:ku(	k�1; si) with the half-normk	ku = k( ; u)ku = kuk1.(iv) Sin
e the 
onstru
tion on tiles only 
hanges the values on the interior of tilesand all tiles are inside QT , we have uj�QT = u�j�QT , thus u(t; 0) = u�(t; 0) = 0 =u�(t; l) = u(t; l).(v) We know that for almost every (t; x) 2 QTD	 = � t  xut ux� 2 ��(ux) uut ux� :Thus for all � 2 C20 (QT ) we get by partial integration:ZQT [ut�+ �(ux)�x℄ dx dt = � ZQT u�tdxdt+ ZQT �(ux)�x dx dt= � ZQT  x�tdxdt+ ZQT  t�x dx dt = ZQT  �txdxdt� ZQT  �xt dx dt = 0:The extension to test fun
tions � 2 C10 (QT ) is a
hieved with the de�nition of alinear map L : C10 (QT )! R,L(�) = ZQT [ut�+ �(ux)�x℄ dx dt:As u 2 W 1;1, L is well de�ned, bounded and 
ontinuous. Also L � 0 on C20 (QT )whi
h is dense in C10 (QT ). Thus 
ontinuity implies L � 0 on C10 (QT ). �Let us add three general 
omments on the just proven result:Remark I: Although it took a lot of e�ort to expli
itly 
onstru
t elements of F",these are not the only fun
tions whi
h may appear in su
h a sequen
e. In prin-
iple, the sequen
e 	k may 
ontain any other pie
ewise aÆne fun
tion in F . Inparti
ular any other possible Lips
hitz solution is 
ontained in F . However, we are
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ially interested in solutions whi
h are a
hieved solely with the 
onstru
tiongiven, whi
h means, they are limits of sequen
es of whi
h every single element hasbeen 
onstru
ted as explained in this se
tion. All stru
tural results of the nextse
tion apply to su
h solutions.Remark II: The restri
tion to Diri
hlet boundary 
onditions is only te
hni
al.Sin
e the 
onstru
tive pro
ess only takes pla
e in the interior of the domain,any boundary 
ondition for whi
h an approximate solution u� 
an be found, ispossible. This in
ludes generalized Neumann boundary 
onditions of the type�(ux) = 0, for details see [22℄.Remark III: The existen
e result translates to the di�erentiated logarithmi
di�usion equation (1.1). However, the translation is not as smooth as one mighthope. Given a sign-
hanging initial datum v0, we integrate it to obtain a non-monotone u0. Theorem 1 gives a solution u of (1.2) for that initial value. Dif-ferentiation yields v = ux whi
h is a weak solution of (1.1) in the interior of thedomain. Sin
e, however, v 2 L1(QT ), it is not ne
essarily de�ned for f0g � [0; l℄whi
h is a set of zero measure in R2 . In this 
ase v does not attain the initial valuein a 
lassi
al sense. A weak interpretation 
ould be that v at point (0; x) has anapproximate limit of v0(x). However, this is only a
hieved for jv0(x)j > 
 > 1.The 
onstru
tion does not re
over the initial data v0 
lose to the singular valuev0 = 0. The reason is that the 
onstru
ted solutions avoid the singular valuev = ux = 0. v jumps from positive to negative values and u zigzags.4. Properties of Lips
hitz solutions with mi
rostru
tureThe pro
edure of Se
tion 3 results in Lips
hitz solutions whi
h display arbitrar-ily �ne stru
ture, we refer to them as `Lips
hitz solutions with mi
rostru
ture'.The aim of this se
tion is to give a more detailed des
ription of this mi
rostru
-ture.The fun
tions of the 
onverging sequen
e are C1 in tile parts of de
reasingsize but not di�erentiable a
ross the boundaries of the tiles, so we expe
t thelimit fun
tion to be nowhere C1, whi
h implies that the ridge lines, whi
h arejump parts of the derivative, are dense in the domain. Further, the derivativesin the sequen
e (ul)x jump a
ross the tile boundaries. For the limit fun
tionsthese jumps be
ome dense and ux =2 BV. However, from the 
onstru
tion pro
essevolve two disjoint dense sets A and B, on ea
h of whi
h ux is 
ontinuous and evendi�erentiable in the x-dire
tion. The main result of this se
tion is the following
hara
terization of ux: ux = d+ � 1A + d� � 1B ;where d� are 
ontinuous and di�erentiable in x-dire
tion, and thus ux has someregularity, if restri
ted to one of those dense sets A or B.The results do not depend on the fast di�usion equation, but are inherent tothe 
onstru
tion of Se
tion 3. They transfer to similar 
onstru
tions, in parti
ularto solutions for the Perona-Malik equation from [27℄.
