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The mirostruture of Lipshitz solutionsfor a one-dimensional logarithmi di�usion equationNiole ShadewaldtAbstrat. We onsider the initial-boundary-value problem for the one-dimen-sional fast di�usion equation ut = [sign(ux) log juxj℄x on QT = [0; T ℄ � [0; l℄.For monotone initial data the existene of lassial solutions is known. Thease of non-monotone initial data is deliate sine the equation is singular atux = 0. We `expliitly' onstrut in�nitely many weak Lipshitz solutions tonon-monotone initial data following an approah to the Perona-Malik equation.For this onstrution we rephrase the problem as a di�erential inlusion whihenables us to use methods from the desription of material mirostrutures. TheLipshitz solutions are onstruted iteratively by adding ever �ner osillations toan approximate solution.These �ne strutures aount for the fat that solutions are not ontinuouslydi�erentiable in any open subset of QT and that the derivative ux is not ofbounded variation in any suh open set. We derive a haraterization of thederivative, namely ux = d+1A + d�1B with ontinuous funtions d+ > 0 andd� < 0 and dense sets A and B, both of positive measure but with in�niteperimeter. This haraterization holds for any Lipshitz solution onstrutedwith the same method, in partiular for the `mirostrutured' Lipshitz solutionsto the one-dimensional Perona-Malik equation.Keywords: logarithmi di�usion, one-dimensional, di�erential inlusion, miro-strutured Lipshitz solutionsClassi�ation: 34A05, 35B05, 35B651. IntrodutionIn this work we onsider the following one-dimensional evolution equationswith logarithmi terms(1.1) vt = � vxjvj�x = [sign(v) log jvj℄xx;and(1.2) ut = uxxjuxj = [sign(ux) log juxj℄x;where v and u are real valued funtions depending on one spae variable x andone time variable t. Due to the logarithmi behavior the equations are singular



228 N. Shadewaldtat v = 0 and ux = 0. We are interested in the existene and properties of signhanging solutions of the �rst equation and non-monotone solutions of the seondequation, respetively.Both equations are limit ases of well-known and related equations, the porousmedium equation (1.3) and the p-Laplae equation (1.4).vt = �(vm) = div(mvm�1rv); m > 0(1.3) ut = �pu =: div(jrujp�2ru) = 1p� 1 �juxjp�2ux�x = juxjp�2uxx; p > 1:(1.4)Both equations are of fast di�usion type for m < 1 and p < 2 respetively andstudied intensively in literature, often in the same ontext [6℄, [7℄, [25℄, [26℄. Anexpliit onnetion between (1.3) and (1.4) exists for radially symmetri solutions[11℄, in the one-dimensional ase the onnetion is most diret, sine saled ver-sions an be transformed into eah other. Sending m ! 0 in a saled version of(1.3) and p! 1 in (1.4) we obtain the pair of related one-dimensional logarithmidi�usion equations (1.1) and (1.2).The relation between the equations is preserved as long as ux 6= 0, as oneobtains (1.1) by formally di�erentiating (1.2) and substituting v = ux. We areinterested in the evolutionary problems assoiated with these equations and there-fore onsider initial values v0(x) = v(0; x) and u0(x) = u(0; x). Both logarithmidi�usion equations are only singular in the ase v = ux = 0 and regular andparaboli otherwise. Beause of this the solutions of (1.1), (1.2) evolve quite dif-ferently, depending on whether the initial data v0, u0 ross the singular valuesv = ux = 0 or stay away from them. Most physial settings lead to the defaultrestrition v � 0 and existene of positive solutions of (1.1) for positive initialdata v0 is known [20℄, [25℄. With u = R v dx one obtains solutions of (1.2) whihare monotone as a funtion of x. For a omplete mathematial theory, however,it is of great interest to over sign-hanging initial values v0 as well, espeiallysine there is no reason for (1.2) to allow only monotone initial data u0.Using methods from the study of material mirostrutures we `expliitly' on-strut weak Lipshitz solutions of (1.2) with given non-monotone initial data u0.All results of this work will be stated and shown for equation (1.2) sine themethods apply to this equation only and the results are signi�antly strongerthan for the di�erentiated problem (1.1). The translation to (1.1) is shortly de-sribed after the proofs at the end of Setion 3.For the onstrution we �nd an approximate solution, add a sequene of ever�ner osillations and prove onvergene to a `mirostrutured' Lipshitz solutionand thus get the following existene result.Theorem 1. Let u0 2 C2+�0 ([0; l℄), 0 < � < 1, and (u0)xx(0) = (u0)xx(l) = 0.Let QT := [0; l℄� [0; T ℄ with real numbers 0 < l <1 and 0 < T <1. Then theinitial-boundary value problem for (1.2) with homogeneous Dirihlet boundaryonditions has in�nitely many weak solutions u 2 W 1;1(QT ) whih satisfy theinitial ondition u(0; x) = u0(x).



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 229The mirostruture of these solutions an be desribed in more details. It isknown from [20℄ that non-monotone solutions u of (1.2) annot be C1 in the wholedomain. Interestingly this is also known for the Perona-Malik equation [12℄, evenif the two equations are not losely related. Furthermore, Lipshitz solutions thatare not even C1 in any open set have been onstruted for time independent dif-ferential inlusion problems [23℄, [16℄, [17℄, therefore we expet a similar propertyfor our onstruted solutions. Indeed this is true in those parts, where the ap-proximate solution is altered by a onstrution. We prove the following spei�non-smoothness result: if u 2 C1(U) for some open set U , then the solution isidential with the approximate solution in U , i.e., no onstrution proess has o-urred. Furthermore, there exists a time t0 after whih the onstrution proessis arried out globally, i.e., the solution is nowhere C1 in [t0; T ℄�R. This impliesthat uxx does not exist in a lassial sense, not even loally. A more re�ned argu-ment proves the stronger result that no measure-theoreti form of uxx exists, i.e.,ux =2 BV. These proofs lead to a haraterization of the derivative as the sumof two ontinuous, even x-di�erentiable funtions d+(t; x) and d�(t; x) on sets Aand B ux = d+ � 1A + d� � 1B :The sets A and B are both dense and tattered and, most importantly, are not of�nite perimeter whih is the reason for ux =2 BV. This haraterization dependson the onstrution and thus transfers to any Lipshitz funtion onstruted bythis method, espeially to the solutions of the Perona-Malik equation and relatedproblems [27℄, [28℄.The following paragraphs present an outline of the methods and results of thiswork.In Setion 2 we will give an overview of the development and relations of themethods used.Setion 3 is devoted to the proof of Theorem 1, i.e., the onstrution of Lipshitzsolutions of (1.2) with the methods from material mirostrutures.In Setion 4 we will prove the intrinsi properties of the `mirostrutured'Lipshitz funtions, all of whih are due to the spei� onstrution.Setion 5 summarizes the results of this work.2. BakgroundThe partiular ases of one-dimensional logarithmi di�usion (1.1), (1.2) arestudied thoroughly by Rodriguez and V�azquez in [20℄. They show that for non-negative v0 the Cauhy problem of the di�erentiated equation (1.1) has in�nitelymany positive lassial solutions whih vanish after �nite time. Only one of themexists globally in time and is haraterized by onservation of mass. Furthermorethey show that for sign-hanging initial data v0 there exists no ontinuous solu-tion, whih is one of the few results on sign-hanging initial data for logarithmidi�usion equations. However, they also give an example of a weak sign-hanging



