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Study of a visoelasti fritionalontat problem with adhesionArezki TouzalineAbstrat. We onsider a quasistati fritional ontat problem between a vis-oelasti body with long memory and a deformable foundation. The ontat ismodelled with normal ompliane in suh a way that the penetration is limitedand restrited to unilateral onstraint. The adhesion between ontat surfaes istaken into aount and the evolution of the bonding �eld is desribed by a �rstorder di�erential equation. We derive a variational formulation and prove theexistene and uniqueness result of the weak solution under a ertain onditionon the oeÆient of frition. The proof is based on time-dependent variationalinequalities, di�erential equations and Banah �xed point theorem.Keywords: visoelasti, normal ompliane, adhesion, fritional, variational in-equality, weak solutionClassi�ation: 47J20, 49J40, 74M10, 74M151. IntrodutionContat problems involving deformable bodies are quite frequent in the indus-try as well as in daily life and play an important role in strutural and mehanialsystems. Contat proesses involve ompliated surfae phenomena, and are mod-elled by highly nonlinear initial boundary value problems. Taking into aountvarious ontat onditions assoiated with more and more omplex behavior lawslead to the introdution of new and non standard models, expressed by the aidof evolution variational inequalities. An early attempt to study fritional ontatproblems within the framework of variational inequalities was made in [11℄. Themathematial, mehanial and numerial state of the art an be found in [29℄. Inthis referene we �nd a detailed analysis and numerial studies of the adhesiveontat problems. Reently a new book ([31, Chapter 7{11, pp. 127{209℄) intro-dues the reader into the theory of variational inequalities with emphasis on thestudy of ontat mehanis and more spei�ally, on antiplane fritional ontatproblems. Also, reently existene results were established in [1℄, [9℄, [12℄ in thestudy of unilateral and fritional ontat problems for linear elasti materials. In[23℄, [24℄ quasistati fritional ontat problems with adhesion for linear elastimaterials were studied and existene results were given under a smallness assump-tion on the oeÆient of frition. Here as in [19℄, where a similar problem wasresolved, we study a mathematial model whih desribes a fritional and adhesive



258 A. Touzalineontat problem between a visoelasti body with long memory and a deformablefoundation. The ontat is modelled with normal ompliane in suh a way thatthe penetration is limited and restrited to unilateral onstraints. The main nov-elty of the model onsidered is the oupling of memory e�ets with frition andadhesion e�ets. We reall that models for dynami or quasistati proesses offritionless adhesive ontat between a deformable body and a foundation havebeen studied in [2℄, [3℄, [4℄, [5℄, [7℄, [8℄, [13℄, [19℄, [20℄, [22℄, [25℄, [26℄, [27℄, [28℄,[29℄, [30℄, [32℄, [33℄. Following [14℄, [15℄ we use the bonding �eld as an additionalstate variable �, de�ned on the ontat surfae of the boundary. The variablesatis�es the restritions 0 � � � 1. At a point on the boundary ontat surfae,when � = 1 the adhesion is omplete and all the bonds are ative; when � = 0all the bonds are inative, severed, and there is no adhesion; when 0 < � < 1the adhesion is partial and only a fration � of the bonds is ative. We refer thereader to the extensive bibliography on the subjet in [6℄, [14℄, [15℄, [16℄, [23℄, [25℄,[28℄, [29℄. Aording to [18℄, the method presented here onsiders a omplianemodel in whih the ompliane term does not represent neessarily a ompatperturbation of the original problem without ontat. This leads us to studysuh models, where a stritly limited penetration is permitted with the limitproedure to the Signorini ontat problem. In [32℄, [33℄ fritionless unilateralontat problems with adhesion for elasti materials were studied. Also reentlyin [10℄ a dynami ontat problem with nonloal frition and adhesion betweentwo visoelasti bodies of Kelvin-Voigt type was resolved. An existene result wasproved without any assumption on the smallness of the oeÆient of frition andthe variational formulation was approximated. Moreover some numerial resultswere presented. In this work as in [32℄, [33℄ we derive a variational formulation ofthe mehanial problem written as the oupling between a variational inequalityand a di�erential equation. We prove the existene of a unique weak solution if theoeÆient of frition is suÆiently small, and obtain a partial regularity result forthe solution. However, omparing this result to that obtained in [10℄ and keepingin mind the existene results found in [23℄, [24℄, we observe that in quasistatifritional ontat problems information about the solution (seond derivative ofu, initial veloity) are removed and this is paid by more restritive assumptionson other data, partiulary on the oeÆient of frition. On the other hand whenthe latter is great, it has been proved for example in the study of some fritionalstati ontat problems (see [17℄) that we have nonuniqueness of the solution.The paper is strutured as follows. In Setion 2 we present some notationand give the variational formulation. In Setion 3 we state and prove our mainexistene and uniqueness result, Theorem 3.1.2. Problem statement and variational formulationLet 
 � Rd (d = 2; 3) be a domain initially oupied by a visoelasti bodywith long memory. 
 is supposed to be open, bounded, with a suÆiently regularboundary �. We assume that � is omposed of three sets ��1, ��2, and ��3, with themutually disjoint relatively open sets �1, �2 and �3, suh that meas(�1) > 0. The