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hadewaldt4.1 Solutions are nowhere C1 for large t.Theorem 6. For all fun
tions u obtained as the limit of a sequen
e ul 
onstru
tedwith the method des
ribed in Se
tion 3 there exists t0 > 0 su
h that for all opensets U � [t0; T ℄� [0; l℄ we have u =2 C1(U).The key to the existen
e of the bounding time t0 is the following lemma 
on-
erning the approximate equation and approximate solution.Lemma 7. Any solution u 2 C1;2 of the Diri
hlet problem(4.1)8>>><>>>:ut � ��(ux)x = 0 (t; x) 2 QT = [0; T ℄� [0; l℄;�� 2 C2; ��(0) = 0; 0 < � < ��0(s) < �u(0; x) = u0(x) x 2 [0; l℄; u0 2 C2+�u(0) = u(l) = 0 = uxx(0) = uxx(l) 8t 2 [0; T ℄has the property ux t!1�! 0 uniformly:This property is obtained when studying the limits of the energy fun
tionalE(t) := R l0 S�(ux) dx = R l0 R ux(t;x)0 ��(s) ds dx, for details of the proof see [22℄.Noti
e, that the 
onditions for �� are more restri
tive than in Theorem 2 sin
ewe require ��(0) = 0. But as the 
onstru
tion of a solution in Se
tion 3 uses asymmetri
 ��, this lemma is appli
able here.The key to the non-di�erentiability property is the appearan
e of arbitrarilysmall tiles T everywhere in [t0; T ℄ � [0; x℄, whi
h implies that the boundaries ofthe tiles are dense in [t0; T ℄� [0; l℄. More spe
i�
ally, the following lemma holds.Lemma 8. Let u be a fun
tion obtained as the limit of a sequen
e ul with u0 = u�and every element ul 
onstru
ted with the method of Se
tion 3. Let t0 be su
h thatu�x � 1 8t > t0 (t0 exists by Lemma 7). Then for a.e. (t; x) 2 [t0; T ℄� [0; l℄ thereexists a sequen
e (T ki;s)l0 su
h that (t; x) 2 (T ki;s)l0 8l0 and diam(T ki;s)l0 l0!1�! 0.Proof: For any point (t; x); t � t0 there exists ~Æ withdist((u�x(t; x); ��(u�x(t; x))); � ~E) > ~Æ, 
ompare Figure 3.4. By the 
onstru
tion inSe
tion 3 u is the limit of a sequen
e of whi
h ea
h uj+1 is 
onstru
ted by addingpie
ewise aÆne fun
tions ug to uj . We may write(4.2) u = u� + 1Xl=1(ug)l; uj = u� + jXl=1(ug)l:The pie
ewise aÆne fun
tions are added on tiles T ki;s. Let �T ki;s be a 
onne
tedsubset of the set f(t; x) 2 T ki;s j (ug)l 2 C1g, thus (ug)l is aÆne on �T ki;s. Then�T ki;x is either a triangle or a 
enter diamond, 
ompare Figure 3.7. If at step l



Lips
hitz solutions for a one-dimensional logarithmi
 di�usion equation 247a new tile (T ki;s)l is 
onstru
ted inside an old tile (T ki;s)l�j from step l � j thefollowing in
lusions hold(4.3) (T ki;s)l � (Dki )l � (Gi)l � (�T ki;s)l�j :This nested 
onstru
tion of diamonds T and squares D implies diam(T ki;s)l <12 diam(T ki;s)l�j , so if a sequen
e of nested tiles exists, then diam(T ki;s)l l!1�! 0.Observe �rst that there is at least one tile around a.e. point (t; x).t � t0 ) dist((ux(t; x); ��(ux(t; x))); � ~E) > ~Æ ) 9 l : (Æi)l < ~Æ) (t; x) =2 (Ki)l ) a �rst tile T ki;s around (t; x) will be 
onstru
ted.Let �T be the inner and outer boundaries of tile T , more spe
i�
ally, the subsetof T where the pie
ewise aÆne fun
tion g is not di�erentiable. We assume that(t; x) is not a boundary point of any tile and not in the residual from the repeatedexhaustion pro
esses, i.e., we assume(t; x) =2 0� [l;i;k;s �(T ki;s)l1A [0� [l;i;k;s(QT n(T ki;s)l)1A :Sin
e the union of boundaries and residual sets is of zero measure, the assumptionis true for almost every (t; x) 2 QT .We pro
eed with a 
ontradi
tion argument. Let us assume the sequen
e of de-