230 N. Shadewaldtsolution of (1.1) with a jump disontinuity. Translating these results to the in-tegrated problem (1.2) with v = ux they onlude that for non-monotone initialdata u0 there are no C1-solutions of the Cauhy problem to (1.2), but weak Lip-shitz solutions may exist. They also prove that unique solutions for monotoneinitial data u0 an be reovered as limits of solutions to the saled p-Laplaeequation (1.4) as p ! 1. It remains open if ontinuous weak solutions for thelogarithmi di�usion equation (1.2) exist for given non-monotone initial data u0.For the onstrution of suh solutions we use a method established by Zhang[27℄ for the one-dimensional Perona-Malik model [19℄. The method leads to the�rst and only non-trivial existene result in the one-dimensional ase. It hasevolved from the study of material mirostrutures whih in turn originated fromthe study of di�erential inlusion problemsru 2 K with matrix valued derivativesru and non-onvex sets K. The basi idea is to onsider the rank-one-onvex hullof K, where two matries A and B are rank-one-onneted if rank(A � B) = 1.Then eah point in the rank-one-onvex hull is represented as a onvex ombi-nation of points in K. As a one-dimensional example one may onsider a set Konsisting of two points and then approximate K from a point ru in betweenby pushing the value ru alternately to a lose neighborhood of the left or theright point of the target set K, ompare Figure 2.1(a). In fat, it is neessaryto onsider ru inside an `in-approximation' of K, whih is an "-neighborhood ofK interseted with its rank-one-onvex hull. For matrix-valued ru the pushingis ahieved by alternately taking one or the other aÆne funtion to approximateu, ompare Figure 2.1(b), whih is alled lamination. The onstrution is onlypossible if the aÆne segments math along an interfae whih is equivalent to theproperty of the matrix-valued derivatives to be rank-one-onneted.PSfrag replaements
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PSfrag replaements(a)ruK(b)() (d)Figure 2.1. (a) Convex integration for di�erential inlusion with aset K onsisting of two points (b) Lamination of two aÆne funtions() Generating Young measure solutions (d) Generating Lipshitz fun-tions.Laminations as desribed above appear as mirostrutures in elasti materials.Suh elasti materials an often be desribed as minimizers of variational prob-lems with two-well or multi-well potentials, the minima of the potential beingthe non-onvex target set K [3℄, [14℄. A mathematial desription of arbitrarily�ne mirostrutures is ahieved by onsidering sequenes of laminations (see Fi-gure 2.1()). The sequenes of derivatives of the lamination funtions u do not



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 231onverge strongly in Lp in general. But a onvergene to generalized measurevalued funtions is ahieved, the so alled Young measure solutions of the orre-sponding variational problem [2℄, [24℄, [18℄, [13℄. For di�erential equations it isneessary to onvert the problem to an arti�ial di�erential inlusion problem inorder to allow room for a laminating approximation from within an appropriatelamination onvex hull. Then it is possible to re�ne the lamination onstrution toahieve a onvergene to Lipshitz funtions. The basi priniple is to add lamina-tions on top of the previous ones (ompare Figure 2.1(d)) and to arefully ontrolthe derivatives in order to ahieve onvergene [4℄, [17℄, [27℄, [28℄, [23℄. The nestedlamination proess results in highly irregular Lipshitz funtions, \mirostru-tured' Lipshitz funtions', whih do not possess higher regularity in general.There exist examples whih are not C1 in any open set [23℄, [17℄.We remark that an alternative, more funtional analyti approah to showthe existene of Lipshitz solutions has been established by Daorogna and Mar-ellini [5℄. They use a Baire-ategory approah, whih might provide less lues onthe nature of the Lipshitz solutions.In [27℄ Zhang has re�ned this onstrution method in order to onstrut Lip-shitz solutions of the Perona-Malik equation [19℄. In previous publiations Lip-shitz solutions had only been onstruted for steady-state problems with ut = 0.An exeption is the pioneering work of H�ollig, who desribed Lipshitz solutionsfor a spei� pieewise linear forward-bakward di�usion equation [10℄. However,this onstrution relies heavily on the pieewise aÆne struture of the equationonsidered. The exible method of Zhang is adequate for the quasilinear Perona-Malik equation and appliable to arbitrary initial values whih is the main noveltyof this onstrution.The logarithmi di�usion equation (1.2) is of type ut = [�(ux)℄x like the Perona-Malik equation, so that it is possible to transfer the method and to onstrutLipshitz solutions of (1.2). As a basis for the onstrution a start funtion isfound suh that its derivative is either in the target set or in its rank-one-onvexhull, we all this the approximate solution. Laminations are then added iterativelyon those subsets of QT on whih the approximate solution is not a solution. Thisreates a sequene onverging to a solution in L1. It requires some extra are toadd laminates to the non-aÆne approximate solution and still ahieve onvergeneof the derivative [27℄, [28℄.The adaptation of the method to logarithmi di�usion is presented in the nextsetion.3. Lipshitz solutions for the Dirihlet-Problem of logarithmi di�u-sionFollowing the approah of Zhang [27℄, we write the logarithmi di�usion equa-tion (1.2) in divergene form so that we an reformulate the problem.(3.1) ut = [�(ux)℄x; �(s) = sign(s) � log(jsj)



232 N. Shadewaldt
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Figure 3.2. Singular funtion �(s) of the logarithmi di�usion equa-tion (3.1).Now we an state Theorem 1 preisely:Theorem 1. Let u0 2 C2+�([0; l℄), 0 < � < 1, with u(t; 0) = 0 = u(t; l) and(u0)xx(0) = (u0)xx(l) = 0. Let �(s) := sign(s) log(jsj). Then the Dirihletproblem 8><>:ut � �(ux)x = 0 (t; x) 2 QT = [0; T ℄� [0; l℄u(0; x) = u0(x) x 2 [0; l℄u(t; 0) = 0 = u(t; l) t 2 [0; T ℄has in�nitely many weak solutions u 2 W 1;1(QT ) in the sense that for every� 2 C10 (QT ): ZQT ut�+ �(ux)�x dx dt = 0:The Dirihlet boundary onditions are hosen for tehnial reasons and we willassume Dirihlet boundary onditions throughout this setion.In the proof of Theorem 1 we will reursively onstrut a sequene of funtionsonverging to a solution. The starting funtion of this sequene is the uniquesolution to the di�erential equation ut = [��(ux)℄x with a monotone funtion�� and the initial data given in Theorem 1. More preisely we hoose a stritlymonotone interpolation funtion ��(s) whih bypasses the singularity and agreeswith �(s) for jsj � 1. For large values of s = ux, i.e., s > y with y suitable, weontinue linearly to ahieve a lower bound on ��(ux)0. Figure 3.3 illustrates ��and relevant regions.Then we an apply the following theorem.
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yz+�y �z+Figure 3.3. Monotone interpolation funtion ��(s) 2 C2 of the ap-proximate equation (3.2). The funtions f might be a linear interpola-tion between (�z+;� log(z+)) and (z+; log(z+)) with molli�ed joints.The funtion p might be a tangent line with a molli�ed joint.Theorem 2. Suppose �� 2 C2(R) satis�es 0 < � � (��)0(s) � � for someonstants 0 < � < �. Let u0 2 C2+�[0; l℄, (0 < � < 1) ful�ll Dirihlet bound-ary onditions u0(0) = u0(l) = 0 and the ompatibility ondition (u0)xx(0) =(u0)xx(l) = 0. Then the problem(3.2) 8><>:ut � ��(ux)x = 0; (t; x) 2 QTu(0; x) = u0(x); x 2 [0; l℄u(t; 0) = u(t; l) = 0; t 2 [0; T ℄has a unique solution u� 2 C1+�=2;2+�(QT ) satisfying a maximum priniple(3.3) max(t;x)2QT ju�x(t; x)j = max0�x�l j(u0)x(x)j:A proof an be found in the book of Ladyzenskaja, Solonikov and Ural'eva[15, p. 451, Theorem 6.1℄. The orresponding unique funtion u� ful�lls ju�xj < yby (3.3). It is already a solution to (3.1) for z+ < jsj = ju�xj < y, so to onstruta solution everywhere we only need to modify u� for ju�xj < z+. We all u� theapproximate solution.We want to modify u� by adding pieewise aÆne funtions. To allow roomfor this modi�ation, we rephrase the original problem as a partial di�erentialinlusion problem.



