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Curvature bounds for neighborhoods of self-similar setsSteffen WinterAbstrat. In some reent work, fratal urvatures Cfk (F ) and fratal urvaturemeasures Cfk (F; �), k = 0; : : : ; d, have been determined for all self-similar sets Fin Rd, for whih the parallel neighborhoods satisfy a ertain regularity ondi-tion and a ertain rather tehnial urvature bound. The regularity onditionis onjetured to be always satis�ed, while the urvature bound has reentlybeen shown to fail in some onrete examples. As a step towards a better un-derstanding of its meaning, we disuss several equivalent formulations of theurvature bound ondition and also a very natural tehnially simpler onditionwhih turns out to be stronger. These reformulations show that the validity ofthis ondition does not depend on the hoie of the open set and the onstantR appearing in the ondition and allow to disuss some onrete examples ofself-similar sets. In partiular, it is shown that the lass of sets satisfying theurvature bound ondition is stritly larger than the lass of sets satisfying theassumption of polyonvexity used in earlier results.Keywords: self-similar set, parallel set, urvature measures, fratal urvatures,Minkowski ontent, Minkowski dimension, regularity ondition, urvature boundonditionClassi�ation: Primary 28A75, 28A80; Seondary 28A78, 53C651. IntrodutionTotal urvatures and urvature measures are well known for ertain lasses ofsets in Eulidean spae Rd inluding onvex bodies, di�erentiable submanifoldswith boundary, sets with positive reah and ertain unions of suh sets. In onvexgeometry, total urvatures are better known as intrinsi volumes or Minkowskifuntionals and in di�erential geometry as integrals of mean urvatures. Curva-ture measures were introdued by Federer [4℄ for sets with positive reah and havelater been extended in various diretions, see e.g. [1℄, [2℄, [14℄, [15℄.In some reent work fratal ounterparts | so alled fratal urvatures andfratal urvature measures | have been introdued for ertain lasses of self-similar fratals, f. [12℄, [16℄, [13℄, based on the following ideas: A ompat (fra-tal) set K � Rd is well approximated by its "-parallel setsK" := fx 2 Rd : dist (x;K) � "gas " tends to 0 (in the sense of Hausdor� metri) and for suÆiently regular setsKthe urvature measures behave niely under suh approximation. Also for singular



206 S. Wintersets K, the parallel sets are often regular enough to admit urvatures measuresCk(K"; �). In this ase fratal urvatures are explained as suitably saled limitsof the total urvatures Ck(K") := Ck(K";Rd) and fratal urvature measures asthe orresponding weak limits of the urvature measures, as " tends to zero.The fous of reent work has been to establish the existene of these limits forertain lasses of (self-similar) sets. In [12℄, where these onepts were introdued,the existene of fratal urvatures and fratal urvature measures was establishedfor self-similar sets with polyonvex parallel sets. This polyonvexity assumptionhas been dropped in [16℄ for the fratal urvatures and in [13℄ for fratal urvaturemeasures. In the former paper, also random self-similar sets are treated. In thesepapers the polyonvexity is replaed by two tehnial onditions. One is a regu-larity ondition on the parallel sets, whih ensures that the urvature measures ofthe "-parallel sets are well de�ned for almost all " (see ondition RC below). Thisondition is ertainly weaker than the polyonvexity assumption as it is knownto be satis�ed for all sets in Rd , d � 3. Moreover, it is onjetured to be alwayssatis�ed for self-similar sets satisfying the open set ondition, see the disussionbelow. The seond ondition is a bound on the urvature of F" near ertain in-tersetions of the ylinder sets of F , f. ondition CBC below. This urvaturebound ondition is not very well understood. As it involves ylinder sets of