Study of a visoelasti fritional ontat problem with adhesion 259body is ated upon by a volume fore of density '1 on 
 and a surfae trationof density '2 on �2. On �3 the body is in adhesive fritional ontat with adeformable foundation.Thus, the lassial formulation of the mehanial problem is written as follows.Problem P1. Find a displaement u : 
 � [0; T ℄ ! Rd and a bonding �eld� : �3 � [0; T ℄! [0; 1℄ suh that, for all t 2 [0; T ℄,(2.1) �(t) = F"(u(t)) + Z t0 F(t� s)"(u(s)) ds in 
;(2.2) div �(t) + '1(t) = 0 in 
;(2.3) u(t) = 0 on �1;(2.4) �(t)� = '2(t) on �2;(2.5) u�(t) � g; ��(t) + p (u�(t)) � ��2(t)R� (u� (t)) � 0���(t) + p (u�(t)) � ��2 (t)R� (u�(t))� (u� (t)� g) = 0 9=; on �3;
(2.6) ���� (t) + ��2(t)R� (u� (t))�� � �p (u� (t))���� (t) + ��2(t)R� (u� (t))�� < �p (u�(t))) u� = 0���� (t) + ��2(t)R� (u� (t))�� = �p (u� (t)))9� � 0 s.t. u� = �� ��� (t) + ��2(t)R� (u� (t))�

9>>>>>>>>=>>>>>>>>; on �3;
(2.7) _�(t) = � h�(t)�� (R� (u� (t)))2 + � jR� (u� (t))j2�� "ai+ on �3;(2.8) �(0) = �0 on �3:Equation (2.1) represents the visoelasti onstitutive law with long memory ofthe material; F is the elastiity operator and R t0 F(t � s)"(u(s)) ds is the mem-ory term in whih F denotes the tensor of relaxation; the stress �(t) at urrentinstant t depends on the whole history of strains up to this moment of time.Equation (2.2) represents the equilibrium equation while (2.3) and (2.4) are thedisplaement and tration boundary onditions, respetively, in whih � denotesthe unit outward normal vetor on � and �� represents the Cauhy stress vetor.The onditions (2.5) represent the unilateral ontat with adhesion in whih � is