234 N. ShadewaldtSolutions to the inlusion problem are in a ertain large set of funtions F .Loosely speaking this set F `inludes' the approximate solution u�. It further`inludes' any solutions to (3.1), of whih we do not know their existene yet, and| most importantly | it `inludes' a sequene of funtions onverging from u�to a solution u.The following subsetions prove Theorem 1 and are organized as follows: Insubsetion 3.1 we onstrut suh a partial di�erential inlusion problem whosesolutions an be onverted into solutions of the original problem (3.1). We de�nea large set of funtions F . This inludes solutions to (3.1), a starting funtiononstruted from u� and a sequene onverging to one of the solution.In subsetion 3.2 we de�ne F" � F , where " is a parameter indiating howlose elements of F are to a solution of (3.1), and we prove that F" is dense inF with respet to the L1-norm. The proof of the density result is arried out bythe repeatedly mentioned onstrution and thus is the key to all strutural resultsof Setion 4.In subsetion 3.3 we use the density result to �nd a sequene of funtions inF1=2k . The limit of this sequene is a Lipshitz funtion and yields a solution u ofthe original problem. We will show that u 2 W 1;1 and that there exist in�nitelymany suh solutions.Remark. The three subsetions are largely parallel to the work of Zhang [27℄.However, sine we need the notation and intermediate estimates for the struturalresults in Setion 4, we annot shorten this tehnial part.3.1 Conversion into partial di�erential inlusion problem. The originalproblem (3.1) an be solved by �nding a solution to the following partial di�er-ential inlusion problem:(3.4) Find 	 2W 1;1(QT ;R2 ) with 	(t; x) = ( (t; x); u(t; x)) suh thatD	(t; x) = � t  xut ux� 2 ���(s) u s� ���� s;  2 R� :The seond omponent u of suh a 	 is a solution of (3.1), as one obtains byomparing matrix entries: The diagonal entries state that s = ux, therefore  t =�(ux). Also  x = u. Thus we have ut =  xt =  tx = �(ux)x in the distributionalsense, so u is aW 1;1 solution of (3.1) in the distributional sense. More spei�ally,u is a solution to the weak formulation of the problem: RQT u�t+�(ux)�x dx dt = 08� 2 C20 (QT ).We will now de�ne sets of 2� 2 matries to state Problem (3.4) more preiselyand de�ne the set F , in whih the approximation proess will take plae. Thediagonal entries of the matries orrespond to points (ux;  t) in the R2 plane asindiated in Figure 3.4. In the same �gure z� = e� log(z+) is plaed as needed for



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 235the following de�nition.~K := f(s; �(s)) j z� � jsj � yg~E := f(s; r) j �z+ < s < �z�; � log(z+) < r < �(s) or�z� � s � z�; � log(z+) < r < log(z+) orz� < s < z+; �(s) < r < log(z+) g
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�z+ �z� z� z+ y�yFigure 3.4. De�nition of ~K (bold urves) and ~E (shaded region).We de�ne two sets of matries K(u) and E(u) �M2�2(R):K(u) := ��r u s� ���� (s; r) 2 ~K; jj � m�(3.5) E(u) := ��r u s� ���� (s; r) 2 ~E; jj < m�(3.6)Notie that K(0) is ompat and E(0) is open in the spae of lower triangularmatries V � M2�2(R). We later want to use this ompatness and opennessrespetively, thus we will refer to the projetion of matries onto the spae oflower triangular matries. PV shall be the orthogonal projetion from M2�2(R)onto V . Now we an state the partial di�erential inlusion problem preisely.(3:40) Find 	 = ( ; u) 2W 1;1(QT ;R2 ) suh that for all (t; x) 2 QT(i) D	(t; x) 2 K(u);(ii) PV (D	(t; x)) 2 K(0) and  x = u:Formulations (i) and (ii) are equivalent, the seond one will be more usefullater sine we an use the ompatness of K(0). Further, let C1pw be the set ofpieewise C1 funtions, i.e., 	 2 C1pw is equivalent to 	 2 C and there exist



236 N. Shadewaldtat most ountably many disjoint open triangles Gi with jQT nS1i=1Gij = 0 and	j �Gi 2 C1. Then(3.7) F := 8<:	 = ( ; u) 2 C1pw(Q2T ) ������ D	 2 K(u) [ E(u) a.e. ;juj < ku�kC0(QT ) + 1;m := ku�tkC0(QT ) + 1 9=; :Notie the strit inequality on the bound for juj whih is neessary to allow modi-�ations of any 	 2 F . Solutions to the di�erential inlusion problem (3:40) whihadditionally stay within the bounds for u and m, are in F . A priori it is not learif suh solutions do exist. We show �rst F 6= ; by onstruting an element of Fusing the approximate solution u�: Sine u� 2 C1;2 aording to Theorem 2, wehave u�t 2 C and u�x 2 C1. By onstrution �� 2 C2, so ��(u�x)x 2 C. We haveu�t = ��(u�x)x 2 C(QT ) and QT is simply onneted, so there exists a vetor �eld � 2 C1 with ( �t ;  �x) = (��(u�x); u�). Now we an de�ne 	� := ( �; u�) withD	� = � �t  �xu�t u�x � = � ��(u�x) u�u�t u�x �. Obviously u� and u�t stay within the boundswhih were set in the de�nition of F . The estimate for ju�xj in Theorem 2 gives usju�xj < s� and therefore (u�x; ��(u�x)) 2 ~K [ ~E. Thus we have 	� 2 F and F 6= ;.	� will serve as a starting point to onstrut a sequene in F onverging to asolution of (3:40) in W 1;1.3.2 Constrution of a dense subset of solutions. For distanes we will on-sider the 1-norm: dist(X;Y ) = kX � Y k1 =P jxi � yij. If x is a point and K isa set we de�ne: dist(x;K) = mink2K kx� kk1.Theorem 3. For every " > 0 the following subset F" � F is dense in F1, thelosure of F under the L1-norm:F" := �	 2 F ���� ZQT dist(D	;K(u)) dt dx < "jQT j� :We need this density result to �nd a sequene 	k suh that 	k 2 F1=2k . Thelimit of this sequene will have a weak gradient D	 whih is in the target setK(u) almost everywhere. The following proof of Theorem 3 is tehnial, however,subsetion 3.2 desribes the onstrution whih is essential for all strutural resultsof Setion 4 and annot be omitted.Proof: Given 	 2 F , " > 0 and 0 < � < 1, we need to �nd 	� 2 F" suh thatk	 � 	�kL1 < �. The proof is divided into two parts: the onstrution of 	�and the on�rmation that 	� 2 F".We make two preliminary observations. First note the following simplifyingidentity for distanesdist(D	;K(u)) = dist(PV (D	);K(0)) = dist(( t; ux); ~K):For the onstrution we will onsider elements in PV (D	) and ensure later( �)x = u�. Further �VE(0) will denote the boundary of E in the set of lower