reasing tiles around (t; x) is �nite, i.e., there exists l1 su
h that (t; x) 2 �(T ki;s)l1but for all l > l1 we have (t; x) =2 Si;k;s�(T ki;s)l. The tile-parts are 
ompa
t andug 2 C1(�T ki;s). Further the distan
e of (ul)x to ~E is positive, so there exists~Æ0 su
h that the distan
e of the point ((ug)x; ��(u�x)) to the boundary of ~E islarger ~Æ0. Thus the argument from above applies and a further tile will be 
on-stru
ted. This is a 
ontradi
tion to the assumption that at l1 the last tile was
onstru
ted. �Proof of Theorem 6: The theorem is proved by 
ontradi
tion, so let us as-sume u 2 C1(U) for some open set U � [t0; T ℄� [0; l℄. By Lemma 8 we 
an �nd(T ki;s)l0 � U . On this tile we 
an write(4.4) u = u� + l0�1Xl=1 (ug)l + (ug)l0 + 1Xl=l0+1(ug)l =: u� + �1 + g + �2:Sin
e the tiles T of the sequen
e uj are nested, we have �1x � 
 on (T ki;s)l0 and bythe integration property of the pie
ewise aÆne fun
tions g in (3.15) we know(4.5) Z(Tki;s)l0 �2x dx = 0:



248 N. S
hadewaldtFurther, with the bound on the variation of the derivative D	 on squares D,
ompare (3.13), and the fa
t that Dg is 
onstant, we get the following bound forthe variation of u�x inside (T ki;s)l0 � (Dki )l0 :(4.6) ku�x(t; x) � u�x(s; y)k � kD	(t; x)�D	(s; y)k � �Æi � Æi � 12l0 :The limit fun
tion u is a solution of ut = �(ux)x whi
h implies (ux; �(ux)) 2 ~K+[~K� almost everywhere (
ompare Figure 3.8). Sin
e we assumed u 2 C1((T ki;s)l0)and (T ki;s)l0 � U , the derivative ux is 
ontinuous and thus the points (ux; �(ux))are only on one bran
h of ~K. Without loss of generality let (ux; �(ux)) 2 ~K+whi
h implies ux 2 [z�; z+℄. Now we 
hoose M to be one 
omponent �(T ki;s)l0 ofthe tile (T ki;s)l0 su
h that gxjM = �a. Sin
e ux > z� we have(4.7) ZM ux � ZM z� � jM jz� > 0:By 
onstru
tion we know that on M we have (u�+�1+ g)x 2 (�z+;�z�+ Æi) �(�z+;�z� + 12l0 ). From the integration property of �2 in (4.5) we get:(4.8) ZM ux = ZM u�x + �1x + gx + �2x = ZM u�x + �1x + gx� ZM (�z� + 12l0 ) = jM j(�z� + 12l0 ) < 0(4.9) ) 0 < jM jz� (4.7)� ZM ux (4.8)< 0:This is a 
ontradi
tion, so u 
annot be in C1(U). �Remark: For the proof of u =2 C1(U) it was only ne
essary to �nd a single tileT ki;s � U . Therefore the result holds for any open set U � QT in whi
h at leastone tile is used for the 
onstru
tion. More generally, it is suÆ
ient to �nd a singletile T with T \ U 6= ; sin
e by Lemma 8 the interse
tion will 
ontain a full tile.This implies u 2 C1(U) ) ujU = u�jU :4.2 Singular measure theoreti
 se
ond derivative - ux =2 BV. By the proofin the previous se
tion we see that ux is neither positive everywhere nor negativeeverywhere. Further it does not attain values 
lose to zero be
ause juxj > z�.This implies that the derivative jumps from positive to negative values and thejump is always at least 2z�. Intuition tells us the variation of ux should not bebounded, not even lo
ally. More pre
isely, a fun
tion u 2 L1(U), U � Rn open,
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 di�usion equation 249has bounded variation in U i�sup�ZU u div'dx ���� ' 2 C10 (U); j'j � 1� <1:We write BV(U) to denote the spa
e of fun
tions of bounded variation.Theorem 9. Let u be obtained as the limit of a sequen
e ul 
onstru
ted with themethod des
ribed in Se
tion 3. Let U � [t0; T ℄� [0; l℄ be open. Then ux =2 BV(U).To prove unbounded variations of a fun
tion on a subset of R2 is not straightforward. The fa