260 A. Touzalinea given adhesion oeÆient and R� , R� are trunation operators de�ned in (2.5)and (2.6), respetively, byR�(s) = 8><>:L if s < �L�s if � L � s � 00 if s > 0 ; R� (v) = (v if jvj � L;L vjvj if jvj > L:Here L > 0 is the harateristi length of the bond, beyond whih the latter hasno additional tration (see [23℄, [29℄) and p is a normal ompliane funtion whihsatis�es the assumption (2.16); g denotes the maximum value of the penetrationwhih satis�es g � 0. When u� < 0 i.e. when there is separation between thebody and the foundation then the ondition (2.5) ombined with hypothesis (2.16)and de�nition of R� shows that �� = ��2R�(u�) and does not exeed the valueLk�kL1(�3). When g > 0, the body may interpenetrate into the foundation,but the penetration is limited, that is u� � g. In this ase of penetration (i.e.u� � 0), when 0 � u� < g then ��� = p(u�) whih means that the reation ofthe foundation is uniquely determined by the normal displaement and �� � 0.Sine p is an inreasing funtion, the reation is inreasing with the penetration.If u� = g then ��� � p(g) and �� is not uniquely determined. If g > 0 andp = 0, onditions (2.5) beome the Signorini's ontat onditions with a gap andadhesionu� � g; �� � ��2R� (u�) � 0; ��� � ��2R� (u�)� (u� � g) = 0:If g = 0, the onditions (2.5) ombined with hypothesis (2.16) lead to the Signoriniontat onditions with adhesion, with zero gap, given byu� � 0; �� � ��2R� (u�) � 0; ��� � ��2R� (u�)�u� = 0:These ontat onditions were used in [30℄, [32℄. It follows from (2.5) that thereis no penetration between the body and the foundation, sine u� � 0 duringthe proess. Also, note that when the bonding �eld vanishes, then the ontatonditions (2.5) beome the lassial Signorini ontat onditions with zero gap,that is, u� � 0; �� � 0; ��u� = 0:Conditions (2.6) represent Coulomb's law of dry frition with adhesion where �denotes the oeÆient of frition and � is a given adhesion oeÆient. Equa-tion (2.7) represents the ordinary di�erential equation whih desribes the evolu-tion of the bonding �eld, in whih r+ = maxfr; 0g, and it was already used in [7℄.Sine _� � 0 on �3 � (0; T ), one debonding ours bonding annot be reestab-lished and, indeed, the adhesive proess is irreversible. Also from [21℄ it must bepointed out learly that ondition (2.7) does not allow for omplete debonding in�nite time. Finally, (2.8) is the initial ondition, in whih �0 denotes the initialbonding �eld. In (2.7) a dot above a variable represents its derivative with re-spet to time. We denote by Sd the spae of seond order symmetri tensors on



Study of a visoelasti fritional ontat problem with adhesion 261Rd (d = 2; 3) while j � j represents the Eulidean norm on Rd and Sd. Thus, forevery u; v 2 Rd , u � v = uivi, jvj = (v � v) 12 , and for every �; � 2 Sd, � � � = �ij�ij ,j� j = (� � �) 12 . Here and below, the indies i and j run between 1 and d and thesummation onvention over repeated indies is adopted. Now, to proeed withthe variational formulation, we need the following funtion spaes:H = �L2 (
)�d , H1 = �H1(
)�d ; Q = �� = (�ij) : �ij = �ji 2 L2 (
)	 ;Q1 = f� 2 Q : div � 2 Hg :Note that H and Q are real Hilbert spaes endowed with the respetive anonialinner produts (u; v)H = Z
 uivi dx; h�; �iQ = Z
 �ij�ij dx:The strain tensor is "(u) = ("ij(u)) = 12 (ui;j + uj;i) ;div � = (�ij;j) is the divergene of �. For every element v 2 H1 we denote by v�and v� the normal and the tangential omponents of v on the boundary � givenby v� = v � �; v� = v � v��:We also denote by �� and �� the normal and the tangential traes of a funtion� 2 Q1, and when � is a regular funtion then�� = (��) � �; �� = �� � ���;and the following Green's formula holds:h�; "(v)iQ + (div �; v)H = Z� �� � v da 8 v 2 H1;where da is the surfae measure element. Now, let V be the losed subspae ofH1 de�ned by V = fv 2 H1 : v = 0 on �1g ;and denote the onvex subset of admissible displaements given byK = fv 2 V : v� � g a:e: on �3g :Sine meas(�1) > 0, the following Korn's inequality holds [11℄:(2.9) k"(v)kQ � 
kvkH1 8 v 2 V;



262 A. Touzalinewhere 
 > 0 is a onstant whih depends only on 
 and �1. We equip V withthe inner produt (u; v)V = h"(u); "(v)iQand k � kV is the assoiated norm. It follows from Korn's inequality (2.9) that thenorms k�kH1 and k�kV are equivalent on V . Thus, (V; k�kV ) is a real Hilbert spae.Moreover by Sobolev's trae theorem, there exists d
 > 0 whih only depends onthe domain 
, �1 and �3 suh that(2.10) kvk(L2(�3))d � d
kvkV 8 v 2 V:For p 2 [1;1℄, we use the standard norm of Lp(0; T ;V ). We also use the Sobolevspae W 1;1(0; T ;V ) equipped with the normkvkW 1;1(0;T ;V ) = kvkL1(0;T ;V ) + k _vkL1(0;T ;V ):For every real Banah spae (X; k�kX) and T > 0 we use the notation C([0; T ℄;X)for the spae of ontinuous funtions from [0; T ℄ to X ; reall that C([0; T ℄;X) isa real Banah spae with the normkxkC([0;T ℄;X) = maxt2[0;T ℄ kx(t)kX :We suppose that the body fores and surfae trations have the regularity(2.11) '1 2 C([0; T ℄;H); '2 2 C �[0; T ℄; �L2 (�2)�d� :We de�ne the funtion f : [0; T ℄! V by(2.12) (f(t); v)V = Z
 '1(t) � v dx+ Z�2 '2(t) � v da 8 v 2 V; t 2 [0; T ℄;and we note that (2.11) and (2.12) implyf 2 C ([0; T ℄;V ) :In the study of the mehanial problem P1 we assume that the elastiity operatorF : 
� Sd ! Sd, satis�es
(2.13)