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 237triangular matries V :�V E(0) := ��r 0 s� ���� (s; r) 2 � ~E or jj = m� :Seond, in the ourse of the onstrution we will repeatedly over a set with atmost ountably many saled sets of presribed shape. This is possible due to theVitali Covering Priniple as established by Saks [21, p. 109℄:Lemma 4 (Vitali Covering Priniple). Let U; V � Rn be bounded, open setssatisfying j�U j = 0 = j�V j. Then there is a sequene (xi; ri) 2 Rn � (0;1),i = 1; 2; : : : suh that(i) Ui = xi + riU � V(ii) Ui \ Uj = ; if i 6= j and(iii) jV nS1i=1 Uij = 0.Let us now proeed with the onstrution of an approximative funtion 	�.(a) Divide QT into triangles Gi.Sine 	 2 F � C1pw, there are at most ountably many triangular shaped tiles Giexhausting QT suh that 	jGi 2 C1. We onsider eah of the Gi individually toonstrut a funtion 	� with the property RQT dist(D	�;K(u)) dt dx < " � jQT j.For this we will repeatedly exhaust tiles with other tiles, an overview is given inFigure 3.5.PSfrag replaements
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Figure 3.5. Repeated exhaustion proess for the onstrution of 	�:(a) Triangles Gi in QT (b) Division of Gi into Ĝi and Ki () Exhaus-tion of Ĝi with squares Dki (d) Exhaustion of Dki with diamonds T ki;s.(b) Divide Gi into parts Ki (no onstrution) and Ĝi (onstrution).We de�ne Ki as the area, where dist(D	;K(u)) is small (inluding D	 2 K(u)).As 	 2 C1( �Gi) we may �nd Æi > 0 suh that the losed set(3.8) Ki := �(t; x) 2 Gi �� dist(PV (D	);K(0) [ �VE(0)) � Æi	



238 N. Shadewaldtsatis�es(3.9) ZKi dist(PV (D	);K(0)) dt dx < "2 � jGij:We may require that the boundary of Ĝi := GinKi has measure zero.The funtion 	 is ontinuously di�erentiable in the interior of Ki, that is,	 2 C1(�Ki). We do not want to hange D	 if it is already lose to K as on theset Ki, so we de�ne 	� := 	 on 1[i=1Ki:
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Figure 3.6. Illustration of the de�nition of Ki and Ĝi: For(t; x) 2 Ki the diagonal entries (ux;  t) of the matrix D	(t; x) aspoints in R2 are lose to the boundary of ~E. For (t; x) 2 Ĝi theorresponding points (ux;  t) are in the interior region of ~E.Remark: On Ĝi we have dist(PV (D	);K(0) [ �VE(0)) � Æi, whih meansminfdist(PV (D	);K(0)); dist(( t; ux); � ~E); dist(ut;m)g � Æi:From this we an derive estimates for individual entries of the matrix valuedderivative D	 on Gi.(i) dist(( t; ux); ~K [ � ~E) � Æi (illustration in Figure 3.6) whih implies for(s; r) 2 ~K [ � ~E(3.10) minx jux � sj � Æi and minx j t � rj � Æi;



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 239as the distane funtion is based on the 1-norm.(ii) dist(ut;m) � Æi, so(3.11) jutj � m� Æi:For later estimates we make Æi smaller if neessary, to have:(3.12) Æi < minf�; "2 ; 2�g;whereas � := (ku�kC0(QT )+1)�kukC0(QT ) with u the seond part of the funtion	 = ( ; u). As kuk < ku�k + 1 (see de�nition of F) and u is ontinuous, wehave � > 0. We need to onsider � as the initial distane of u to its bound in Fto ensure that modi�ations stay within that bound and the modi�ed funtion isstill in F .() Divide Ĝi into squares Dki with small variation of derivatives.Sine 	 2 C1(Gi) and Gi is ompat, D	 is uniformly ontinuous on Gi. Thusthere exists a onstant �i suh that kD	(t; x) � D	(s; y)k1 < �Æi if k(t; x) �(s; y)k1 < �i. The onstant � is needed to ounterbalane z+ and will be spei�edlater. Now we over eah Ĝi by at most ountably many disjoint squares fDki g1k=1,whose sides are parallel to the oordinate axes and whose side length is smallerthan �i. Let pki 2 Dki be the enter of Dki . Then(3.13) kD	(t; x)�D	(pki )k < �Æi on eah Dki :(d) Divide Dki into diamond shaped tiles T ki;s.On eah of the squares Dki we want to approximate 	 = ( ; u) by a tent-likefuntion 	� = ( � ; u�). In order to do this we divide Dki into at most ountablymany diamond shaped tiles T ki;s. On eah of these tiles we �rst approximate u byadding a pieewise aÆne tent-like funtion gki;s with average zero, u� = u + gki;son T ki;s. Via the ondition ( �)x = u� we will then derive  �.Constrution of a pieewise aÆne funtion g:The onstrution of gki;s will allow us to ontrol the derivative (u�)x. Given a; b > 0and Æ > 0 we de�ne a standard tile T := f(t; x) j jtj � 1; jxj � Æ(t + 1)g anda ontinuous pieewise aÆne funtion g(t; x). For an illustration of T and g seeFigure 3.7, for the role of a and b see Figure 3.8.We speify g(t; x) for the triangular upper left quarter of T �rst, i.e., 0 � x �Æ(t + 1) and �1 � t � 0. Then we extend in t-diretion as an even funtion and



240 N. ShadewaldtFuntion g x
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Figure 3.7. Funtion g: Pieewise aÆne funtion g(t; x), diamondshaped tile T and values of Dg(t; x) in parts of T .in x-diretion as an odd funtion. Outside T the funtion is zero.(3.14) g(t; x) = (bx; 0 � x � aÆ(t+1)a+b ; �1 � t � 0aÆ(t+ 1)� ax; aÆ(t+1)a+b � x � Æ(t+ 1); �1 � t � 0g(�t; x) = g(t; x) (even in t-diretion)g(t;�x) = �g(t; x) (odd in x-diretion)g(t; x) = 0 8(t; x) =2 TStraightforward alulations show that g has the following properties (ompareFigure 3.7):
(3.15) (i) g 2 C1pw and gj�T = 0(ii) jg(t; x)j � aba+bÆ � a+b4 Æ(iii) gx 2 f�a; bg and gt 2 f0;�aÆg a.e. in T(iv) line integral of g in x-diretion aross T is zero:R Æ(t+1)�Æ(t+1) g(t; x) dx = 0(v) line integral of gt in x-diretion aross T is zero:R Æ(t+1)�Æ(t+1) gt(t; x) dx = 0We need saled versions of g later in every tile T ki;s. So we de�ne T (p; �; �Æ)as the diamond shaped tile T entered at point p = (t(p); x(p)) with width � and



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 241height �Æ, the standard tile is T (0; 1; Æ). Further g(a; b; �; �Æ; p; t; x) is de�ned asa saled version of g on the tile T (p; �; �Æ) with parameters a and b and variablest and x. The funtion g(a; b; �; �Æ; p; t; x) has analogous properties to g.Remark: We mention that the roles of b and �a an be exhanged. A funtion ~gwith the same properties an be onstruted with ~gx = �a in the interior diamondand ~gx = b in the exterior triangles of the tile T .For the loal onstrution of gki;s we �rst deompose Dki into at most ountablymany diamond shaped tiles T ki;s entered at pki;s with width �ki;s < 1 and height�ki;s � �Æi. For the exat de�nition of aki and bki we write ~K as the union of apositive and a negative part, whereas ~K+ := f(s; �(s)) j (z�� ") � s � (y+ ")gand ~K� := f(s; �(s)) j � (s; �(s)) 2 ~K+g, ompare Figure 3.8. Then for eah Dkiwith enter pki we an �nd aki and bki suh that(3.16) dist(( t(pki ); ux(pki )� aki ); ~K�) = Æi2 ;dist(( t(pki ); ux(pki ) + bki ); ~K+) = Æi2 :We reall that the distane to the upper or lower boundary of ~E is larger than Æi,see (3.10), and thus suÆiently large to have the above points still inside ~E.
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Figure 3.8. Push ux(pki;s) lose to ~K: Æi=2 is the distane ofux(pki;s)+bki to the positive part ~K+ and of ux(pki;s)�aki to the negativepart ~K�.