t that the derivative jumps in�nitely often in any open set issuÆ
ient in the one-dimensional 
ase, be
ause of the 
on
ept of essential variation[9, 5.10℄. But in the two-dimensional 
ase a fun
tion of bounded variation mayhave in�nitely many jumps in any open set, as shown by the 
ounterexample 3.53in [1, 3.5℄. To prove the above theorem we want to use the Chara
terization ofBV by se
tions from [1℄ whi
h implies (
ompare [1, p. 196, l. 7{11℄):(4.10) Let u 2 L1(
 � RN ). Then u 2 BV(
) only if for any � 2 SN�1and for HN�1-a.e. y 2 
� the restri
tion u�y 2 BV(
�y),where: 
� := proje
tion of 
 onto the hyperplane orthogonal to �;
�y := se
tion of 
 
orresponding to y 2 
� : fy + t� 2 
; t 2 Rg;u�y := restri
tion of u to 
�y , i.e., u�y(t) = u(y + t�) ;HN�1 := (N � 1)-dimensional Hausdor� measure:We want to show that for the �xed dire
tion � = (0; 1) 2 S2 and for LN�1-a.e.t 2 [0; T ℄ the restri
tion of the derivative (ux)�t is not in BV([0; l℄) and so ux =2 BVby (4.10). For this, one needs to a

ess values of the derivative ux on the linet � [0; l℄. This is a set of measure zero whi
h implies that ux is not ne
essarilyde�ned there. The �nal argument of the proof will be the same as in the previousse
tion, though the setup is more 
ompli
ated. Re
allul ! u whi
h is a weak solution of ut = [�(ux)℄x;(ul)x ! ux p.w. H2-a.e.;ul 2 C1pw ) ul 2 C1 H2-a.e.;ux 2 I+ [ I� with I+ = [z�; z+℄ and I� = �I+:
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tion of ux to the spe
i�
 time t, i.e.,(ux)jt(x) = ux(t; x);Vl := n[U � [t0; T ℄� [0; x℄ j ul 2 C1(U)o = open interior tile parts;V := 1\l=1Vl;V + := f(t; x) 2 V j 9 l0 : 8 l > l0 (ul)x(t; x) 2 I+g;V � := f(t; x) 2 V j 9 l0 : 8 l > l0 (ul)x(t; x) 2 I�g;~V := V n(V + [ V �);M := f(t; x) 2 [t0; T ℄� [0; l℄ j (ul)x(t; x)! ux(t; x)g;E := V \M;R := ft 2 [t0; T ℄ j H1(t� [0; l℄nE) = 0g:The sets Vl; V;M; and E 
over almost all of [t0; T ℄�[0; l℄, i.e.,H2([t0; T ℄�[0; l℄n:) =0 for Vl; V;M and E. Also H1([t0; T ℄nR) = 0, 
onsider H2([t0; T ℄ � [0; l℄nE) =R Tt0 H1(t� [0; l℄nE) dt, and ~V \M = ; whi
h implies H2( ~V ) = 0.The values of (ul)x 
onverge in V + and V �. To see this, we �rst note from thede�nition of V � that (ul)x stays positive or negative respe
tively after some stepl0. Then, however, the further variation of (ul)x is bounded by Æi in ea
h step,
ompare Figure 3.8 and equation (3.16). By the estimate on Æi in (3.12) and the
hoi
e of the sequen
e �l at the beginning of Se
tion 3.3, we see that the seriesof (Æi)l 
onverges, so (ul)x is a Cau
hy sequen
e and we get(4.11) 8(t; x) 2 V + : (ul)x(t; x)! d+ with some value d+ 2 I+;8(t; x) 2 V � : (ul)x(t; x)! d� with some value d� 2 I�:Proof of Theorem 9: Let U � [t0; T ℄ � [0; l℄ be open, t 2 R su
h thatH1(U jt) > 0. Consider (ux)jt and an open Interval J � U jt. We will showthat ux attains values in I+ and I� for 
ertain points in J , so the variation of(ux)jt is at least 2z� in J . Then we 
an 
over U jt with 
ountably many intervalsJ to show that the essential variation on the line t � [0; l℄ is not bounded. Thisimplies (ux)jt =2 BV(U jt) (
ompare [9, 5.10℄). With the 
hara
terization of BVfun
tions in (4.10) we then get (ux) =2 BV(U).Let l0 be so large that the diameter of the tiles T at step l0 is less than jJ j=2.Sin
e t 2 R, we have H1(U jtnE) = 0 and the interval J is 
overed up to an H1-zero set by restri
tions of 
onne
ted 