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
(a) there exists M > 0 suh thatjF (x; "1)� F (x; "2)j �M j"1 � "2j for all "1; "2 in Sd;a:e: x 2 
;(b) there exists m > 0 suh that(F (x; "1)� F (x; "2)) � ("1 � "2) � m j"1 � "2j2 ;for all "1; "2 in Sd; a:e: x 2 
;() the mapping x! F (x; ") is Lebesgue measurable on 
for any " in Sd;(d) x! F (x; 0) 2 Q:



Study of a visoelasti fritional ontat problem with adhesion 263Also we need to introdue the spae of the tensors of fourth order de�ned byQ1 = fE =(Eijkl) : Eijkl = Ejikl = Eklij 2 L1 (
)g ;whih is a real Banah spae with the normkEkQ1 = max0�i;j;k;l�d kEijklkL1(
) :We assume that the tensor of relaxation F satis�es(2.14) F 2 C ([0; T ℄ ;Q1) :The adhesion oeÆients satisfy(2.15) � ; � ; "a 2 L1 (�3) and � ; � ; "a � 0 a:e: on �3;and we assume that the initial bonding �eld satis�es(2.16) �0 2 L2 (�3) ; 0 � �0 � 1 a:e: on �3:Next, we de�ne respetively the funtionalsj : V � V ! R; j� : V � V ! Rby j(u; v) = Z�3 p(u�)v� da; j� (u; v) = Z�3 �p(u�)jv� j da;and let j = j + j� :We also de�ne the funtionalr : L2 (�3)� V � V ! Rby r(�; u; v) = Z�3 ����2R�(u�� v� + ��2R� (u� ) � v� ) da8 (�; u; v) 2 L2(�3)� V � V:As in [18℄ we assume that the normal ompliane funtion p satis�es(2.17) 8>>>>>><>>>>>>: (a) p :℄�1; g℄! R;(b) there exists Lp > 0 suh thatjp (r1)� p (r2)j � Lp jr1 � r2j ; for all r1; r2 � g;() (p (r1)� p (r2)) (r1 � r2) � 0; for all r1; r2 � g;(d) p(r) = 0 for all r < 0:



264 A. TouzalineWe assume that the oeÆient of frition � satis�es(2.18) � 2 L1 (�3) and � � 0 a:e: on �3:Finally we need to introdue the following set of the bonding �eld,B = �� : [0; T ℄! L2 (�3) : 0 � �(t) � 1; 8 t 2 [0; T ℄; a:e: on �3	 :Below,  is a generi positive onstant whih does not depend on t 2 [0; T ℄, whosevalue may hange from plae to plae.Now using Green's formula, we obtain that the problem P1 has the followingvariational formulation.Problem P2. Find a displaement �eld u 2 C([0; T ℄;K) and a bonding �eld� 2W 1;1(0; T ;L2(�3)) \ B suh that(2.19) hF"(u(t)); "(v)� "(u(t))iQ + DR t0 F(t� s)"(u(s)) ds; "(v) � "(u(t))EQ+r (�(t); u(t); v � u(t)) + j(�(t); u(t); v) � j (�(t); u(t); u (t))� (f(t); v � u(t))V 8 v 2 K; t 2 [0; T ℄;(2.20)_� (t) = � h� (t) (� (R� (u� (t)))2 + � jR� (u� (t))j2)� "ai+ a:e: t 2 (0; T ) ;(2.21) � (0) = �0:3. Existene and uniqueness of the solutionOur main result in this setion is the following theorem.Theorem 3.1. Let (2:11), (2:13), (2:14), (2:15), (2:16), (2:17) and (2:18) hold.Then, there exists a onstant �0 > 0 suh that Problem P2 has a unique solutionif k�kL1(�3) < �0:The proof of Theorem 3.1 is arried out in several steps. In the �rst step, letk > 0 and onsider the spae X de�ned asX = (� 2 C �[0; T ℄;L2 (�3)� : supt2[0;T ℄ �exp(�kt)k�(t)kL2(�3)� < +1) :It is well known that X is a Banah spae with the normk�kX = supt2[0;T ℄ �exp(�kt)k�(t)kL2(�3)� :Next for a given � 2 X , we onsider the following variational problem.