242 N. ShadewaldtNow we de�ne the pieewise aÆne funtions gki;s on eah tile T ki;s bygki;s(t; x) = g(aki ; bki ; �ki;s; �ki;s � �Æi; pki;s; t; x):We remark that for all i; k we have aki + bki � 2z+ (ompare Figure 3.8), so withthe bounds on the funtions gki;s (3.15)(ii) we get(3.17) jgki;sj � z+ � � � Æi2 :We unite all funtions gki;s of disjoint support to a joint pieewise aÆne funtion ug,integrate to get the potential funtion  g and then de�ne 	� as(3.18) 	� = ( �; u�) := ( +  g ; u+ ug)with  g(t; x) := Z x0 ug(t; �) d� and ug(t; x) := Xi;k;s gki;s:We mention that this de�nition does not ontradit the previous de�nition of	� on tiles Ki. One of the properties of gki;s is that the integration in x-diretionaross omplete tiles T is zero (3.15)(iv). Thus for points outside the olletionof tiles,  g(t; x) = 0. Sine Ki is the set where no tiles are added, we still have	� = 	 on Ki. More preisely(3.19) (i) ugj �Ki = 0 sine we only used tent funtions gon the omplement of SKi;(ii)  g jKi = R x0 ug(t; �) d� = 0 sine if (t; x) 2 Ki then it is outsideof ST ki;s, and we have the integration property (3.15)(iv).A tedious alulation with � = 1=(3z+) on�rms 	� 2 F" and k	�	�kL1 < �,for details we refer to [22℄, [27℄. This ompletes the proof of the density resultTheorem 3. �3.3 A sequene onverging to a Lipshitz solution. The density result issuÆient to onstrut a sequene 	k onverging in F1 suh thatdist(PV (D	k);K(0)) beomes arbitrarily small. To prove the onvergene of thederivatives D	k and thus ahieve the limit derivative to be in K we will use thefollowing lemma established by B. Kirhheim ([14, Lemma 3.27℄).Lemma 5. Let 
 � Rm be bounded and open. For a Lipshitz mapping f :
! Rn and k 2 N, let r(f; k) be the supremum of all r > 0 suh that there is aompat set K � 
 with j
nKj < 2�k andjf(x+ y)� f(x)� hDf(x); yi j � 1k jyj if x 2 K and jyj � kr:By Rademaher's Theorem, r(f; k) > 0 (e.g. [8, p. 281, Theorem 6℄). Consider asequene fk : 
 ! Rn of uniformly Lipshitz mappings and suppose 0 < rk <



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 243minf1=k2; r(fk ; k)g for all k. Let B1(f; r) denote the ball around f with radiusr with respet to the L1 norm. If f 2 Tk B1(fk; rk), then limk!1Dfk(x) !Df(x) for a.e. x 2 
 (pointwise limit).We take 	1 = 	� 2 F1 as a starting point for the sequene and r1 arbitrary.Given any 	k�1 2 F1 and rk�1, k � 2, we use the density result of Theorem 3with " = 1=2k and � = rk�1=2 to �nd 	k with the following properties:� 	k 2 F1=2k , i.e., ZQT dist(D	k;K(u)) dt dx < 12k jQT j;� dist(	k;	k�1) < rk�12 , i.e., 	k 2 B1(	k�1; rk�12 ) \ F1=2k .Now we �nd rk as needed in the lemma aboverk := min�r(	k ; k); rk�13 ; 1k2� :This guarantees B1(	k; rk) � B1(	k�1; rk�1), and therefore limk!1	k 2TB1(	k; rk). The sequene 	k = ( k; uk) is uniformly Lipshitz, as D	k 2 Fand F is bounded (see (3.7)). Further 	k is a Cauhy sequene in F1 by de�-nition, so 	k ! 	 2 F1. We now apply Lemma 5 to get limk!1D	k(t; x) =D	(t; x) for a.e. (t; x) 2 QT .As D	k(x)! D	(x) a.e., we know that the identity ( k)x = (uk) is still truefor the limit funtion  x = u almost everywhere. Our andidate for a solution toTheorem 1 is this u, but we need to on�rm the following statements:(i) D	 2 K(u) a.e. in QT ;(ii) u 2W 1;1;(iii) existene of in�nitely many suh u;(iv) boundary onditions, i.e., u(t; 0) = u(t; l) = 0 8t;(v) 8� 2 C10 (QT ) : RQT [ut�+ �(ux)�x℄ dx dt = 0.(i) We know limk!1 RQT dist(D	k;K(u)) dt dx = 0. Reall the simpli�ed no-tation for the distane funtion. As ( k)x = u and j(uk)tj < m only thetwo diagonal entries of D	k(t; x) are relevant and we have dist(D	k;K(u)) =min(s;t)2 ~Kfj( k)t � sj + j(uk)x � tjg. Sine ~K is ompat, the distane funtionis Lipshitz. It is also positive and uniformly bounded from above sine the pair(( k)t; (uk)x) is inside ~K [ ~E. We therefore have by Lebesgue's theorem0 = limk!1 ZQT dist(D	k;K(u)) dt dx = ZQT limk!1 dist(D	k;K(u)) dt dx:With positivity and Lipshitz ontinuity we getdist(D	;K(u)) = dist(limk!1D	k;K(u)) = limk!1 dist(D	k;K(u)) = 0 a.e.,) D	 2 K(u) a.e. in QT .



244 N. Shadewaldt(ii) Sine the sequene 	k is uniformly Lipshitz, its limit 	 is also Lipshitz. As�QT is pieewise C1 we have 	 2W 1;1(QT ), ompare [8, p. 279, Theorem 4℄.(iii) When onstruting the sequene 	k we an split at any 	k�1 to ontinueon in�nitely many di�erent sequenes in the following way. Given 	k�1, hooseany 	k1 2 B1(	k�1; rk�1). Now take s1 = 13 dist(	k�1;	k1). Choose 	k2 2B1(	k�1; s1). Sine 	k1 =2 B1(	k�1; s1), we have 	k1 6= 	k2 . Analogouslywe an hoose s2 = 13 dist(	k�1;	k2) and 	k3 2 B1(	k�1; s2) and so on, toonstrut an in�nite olletion of 	ki with 	ki 6= 	kj , eah leading to a solution	i. As B1(	ki ; si)\B1(	kj ; sj) = ; 8i 6= j and eah solution 	i 2 B1(	ki ; si),we know 	i 6= 	j 8i 6= j and have found in�nitely many di�erent solutions	i = ( i; ui).Remark: Formally we just know 	i 6= 	j , but this ould be due to  i 6=  jand we ould have ui = uj . This senario is avoided if we take instead of theball B1(	k�1; si) the slightly smaller ball Bk:ku(	k�1; si) with the half-normk	ku = k( ; u)ku = kuk1.(iv) Sine the onstrution on tiles only hanges the values on the interior of tilesand all tiles are inside QT , we have uj�QT = u�j�QT , thus u(t; 0) = u�(t; 0) = 0 =u�(t; l) = u(t; l).(v) We know that for almost every (t; x) 2 QTD	 = � t  xut ux� 2 ��(ux) uut ux� :Thus for all � 2 C20 (QT ) we get by partial integration:ZQT [ut�+ �(ux)�x℄ dx dt = � ZQT u�tdxdt+ ZQT �(ux)�x dx dt= � ZQT  x�tdxdt+ ZQT  t�x dx dt = ZQT  �txdxdt� ZQT  �xt dx dt = 0:The extension to test funtions � 2 C10 (QT ) is ahieved with the de�nition of alinear map L : C10 (QT )! R,L(�) = ZQT [ut�+ �(ux)�x℄ dx dt:As u 2 W 1;1, L is well de�ned, bounded and ontinuous. Also L � 0 on C20 (QT )whih is dense in C10 (QT ). Thus ontinuity implies L � 0 on C10 (QT ). �Let us add three general omments on the just proven result:Remark I: Although it took a lot of e�ort to expliitly onstrut elements of F",these are not the only funtions whih may appear in suh a sequene. In prin-iple, the sequene 	k may ontain any other pieewise aÆne funtion in F . Inpartiular any other possible Lipshitz solution is ontained in F . However, we are