F ofall sales, it is rather diÆult to verify in onrete examples. But it is believed tobe satis�ed for most self-similar fratals. Very reently, some self-similar sets forwhih CBC does not hold have been disovered independently by Andreas Wustand Jan Rataj, giving thus a negative answer to the question whether CBC holdsfor all self-similar sets, see Example 4.10 below.In this note we disuss the urvature bound ondition in some greater detail.We will give several equivalent reformulations of this ondition. In partiular, thiswill allow to show that the validity of CBC does neither depend on the hoieof the open set O (a feasible set for the strong open set ondition) nor on thehoie of the onstant R, whih appear both in the original formulation of CBC.This removes some arbitrariness from the ondition. The ondition annot beweakened or strenghtened by making a di�erent hoie of O or R. Some of thereformulations of CBC are also helpful when disussing examples, as they areeasier to verify. We also disuss a tehnially muh simpler urvature boundwhih involves only �rst level ylinder sets. This bound was a natural andidatefor an equivalent reformulation of CBC but turned out to be slightly stronger,hene the term strong urvature bound ondition (SCBC) used in the sequel.This ondition is interesting in pratie, as it implies CBC and is muh easier toverify. On the other hand, it enlightens to some extent, why some knowledge ofthe �ne struture provided by CBC is neessary. In general, one needs to knowsomething about the intersetions of ylinder sets at all sales. For ertain 'simple'fratals, knowledge of the �rst level suÆes. Here `simple' roughly means thatthe intersetions of the parallel sets of �rst level ylinder sets have no `fratal'struture. We illustrate the results by verifying CBC for the Koh urve (usingSCBC) and for some other set for whih SCBC fails. These two examples are



Curvature bounds for neighborhoods of self-similar sets 207sets, whih do not have polyonvex parallel sets but for whih CBC holds. Theyshow in partiular, that the lass of sets overed by the results in [16℄ and [13℄is stritly larger than the lass of sets with polyonvex parallel sets onsideredin [12℄.The paper is organized as follows. In the next setion, we ollet some wellknown fats about urvature measures required later on. In Setion 3, we reallthe urvature bound ondition and the results from [16℄ and [13℄ on the existeneof fratal urvatures and fratal urvature measures for self-similar sets. Finally, inSetions 4 and 5, the main results are presented. Several equivalent reformulationsof CBC and their onsequenes are disussed in Setions 4, while SCBC is thesubjet of interest in Setion 5. In these setions also the examples are found.2. Curvature measuresWe denote the losure of the omplement of a ompat set K by eK. A dis-tane " � 0 is alled regular for the set K if fK" has positive reah in the senseof Federer [4℄ and the boundary �K" is a Lipshitz manifold. In view of Fu[5℄, in spae dimensions d � 3 this is ful�lled for Lebesgue almost all ". (Forgeneral d, a suÆient ondition for this property is that " is a regular value ofthe distane funtion of K in the sense of Morse theory, f. [5℄.) For regular "the Lipshitz-Killing urvature measures of order k are determined by means ofFederer's versions for sets of positive reah:(2.1) Ck(K"; � ) := (�1)d�1�kCk(fK"; � ); k = 0; : : : ; d� 1;where the surfae area (k = d�1) is inluded and the volume measureCd(K"; � ) :=�d(K" \ � ) is added for ompleteness. For more details and some bakground onsingular urvature theory for fratals we refer to [12℄, [16℄.The total urvatures of K" are denoted by(2.2) Ck(K") := Ck(K";Rd); k = 0; : : : ; d:We reall now the main properties of urvature measures required for our pur-poses: By an assoiated Gauss-Bonnet theorem the Gauss urvature C0(K") o-inides with the Euler-Poinar�e harateristi �(K").The urvature measures are motion invariant , i.e.,(2.3) Ck(g(K"); g( � )) = Ck(K"; � ) for any Eulidean motion g;the k-th measure is homogeneous of degree k, i.e.,(2.4) Ck(�K"; � � ) = �k Ck(K"; � ); � > 0;and they are loally determined , i.e.,(2.5) Ck(K"; � \G) = Ck(K 0"0 ; � \G)