Study of a visoelasti fritional ontat problem with adhesion 265Problem P1�. Find u� 2 C([0; T ℄;K) suh thathF" (u�(t)) ; "(v)� " (u�(t))iQ+�Z t0 F(t� s)" (u�(s)) ds; "(v)� " (u�(t))�Q+ r (� (t) ; u� (t) ; v � u�(t)) + j (u�(t); v)� j (u� (t) ; u� (t))� (f(t); v � u�(t))V 8 v 2 K; t 2 [0; T ℄:(3.1)We have the following result.Proposition 3.2. There exists a onstant �1 > 0 suh that Problem P1� has aunique solution if k�kL1(�3) < �1:For the proof of this proposition we onsider the following problem.Problem P1��. For � 2 C([0; T ℄;Q), �nd u�� 2 C([0; T ℄;K) suh that(3.2) hF" (u��(t)) ; " (v � u��(t))iQ + h�(t); " (v � u��(t))iQ+r (�(t); u�� (t) ; v � u��(t)) + j (u��(t); v) � j (u�� (t) ; u��(t))� (f (t) ; v � u�� (t))V 8 v 2 K; t 2 [0; T ℄ :Riesz's representation theorem leads to the existene of an element f� 2C([0;T ℄;V )suh that (f� (t) ; v)V = (f(t); v)V � h�(t); "(v)iQ 8 v 2 V:Then it is lear that Problem P1�� is equivalent to the following problem.Problem P2��. For � 2 C([0; T ℄;Q), �nd u�� 2 C([0; T ℄;K) suh that(3.3) hF" (u��(t)) ; " (v � u��(t))iQ + r (� (t) ; u��(t); v � u��(t))+j (u�� (t) ; v)� j (u��(t); u�� (t)) � (f�(t); v � u��(t))V8 v 2 K; t 2 [0; T ℄:We have the following result.Lemma 3.3. There exists a onstant �1 > 0 suh that Problem P2�� has a uniquesolution if k�kL1(�3) < �1.Proof: Let t 2 [0; T ℄ and let At : V ! V be the operator de�ned by(Atu; v)V = hF" (u) ; "(v)iQ + r(�(t); u; v) + j(u; v) 8u; v 2 V:As in [29℄, using (2.13)(a), (2.15), (2.17)(b) and the properties of R� and R� ,we see that the operator At is Lipshitz ontinuous. Also using (2.13)(b), (2.15),



266 A. Touzaline(2.17)() and the properties of R� and R� , we have(Atu�Atv; u� v)V � mku� vk2V 8u; v 2 V:Then the operator At is strongly monotone. Next, we an easily hek that, for agiven u 2 K, the funtional j� (u; �) : K ! R is onvex and lower semiontinuous.Let �1 = m=Lpd2
, then for k�kL1(�3) < �1, sine K is a nonempty losedonvex subset of V , using a standard existene and uniqueness result for elliptivariational inequalities (see [2℄), it follows that there exists a unique elementu��(t) 2 K whih satis�es the inequality (3.3). Moreover aording again to [29℄,using (3.3), we haveku�� (t1)� u�� (t2)kV� �k� (t1)� � (t2)kL2(�3) + kf� (t1)� f� (t2)kV � 8 t1; t2 2 [0; T ℄:Hene the regularity f� 2 C([0; T ℄;V ) and � 2 C([0; T ℄;L2(�3)) imply that u�� 2C([0; T ℄;K). �Now to end the proof of Proposition 3.2, we introdue the operator�� : C ([0; T ℄ ;Q)! C ([0; T ℄ ;Q)de�ned by(3.4) ���(t) = Z t0 F(t� s)" (u��(s)) ds 8 � 2 C([0; T ℄;Q); t 2 [0; T ℄:Lemma 3.4. The operator �� has a unique �xed point �� .Proof: Let �1; �2 2 C([0; T ℄;Q). Using (3.3), (3.4) and (2.14) we obtaink���1(t)� ���2(t)kQ �  Z t0 k�1(s)� �2(s)kQ ds 8 t 2 [0; T ℄:Reiterating this inequality n times, yields�n��1 � �n��2C([0;T ℄;Q) � (T )nn! k�1 � �2kC([0;T ℄;Q) :As limn!+1 (T )nn! = 0, it follows that for a positive integer n suÆiently large,�n� is a ontration; then, by using the Banah �xed point theorem, it admits aunique �xed point �� whih is also a unique �xed point of �� i.e.,(3.5) ����(t) = ��(t) 8 t 2 [0; T ℄:Then by (3.3) and (3.5) we onlude that u��� is the unique solution of (3.1) andProposition 3.2 is proved. �Next denote u� = u��� . In the step below we onsider the following problem.