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 245espeially interested in solutions whih are ahieved solely with the onstrutiongiven, whih means, they are limits of sequenes of whih every single element hasbeen onstruted as explained in this setion. All strutural results of the nextsetion apply to suh solutions.Remark II: The restrition to Dirihlet boundary onditions is only tehnial.Sine the onstrutive proess only takes plae in the interior of the domain,any boundary ondition for whih an approximate solution u� an be found, ispossible. This inludes generalized Neumann boundary onditions of the type�(ux) = 0, for details see [22℄.Remark III: The existene result translates to the di�erentiated logarithmidi�usion equation (1.1). However, the translation is not as smooth as one mighthope. Given a sign-hanging initial datum v0, we integrate it to obtain a non-monotone u0. Theorem 1 gives a solution u of (1.2) for that initial value. Dif-ferentiation yields v = ux whih is a weak solution of (1.1) in the interior of thedomain. Sine, however, v 2 L1(QT ), it is not neessarily de�ned for f0g � [0; l℄whih is a set of zero measure in R2 . In this ase v does not attain the initial valuein a lassial sense. A weak interpretation ould be that v at point (0; x) has anapproximate limit of v0(x). However, this is only ahieved for jv0(x)j >  > 1.The onstrution does not reover the initial data v0 lose to the singular valuev0 = 0. The reason is that the onstruted solutions avoid the singular valuev = ux = 0. v jumps from positive to negative values and u zigzags.4. Properties of Lipshitz solutions with mirostrutureThe proedure of Setion 3 results in Lipshitz solutions whih display arbitrar-ily �ne struture, we refer to them as `Lipshitz solutions with mirostruture'.The aim of this setion is to give a more detailed desription of this mirostru-ture.The funtions of the onverging sequene are C1 in tile parts of dereasingsize but not di�erentiable aross the boundaries of the tiles, so we expet thelimit funtion to be nowhere C1, whih implies that the ridge lines, whih arejump parts of the derivative, are dense in the domain. Further, the derivativesin the sequene (ul)x jump aross the tile boundaries. For the limit funtionsthese jumps beome dense and ux =2 BV. However, from the onstrution proessevolve two disjoint dense sets A and B, on eah of whih ux is ontinuous and evendi�erentiable in the x-diretion. The main result of this setion is the followingharaterization of ux: ux = d+ � 1A + d� � 1B ;where d� are ontinuous and di�erentiable in x-diretion, and thus ux has someregularity, if restrited to one of those dense sets A or B.The results do not depend on the fast di�usion equation, but are inherent tothe onstrution of Setion 3. They transfer to similar onstrutions, in partiularto solutions for the Perona-Malik equation from [27℄.



246 N. Shadewaldt4.1 Solutions are nowhere C1 for large t.Theorem 6. For all funtions u obtained as the limit of a sequene ul onstrutedwith the method desribed in Setion 3 there exists t0 > 0 suh that for all opensets U � [t0; T ℄� [0; l℄ we have u =2 C1(U).The key to the existene of the bounding time t0 is the following lemma on-erning the approximate equation and approximate solution.Lemma 7. Any solution u 2 C1;2 of the Dirihlet problem(4.1)8>>><>>>:ut � ��(ux)x = 0 (t; x) 2 QT = [0; T ℄� [0; l℄;�� 2 C2; ��(0) = 0; 0 < � < ��0(s) < �u(0; x) = u0(x) x 2 [0; l℄; u0 2 C2+�u(0) = u(l) = 0 = uxx(0) = uxx(l) 8t 2 [0; T ℄has the property ux t!1�! 0 uniformly:This property is obtained when studying the limits of the energy funtionalE(t) := R l0 S�(ux) dx = R l0 R ux(t;x)0 ��(s) ds dx, for details of the proof see [22℄.Notie, that the onditions for �� are more restritive than in Theorem 2 sinewe require ��(0) = 0. But as the onstrution of a solution in Setion 3 uses asymmetri ��, this lemma is appliable here.The key to the non-di�erentiability property is the appearane of arbitrarilysmall tiles T everywhere in [t0; T ℄ � [0; x℄, whih implies that the boundaries ofthe tiles are dense in [t0; T ℄� [0; l℄. More spei�ally, the following lemma holds.Lemma 8. Let u be a funtion obtained as the limit of a sequene ul with u0 = u�and every element ul onstruted with the method of Setion 3. Let t0 be suh thatu�x � 1 8t > t0 (t0 exists by Lemma 7). Then for a.e. (t; x) 2 [t0; T ℄� [0; l℄ thereexists a sequene (T ki;s)l0 suh that (t; x) 2 (T ki;s)l0 8l0 and diam(T ki;s)l0 l0!1�! 0.Proof: For any point (t; x); t � t0 there exists ~Æ withdist((u�x(t; x); ��(u�x(t; x))); � ~E) > ~Æ, ompare Figure 3.4. By the onstrution inSetion 3 u is the limit of a sequene of whih eah uj+1 is onstruted by addingpieewise aÆne funtions ug to uj . We may write(4.2) u = u� + 1Xl=1(ug)l; uj = u� + jXl=1(ug)l:The pieewise aÆne funtions are added on tiles T ki;s. Let �T ki;s be a onnetedsubset of the set f(t; x) 2 T ki;s j (ug)l 2 C1g, thus (ug)l is aÆne on �T ki;s. Then�T ki;x is either a triangle or a enter diamond, ompare Figure 3.7. If at step l