omponents of Vl0 . There is a tile (T ki;s)l su
hthat its restri
tion to time t is 
ontained in J . This restri
tion has three 
onne
ted
omponents whi
h are interse
tions with three tile parts, two boundary trianglesand the middle diamond. We 
all the �rst 
omponent W�l and the se
ond oneW+l , su
h that (ul)xjW�l 2 I� respe
tively (
ompare Figure 4.9). The third
omponent mirrors the �rst and is thus irrelevant for the argument. Sin
e t 2 R,
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 di�usion equation 251the horizontal line parts of the tile T are not exa
tly on the line t � [0; l℄ butabove or below. Further, this also a

ounts for the fa
t that the sets V + \M andV � \M 
over J up to a set of H1-measure zero. If(4.12) (V + \M \ J) 6= ; and (V � \M \ J) 6= ;the 
onvergen
e in V �, see (4.11), gives that ux attains values in I+ and I� andthe jump is 
on�rmed. Assume (4.12) was false. Without loss of generality let
PSfrag repla
ements J Utile T t� [0; l℄W�l W+l

Figure 4.9. Jump along a line: Interse
tion of the line t � [0; l℄with the set U , position of the interval J , an interse
ting tile T , andtile parts W+l and W�l with positive and negative ux, and thereforewith a jump.V � \M \ J = ;. This implies H1(V + \M \ J) = H1(J), moreover H1(V + \M \W�l ) = H1(W�l ). Now we argue as in the previous se
tion, but only for the�xed time t:(4.13) ZW�l ux = ZV +\M\W�l ux � jV + \M \W�l jz� = jW�l jz� > 0:Like in the previous se
tion we use the des
ription of u as a sum, 
f. (4.4), thezero-integral property of �2 in (4.5), and the bound for ux in this parti
ular tilepart to estimateZW�l ux = ZW�l u�x + �1x + gx + �2x= ZW�l u�x + �1x + gx � ZW�l (�1 + 12l ) = jW�l j(�1 + 12l ) < 0:This is a 
ontradi
tion, so (V � \M \ J) 6= ; and ux =2 BV. �Remark: As in the previous subse
tion the argument is not restri
ted to t > t0but works for any open set U , in whi
h the 
onstru
tion pro
ess is 
arried out.



252 N. S
hadewaldt4.3 Chara
terization of ux. Theorem 9 implies that both V +\M and V �\Mare dense in [t0; T ℄� [0; l℄. It seems reasonable that the limit derivative ux shouldbe 
ontinuous on both those dense sets and probably even di�erentiable in x-dire
tion. The following 
hara
terization holds.Theorem 10. Let u be obtained as the limit of a sequen
e ul 
onstru
ted withthe method des
ribed in Se
tion 3. Then there exist two fun
tions d+(t; x) andd�(t; x) 2 C([t0; T ℄� [0; l℄) su
h thatux = d+ � 1V +\M + d� � 1V �\M :Moreover, d� is weakly di�erentiable in x-dire
tion and d�x 2 L1.Proof: It is suÆ
ient to 
onsider d+ as the argument is analogous for d�. Con-sider uxjV +\M . Sin
e ux � z� > 0 and � 2 C1(R+ ),(4.14) ux 2 C(V + \M) , �(ux) =  t 2 C(V + \M):We re
all the de�nition of 	� = ( �; u�), 
ompare (3.18), and the smoothness ofthe approximating sequen
e to see( l)t = Z x0 (ul)t(t; s) ds = Z x0 u�t (t; s) + lXk=1(ug)kt ds:Be
ause of the derivative values of g given in (3.15)(iii) and the bounds for Æi in(3.12) we havej( l)t � ( l�1)tj = ����Z x0 (ug)lt(t; s) ds���� � Æli � al;ki � Æli � 2z+ � (�l)2 � 2z+ 122l :Therefore we obtain 
onvergen
e to some yet unknown fun
tion �:  lt 2 C L1�!� 2 C. Sin
e D l ! D pie
ewise almost everywhere by Lemma 5, we have� =  t almost everywhere, therefore  t has the 
ontinuous representative � andwe 
an say  t 2 C(QT ).Noti
e that the 
onvergen
e argument for  l is valid everywhere onQT , not juston the subset V + \M . This is important sin