Study of a visoelasti fritional ontat problem with adhesion 267Problem P2�. Find �� : [0; T ℄! L1(�3) suh that_��(t) = � h��(t)�� (R� (u���(t)))2 + � jR� (u��� )j2�� "ai+(3.6) a:e: t 2 (0; T );��(0) = �0:(3.7)We obtain the following result.Proposition 3.5. Problem P2� has a unique solution �� whih satis�es�� 2W 1;1 �0; T ;L2 (�3)� \ B:Proof: Consider the mapping � : X ! X given by��(t) = �0 � Z t0 h�(s)��(R� (u��(s)))2 + � jR� (u�� )j2�� "ai+ ds;where u� is the solution of Problem P1� . Then we havek��1 (t)� ��2(t)kL2(�3)�  Z t0 �1(s) �R� �u�1�(s)��2 � �2(s) �R� �u�2�(s)��2L2(�3) ds+  Z t0 �1(s) ��R� �u�1� (s)���2 � �2 (s) ��R� �u�2� (s)���2L2(�3) ds:We use the de�nition of the trunation operators R� and R� and write�1 = �1 � �2 + �2:It follows after some algebra alulus thatk��1 (t)� ��2 (t)kL2(�3)�  R t0 k�1(s)� �2 (s)kL2(�3) ds+  R t0 ku�1� (s)� u�2�(s)kL2(�3) ds:Moreover using (2.10), we getk��1(t)� ��2(t)kL2(�3)�  Z t0 k�1 (s)� �2(s)kL2(�3) ds+ d
 Z t0 ku�1(s)� u�2(s)kV ds:(3.8)Now we need to show the following lemma.Lemma 3.6. There exists a onstant �0 2℄0; �1[ suh that for k�kL1(�3) < �0,we have ku�2(t)� u�1(t)kV �  k�1(t)� �2(t)kL2(�3) 8 t 2 [0; T ℄:



268 A. TouzalineProof: Let t 2 [0; T ℄. Take u�2(t) in the inequality (3.1) satis�ed by u�1(t), thentake u�1(t) in the same inequality satis�ed by u�2(t). After adding the resultinginequalities we �nd thathF" (u�1 (t))� F" (u�2 (t)) ; " (u�2 (t))� " (u�1(t))iQ+DR t0 F(t� s)" (u�1(s))� " (u�2(s)) ds; " (u�2(t)) � " (u�1(t))EQ+r (�1(t); u�1(t); u�2(t)� u�1 (t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))+j (u�1(t); u�2(t))� j (u�1 (t) ; u�1(t)) + j (u�2(t); u�1(t))�j (u�2(t); u�2(t)) � 0:Using the assumption (2.13)(b) on F we dedue from the previous inequality that
(3.9) m ku�1(t)� u�2(t)k2V� DR t0 F(t� s)" (u�1(s))� " (u�2(s)) ds; " (u�2(t))� " (u�1(t))EQ+r (�1(t); u�1(t); u�2(t)� u�1(t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))+j (u�1(t); u�2 (t))� j (u�1 (t) ; u�1(t)) + j (u�2 (t) ; u�1(t))�j (u�2 (t) ; u�2(t)) :Using the properties of R� and R� (see [29℄), we �nd thatr (�1(t); u�1 (t) ; u�2(t)� u�1(t)) + r (�2(t); u�2(t); u�1(t)� u�2 (t))� �k�kL1(�3) + k�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3) ku�1(t)� u�2 (t)kV :On the other hand as in [31℄ we haveDR t0 F(t� s) (" (u�1 (s))� " (u�2(s))) ds; " (u�2(t)� u�1 (t))EQ� �R t0 kF(t� s)kQ1 ku�2(s)� u�1(s)kV ds� ku�2(t)� u�1(t)kV� �R t0 ku�2(s)� u�1(s)kV ds� ku�2(t)� u�1(t)kV :Using the elementary inequalityab � 2 a22m +mb22 ;