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 247a new tile (T ki;s)l is onstruted inside an old tile (T ki;s)l�j from step l � j thefollowing inlusions hold(4.3) (T ki;s)l � (Dki )l � (Gi)l � (�T ki;s)l�j :This nested onstrution of diamonds T and squares D implies diam(T ki;s)l <12 diam(T ki;s)l�j , so if a sequene of nested tiles exists, then diam(T ki;s)l l!1�! 0.Observe �rst that there is at least one tile around a.e. point (t; x).t � t0 ) dist((ux(t; x); ��(ux(t; x))); � ~E) > ~Æ ) 9 l : (Æi)l < ~Æ) (t; x) =2 (Ki)l ) a �rst tile T ki;s around (t; x) will be onstruted.Let �T be the inner and outer boundaries of tile T , more spei�ally, the subsetof T where the pieewise aÆne funtion g is not di�erentiable. We assume that(t; x) is not a boundary point of any tile and not in the residual from the repeatedexhaustion proesses, i.e., we assume(t; x) =2 0� [l;i;k;s �(T ki;s)l1A [0� [l;i;k;s(QT n(T ki;s)l)1A :Sine the union of boundaries and residual sets is of zero measure, the assumptionis true for almost every (t; x) 2 QT .We proeed with a ontradition argument. Let us assume the sequene of de-reasing tiles around (t; x) is �nite, i.e., there exists l1 suh that (t; x) 2 �(T ki;s)l1but for all l > l1 we have (t; x) =2 Si;k;s�(T ki;s)l. The tile-parts are ompat andug 2 C1(�T ki;s). Further the distane of (ul)x to ~E is positive, so there exists~Æ0 suh that the distane of the point ((ug)x; ��(u�x)) to the boundary of ~E islarger ~Æ0. Thus the argument from above applies and a further tile will be on-struted. This is a ontradition to the assumption that at l1 the last tile wasonstruted. �Proof of Theorem 6: The theorem is proved by ontradition, so let us as-sume u 2 C1(U) for some open set U � [t0; T ℄� [0; l℄. By Lemma 8 we an �nd(T ki;s)l0 � U . On this tile we an write(4.4) u = u� + l0�1Xl=1 (ug)l + (ug)l0 + 1Xl=l0+1(ug)l =: u� + �1 + g + �2:Sine the tiles T of the sequene uj are nested, we have �1x �  on (T ki;s)l0 and bythe integration property of the pieewise aÆne funtions g in (3.15) we know(4.5) Z(Tki;s)l0 �2x dx = 0:



248 N. ShadewaldtFurther, with the bound on the variation of the derivative D	 on squares D,ompare (3.13), and the fat that Dg is onstant, we get the following bound forthe variation of u�x inside (T ki;s)l0 � (Dki )l0 :(4.6) ku�x(t; x) � u�x(s; y)k � kD	(t; x)�D	(s; y)k � �Æi � Æi � 12l0 :The limit funtion u is a solution of ut = �(ux)x whih implies (ux; �(ux)) 2 ~K+[~K� almost everywhere (ompare Figure 3.8). Sine we assumed u 2 C1((T ki;s)l0)and (T ki;s)l0 � U , the derivative ux is ontinuous and thus the points (ux; �(ux))are only on one branh of ~K. Without loss of generality let (ux; �(ux)) 2 ~K+whih implies ux 2 [z�; z+℄. Now we hoose M to be one omponent �(T ki;s)l0 ofthe tile (T ki;s)l0 suh that gxjM = �a. Sine ux > z� we have(4.7) ZM ux � ZM z� � jM jz� > 0:By onstrution we know that on M we have (u�+�1+ g)x 2 (�z+;�z�+ Æi) �(�z+;�z� + 12l0 ). From the integration property of �2 in (4.5) we get:(4.8) ZM ux = ZM u�x + �1x + gx + �2x = ZM u�x + �1x + gx� ZM (�z� + 12l0 ) = jM j(�z� + 12l0 ) < 0(4.9) ) 0 < jM jz� (4.7)� ZM ux (4.8)< 0:This is a ontradition, so u annot be in C1(U). �Remark: For the proof of u =2 C1(U) it was only neessary to �nd a single tileT ki;s � U . Therefore the result holds for any open set U � QT in whih at leastone tile is used for the onstrution. More generally, it is suÆient to �nd a singletile T with T \ U 6= ; sine by Lemma 8 the intersetion will ontain a full tile.This implies u 2 C1(U) ) ujU = u�jU :4.2 Singular measure theoreti seond derivative - ux =2 BV. By the proofin the previous setion we see that ux is neither positive everywhere nor negativeeverywhere. Further it does not attain values lose to zero beause juxj > z�.This implies that the derivative jumps from positive to negative values and thejump is always at least 2z�. Intuition tells us the variation of ux should not bebounded, not even loally. More preisely, a funtion u 2 L1(U), U � Rn open,



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 249has bounded variation in U i�sup�ZU u div'dx ���� ' 2 C10 (U); j'j � 1� <1:We write BV(U) to denote the spae of funtions of bounded variation.Theorem 9. Let u be obtained as the limit of a sequene ul onstruted with themethod desribed in Setion 3. Let U � [t0; T ℄� [0; l℄ be open. Then ux =2 BV(U).To prove unbounded variations of a funtion on a subset of R2 is not straightforward. The fat that the derivative jumps in�nitely often in any open set issuÆient in the one-dimensional ase, beause of the onept of essential variation[9, 5.10℄. But in the two-dimensional ase a funtion of bounded variation mayhave in�nitely many jumps in any open set, as shown by the ounterexample 3.53in [1, 3.5℄. To prove the above theorem we want to use the Charaterization ofBV by setions from [1℄ whih implies (ompare [1, p. 196, l. 7{11℄):(4.10) Let u 2 L1(
 � RN ). Then u 2 BV(
) only if for any � 2 SN�1and for HN�1-a.e. y 2 
� the restrition u�y 2 BV(
�y),where: 
� := projetion of 
 onto the hyperplane orthogonal to �;
�y := setion of 
 orresponding to y 2 
� : fy + t� 2 
; t 2 Rg;u�y := restrition of u to 
�y , i.e., u�y(t) = u(y + t�) ;HN�1 := (N � 1)-dimensional Hausdor� measure:We want to show that for the �xed diretion � = (0; 1) 2 S2 and for LN�1-a.e.t 2 [0; T ℄ the restrition of the derivative (ux)�t is not in BV([0; l℄) and so ux =2 BVby (4.10). For this, one needs to aess values of the derivative ux on the linet � [0; l℄. This is a set of measure zero whih implies that ux is not neessarilyde�ned there. The �nal argument of the proof will be the same as in the previoussetion, though the setup is more ompliated. Reallul ! u whih is a weak solution of ut = [�(ux)℄x;(ul)x ! ux p.w. H2-a.e.;ul 2 C1pw ) ul 2 C1 H2-a.e.;ux 2 I+ [ I� with I+ = [z�; z+℄ and I� = �I+:



250 N. ShadewaldtWe use the following notation.(ux)jt := restrition of ux to the spei� time t, i.e.,(ux)jt(x) = ux(t; x);Vl := n[U � [t0; T ℄� [0; x℄ j ul 2 C1(U)o = open interior tile parts;V := 1\l=1Vl;V + := f(t; x) 2 V j 9 l0 : 8 l > l0 (ul)x(t; x) 2 I+g;V � := f(t; x) 2 V j 9 l0 : 8 l > l0 (ul)x(t; x) 2 I�g;~V := V n(V + [ V �);M := f(t; x) 2 [t0; T ℄� [0; l℄ j (ul)x(t; x)! ux(t; x)g;E := V \M;R := ft 2 [t0; T ℄ j H1(t� [0; l℄nE) = 0g:The sets Vl; V;M; and E over almost all of [t0; T ℄�[0; l℄, i.e.,H2([t0; T ℄�[0; l℄n:) =0 for Vl; V;M and E. Also H1([t0; T ℄nR) = 0, onsider H2([t0; T ℄ � [0; l℄nE) =R Tt0 H1(t� [0; l℄nE) dt, and ~V \M = ; whih implies H2( ~V ) = 0.The values of (ul)x onverge in V + and V �. To see this, we �rst note from thede�nition of V � that (ul)x stays positive or negative respetively after some stepl0. Then, however, the further variation of (ul)x is bounded by Æi in eah step,ompare Figure 3.8 and equation (3.16). By the estimate on Æi in (3.12) and thehoie of the sequene �l at the beginning of Setion 3.3, we see that the seriesof (Æi)l onverges, so (ul)x is a Cauhy sequene and we get(4.11) 8(t; x) 2 V + : (ul)x(t; x)! d+ with some value d+ 2 I+;8(t; x) 2 V � : (ul)x(t; x)! d� with some value d� 2 I�:Proof of Theorem 9: Let U � [t0; T ℄ � [0; l℄ be open, t 2 R suh thatH1(U jt) > 0. Consider (ux)jt and an open Interval J � U jt. We will showthat ux attains values in I+ and I� for ertain points in J , so the variation of(ux)jt is at least 2z� in J . Then we an over U jt with ountably many intervalsJ to show that the essential variation on the line t � [0; l℄ is not bounded. Thisimplies (ux)jt =2 BV(U jt) (ompare [9, 5.10℄). With the haraterization of BVfuntions in (4.10) we then get (ux) =2 BV(U).Let l0 be so large that the diameter of the tiles T at step l0 is less than jJ j=2.Sine t 2 R, we have H1(U jtnE) = 0 and the interval J is overed up to an H1-zero set by restritions of onneted omponents of Vl0 . There is a tile (T ki;s)l suhthat its restrition to time t is ontained in J . This restrition has three onnetedomponents whih are intersetions with three tile parts, two boundary trianglesand the middle diamond. We all the �rst omponent W�l and the seond oneW+l , suh that (ul)xjW�l 2 I� respetively (ompare Figure 4.9). The thirdomponent mirrors the �rst and is thus irrelevant for the argument. Sine t 2 R,