e it implies �(ux) =  t 2 C(QT ).The 
ontinuity of �(ux) is ne
essary for u to be a weak solution.The restri
tion to the subset V + \M is ne
essary to apply the relation (4.14)and get ux 2 C(V + \M). Sin
e V + \M is dense in [t0; T ℄� [0; l℄, we 
an extendux 
ontinuously to �nd d+(t; x) 2 C([t0; T ℄� [0; l℄). Analogously we �nd d� andthe �rst 
laim of the theorem is proved.For di�erentiability in x-dire
tion 
onsider the sequen
e ( l)t(t; x) for a �xedtime t. With the de�nition of  l(t; x) as the integral in x-dire
tion of the fun
-tion ul, 
ompare (3.18), we 
an 
al
ulate (( l)t)x = (ul)t 2 L1, at least for every�xed l. We obtain ( l)t 2 W 1;1(t� [0; l℄). Noti
e that the argument is valid for
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 di�usion equation 253all t and for all x 2 [0; l℄. Sin
ek(ul)tkL1 � k(u0)tkL1 +X k(ug)tkL1= k(u0)tkL1 +X al;ki � Æli� k(u0)tkL1 + 2z+X 12l � 
;the sequen
e ( l)t is uniformly Lips
hitz with respe
t to the x-variable, hen
ethe limit is also Lips
hitz and  t 2 W 1;1(t � [0; l℄). By the relation (4.14) wenow have ux 2 W 1;1 with respe
t to x on V + \M . Sin
e this set is dense, theextension has the same regularity, d+ 2 W 1;1. It follows that dx exists weaklyand dx 2 L1. �Let us add two general 
omments on the just proven results:Remark I: The 
onstru
tion of Se
tion 3 
ould also be 
arried out with ��(s) = s.The approximate solution u� is then a solution to the heat equation. This ap-proa
h is simpler sin
e maximum prin
iples, smoothing property and asymptoti
sare readily available. Further, the 
onstru
tive pro
ess will take pla
e in all of thedomain sin
e �� never tou
hes the 
urve of �, therefore the approximate solutionis at no point a solution to the original problem. This implies that all stru
turalresults are true from t = 0.Remark II: The method to 
onstru
t sequen
es 
onverging to Lips
hitz fun
tionshas been developed by Zhang for the one-dimensional Perona-Malik equation [27℄and generalized to similar di�usion equations of forward-ba
kward type [28℄. Forthese equations the 
onstru
tion appears when the derivative is 
lose to the 
riti
alvalue separating the forward and ba
kward parts of the di�usion. A typi
alexample with 
riti
al value 1 isut = [�(ux)℄x = � ux1 + u2x�x :The proofs in this se
tion require only the 
onstru
tive pro
ess in some openset U . The 
onstru
tions in [27℄, [28℄ to 
reate solutions of the Perona-Malikequation and related problems are the same ones as used here. Be
ause of thisthe stru
tural results and their proofs transfer.Further, these stru
tural results are not ex
lusive to time dependent problems.They translate to Lips
hitz solutions of ellipti
 problems a
hieved with similar
onstru
tions, for example the solutions 
onstru
ted in [16℄, [17℄.5. Con
lusionWe have shown that the 
onstru
tion developed for the Perona-Malik equationand similar forward-ba
kward di�usion equations [27℄, [29℄ works for singularlogarithmi
 di�usion equations as well. All Lips
hitz fun
tions 
onstru
ted in this
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ontain mi
rostru
ture in the sense, that they are not lo
ally smooth. Wehave further given an expli
it des
ription of this mi
rostru
ture as the partitioningof two fun
tions with higher regularity on two irregular dense sets. This givesinsight into how su
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