Study of a visoelasti fritional ontat problem with adhesion 269where the onstant m > 0 is introdued in (2.13)(b), we �nd that�Z t0 F(t� s) (" (u�1(s)) � " (u�2(s))) ds; " (u�2(t)� u�1 (t))�Q� 22m �Z t0 ku�2(s)� u�1 (s)kV ds�2 + m2 ku�2(t)� u�1(t)k2V :(3.10)Also using the assumptions (2.17)(b) and (2.17)() on the funtion p yields(3.11) j (u�1(t); u�2 (t))� j (u�1 (t) ; u�1(t))+j (u�2 (t) ; u�1(t))� j (u�2(t); u�2(t))� Lpd2
 k�kL1(�3) ku�2 (t)� u�1 (t)k2V :Now, we ombine inequalities (3.9), (3.10) and (3.11) to obtain(3.12) m ku�1(t)� u�2(t)k2V � Lpd2
 k�kL1(�3) ku�2 (t)� u�1(t)k2V+ 22m �Z t0 ku�2(t)� u�1 (t)kV ds�2 + m2 ku�2(t)� u�1(t)k2V+ �k�kL1(�3) + k�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3)� ku�1(t)� u�2(t)kV :Using Young's inequality we get(3.13) �k�kL1(�3) + k�kL1(�3)�Ld
 k�1(t)� �2(t)kL2(�3)� ku�1(t)� u�2(t)kV�  k�1(t)� �2(t)k2L2(�3) + m4 ku�2(t)� u�1 (t)k2V :Then we dedue from (3.12) and (3.13) thatm4 ku�2(t)� u�1(t)k2V � Lpd2
 k�kL1(�3) ku�2(t)� u�1(t)k2V+ 22m �Z t0 ku�2(s)� u�1(s)kV ds�2 +  k�1 (t)� �2 (t)k2L2(�3) :Let �0 = m4Lpd2
 = �14 :Then if k�kL1(�3) < �0;



270 A. Touzalinewe dedue thatku�2(t)� u�1(t)k2V � �Z t0 ku�2(s)� u�1(s)k2V ds+ k�1 (t)� �2(t)k2L2(�3)� :Hene Gronwall's argument implies that �(3.14) ku�2(t)� u�1(t)kV �  k�1 (t)� �2(t)kL2(�3) :Now to end the proof of Proposition 3.5 we use (3.8) and (3.14) to getk��1(t)� ��2(t)kL2(�3) �  R t0 k�1(s)� �2 (s)kL2(�3) ds:On the other hand we haveZ t0 k�1(s)� �2(s)kL2(�3) ds � k�1 � �2kX exp(kt)k :Thereforek��1(t)� ��2(t)kL2(�3) �  k�1 � �2kX exp(kt)k 8 t 2 [0; T ℄;whih yieldsexp(�kt) k��1(t)� ��2(t)kL2(�3) � k k�1 � �2kX 8 t 2 [0; T ℄:Hene we obtain(3.15) k��1 � ��2kX � k k�1 � �2kX :The inequality (3.15) shows that for k suÆiently large � is a ontration. Then ithas a unique �xed point �� whih satis�es (3.6) and (3.7). To prove that �� 2 B,we use (2.17) and we refer the reader to [30, Remark 3.1℄. �Lemma 3.7. (u�� ; ��) is a unique solution of Problem P2.Proof: Existene. Let � = �� and let u�� the solution of Problem P1� . Weonlude by (3.1), (3.6) and (3.7) that (u�� ; ��) is a solution to Problem P2.Uniqueness. Suppose that (u; �) is a solution of Problem P2 whih satis�es (2.19),(2.20) and (2.21). It follows from (2.19) that u is a solution to Problem P1� , andfrom Proposition 3.2 that u = u� . Take u = u� in (2.19) and use the initialondition (2.21), we dedue that � is a solution to Problem P2� . Therefore, weobtain from Proposition 3.5 that � = �� and then we onlude that (u�� ; ��) isa unique solution to Problem P2. �
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