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 251the horizontal line parts of the tile T are not exatly on the line t � [0; l℄ butabove or below. Further, this also aounts for the fat that the sets V + \M andV � \M over J up to a set of H1-measure zero. If(4.12) (V + \M \ J) 6= ; and (V � \M \ J) 6= ;the onvergene in V �, see (4.11), gives that ux attains values in I+ and I� andthe jump is on�rmed. Assume (4.12) was false. Without loss of generality let
PSfrag replaements J Utile T t� [0; l℄W�l W+l

Figure 4.9. Jump along a line: Intersetion of the line t � [0; l℄with the set U , position of the interval J , an interseting tile T , andtile parts W+l and W�l with positive and negative ux, and thereforewith a jump.V � \M \ J = ;. This implies H1(V + \M \ J) = H1(J), moreover H1(V + \M \W�l ) = H1(W�l ). Now we argue as in the previous setion, but only for the�xed time t:(4.13) ZW�l ux = ZV +\M\W�l ux � jV + \M \W�l jz� = jW�l jz� > 0:Like in the previous setion we use the desription of u as a sum, f. (4.4), thezero-integral property of �2 in (4.5), and the bound for ux in this partiular tilepart to estimateZW�l ux = ZW�l u�x + �1x + gx + �2x= ZW�l u�x + �1x + gx � ZW�l (�1 + 12l ) = jW�l j(�1 + 12l ) < 0:This is a ontradition, so (V � \M \ J) 6= ; and ux =2 BV. �Remark: As in the previous subsetion the argument is not restrited to t > t0but works for any open set U , in whih the onstrution proess is arried out.



252 N. Shadewaldt4.3 Charaterization of ux. Theorem 9 implies that both V +\M and V �\Mare dense in [t0; T ℄� [0; l℄. It seems reasonable that the limit derivative ux shouldbe ontinuous on both those dense sets and probably even di�erentiable in x-diretion. The following haraterization holds.Theorem 10. Let u be obtained as the limit of a sequene ul onstruted withthe method desribed in Setion 3. Then there exist two funtions d+(t; x) andd�(t; x) 2 C([t0; T ℄� [0; l℄) suh thatux = d+ � 1V +\M + d� � 1V �\M :Moreover, d� is weakly di�erentiable in x-diretion and d�x 2 L1.Proof: It is suÆient to onsider d+ as the argument is analogous for d�. Con-sider uxjV +\M . Sine ux � z� > 0 and � 2 C1(R+ ),(4.14) ux 2 C(V + \M) , �(ux) =  t 2 C(V + \M):We reall the de�nition of 	� = ( �; u�), ompare (3.18), and the smoothness ofthe approximating sequene to see( l)t = Z x0 (ul)t(t; s) ds = Z x0 u�t (t; s) + lXk=1(ug)kt ds:Beause of the derivative values of g given in (3.15)(iii) and the bounds for Æi in(3.12) we havej( l)t � ( l�1)tj = ����Z x0 (ug)lt(t; s) ds���� � Æli � al;ki � Æli � 2z+ � (�l)2 � 2z+ 122l :Therefore we obtain onvergene to some yet unknown funtion �:  lt 2 C L1�!� 2 C. Sine D l ! D pieewise almost everywhere by Lemma 5, we have� =  t almost everywhere, therefore  t has the ontinuous representative � andwe an say  t 2 C(QT ).Notie that the onvergene argument for  l is valid everywhere onQT , not juston the subset V + \M . This is important sine it implies �(ux) =  t 2 C(QT ).The ontinuity of �(ux) is neessary for u to be a weak solution.The restrition to the subset V + \M is neessary to apply the relation (4.14)and get ux 2 C(V + \M). Sine V + \M is dense in [t0; T ℄� [0; l℄, we an extendux ontinuously to �nd d+(t; x) 2 C([t0; T ℄� [0; l℄). Analogously we �nd d� andthe �rst laim of the theorem is proved.For di�erentiability in x-diretion onsider the sequene ( l)t(t; x) for a �xedtime t. With the de�nition of  l(t; x) as the integral in x-diretion of the fun-tion ul, ompare (3.18), we an alulate (( l)t)x = (ul)t 2 L1, at least for every�xed l. We obtain ( l)t 2 W 1;1(t� [0; l℄). Notie that the argument is valid for



Lipshitz solutions for a one-dimensional logarithmi di�usion equation 253all t and for all x 2 [0; l℄. Sinek(ul)tkL1 � k(u0)tkL1 +X k(ug)tkL1= k(u0)tkL1 +X al;ki � Æli� k(u0)tkL1 + 2z+X 12l � ;the sequene ( l)t is uniformly Lipshitz with respet to the x-variable, henethe limit is also Lipshitz and  t 2 W 1;1(t � [0; l℄). By the relation (4.14) wenow have ux 2 W 1;1 with respet to x on V + \M . Sine this set is dense, theextension has the same regularity, d+ 2 W 1;1. It follows that dx exists weaklyand dx 2 L1. �Let us add two general omments on the just proven results:Remark I: The onstrution of Setion 3 ould also be arried out with ��(s) = s.The approximate solution u� is then a solution to the heat equation. This ap-proah is simpler sine maximum priniples, smoothing property and asymptotisare readily available. Further, the onstrutive proess will take plae in all of thedomain sine �� never touhes the urve of �, therefore the approximate solutionis at no point a solution to the original problem. This implies that all struturalresults are true from t = 0.Remark II: The method to onstrut sequenes onverging to Lipshitz funtionshas been developed by Zhang for the one-dimensional Perona-Malik equation [27℄and generalized to similar di�usion equations of forward-bakward type [28℄. Forthese equations the onstrution appears when the derivative is lose to the ritialvalue separating the forward and bakward parts of the di�usion. A typialexample with ritial value 1 isut = [�(ux)℄x = � ux1 + u2x�x :The proofs in this setion require only the onstrutive proess in some openset U . The onstrutions in [27℄, [28℄ to reate solutions of the Perona-Malikequation and related problems are the same ones as used here. Beause of thisthe strutural results and their proofs transfer.Further, these strutural results are not exlusive to time dependent problems.They translate to Lipshitz solutions of ellipti problems ahieved with similaronstrutions, for example the solutions onstruted in [16℄, [17℄.5. ConlusionWe have shown that the onstrution developed for the Perona-Malik equationand similar forward-bakward di�usion equations [27℄, [29℄ works for singularlogarithmi di�usion equations as well. All Lipshitz funtions onstruted in this
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