208 S. Winterfor any open set G � Rd suh that K" \G = K 0"0 \G, where K" and K 0"0 are bothparallel sets suh that the losures of their omplements have positive reah.Finally, for suÆiently large distanes the parallel sets are always regular andthe urvature measures may be estimated by those of a ball of almost the samesize: For any ompat set K � Rd and any " � R > p2diamK we haveCvark (K") � k(K;R) "k;(2.6)for a onstant k(K;R) independent of ", see [16, Theorem 4.1℄. Here Cvark (K"; � )denotes the total variation measure of Ck(Kr; � ) and Cvark (Kr) := Cvark (Kr;Rd )its total mass.3. Existene of fratal urvatures and fratal urvature measuresIn this setion, we briey reall the results on fratal urvatures and fratalurvature measures obtained in [16℄, [13℄. For this purpose, we reall �rst someonepts related to self-similar sets and give a preise formulation of the regularityondition and the urvature bound ondition.For N 2 N and i = 1; : : : ; N , let Si : Rd ! Rd be a ontrating similarity withontration ratio 0 < ri < 1. Let F � Rd be the self-similar set generated by thefuntion system fS1; : : : ; SNg. That is, F is the unique nonempty, ompat setinvariant under the set mapping S( � ) := Si Si( � ), f. [7℄. The set F (or, morepreisely, the system fS1; : : : ; SNg) is said to satisfy the open set ondition (OSC)if there exists a non-empty, open and bounded subset O of Rd suh that[i SiO � O and SiO \ SjO = ; for i 6= j:The strong open set ondition (SOSC) holds for F (or fS1; : : : ; SNg), if there exista set O as in the OSC whih additionally satis�es O \ F 6= ;. It is well knownthat in Rd OSC and SOSC are equivalent, f. [11℄, i.e., for F satisfying OSC, thereexists always suh a set O with O \ F 6= ;.The unique solution s = D of the equationPNi=1 rsi = 1 is alled the similaritydimension of F . It is well known that for self-similar sets F satisfying OSC, Doinides with Minkowski and Hausdor� dimension of F . Further, a self-similarset F is alled arithmeti (or lattie), if there exists some number h > 0 suh that� ln ri 2 hZ for i = 1; : : : ; N , i.e. if f� ln r1; : : : ;� ln rNg generates a disretesubgroup of R. Otherwise F is alled non-arithmeti (or non-lattie).Let �� := S1j=0f1; : : : ; Ngj be the set of all �nite words over the alphabetf1; : : : ; Ng inluding the emtpy word. For ! = !1 : : : !n 2 �� we denote by j!jthe length of ! (i.e., j!j = n) and by !jk := !1 : : : !k the subword of the �rstk � n letters. We abbreviate r! := r!1 : : : r!n and S! := S!1 Æ : : : Æ S!n .Throughout we assume that F is a self-similar set in Rd satisfying OSC and thatD denotes its similarity dimension. Furthermore, we assume that the followingregularity ondition is satis�ed:(RC) Almost all " 2 (0;p2diam (F )) are regular for F .



Curvature bounds for neighborhoods of self-similar sets 209That is, the set M of irregular values is a Lebesgue null set. This ondition isalways satis�ed for subsets of Rd , d � 3, f. Setion 2. For self-similar sets inRd satisfying OSC, it is onjetured to be true for all d. Note that there are noirregular values " � p2diam (F ), f. for instane [16, Theorem 4.1℄.In order to be able to formulate the urvature bound ondition (CBC), we needto �x some onstant R = R(F ) for F suh that(3.1) R > p2diamF(to be able to apply (2.6)) and some open set O = O(F ) satisfying SOSC. Notethat the hoie of R and O are otherwise ompletely arbitrary. For 0 < " � R,let �(") be the family of all �nite words ! = !1 : : : !n 2 �� suh that(3.2) Rr! < " � Rr!jj!j�1;and let(3.3) �b(") := f! 2 �(") : (S!F )" \ ((SO))" 6= ;g:The words ! in �(") desribe those ylinder sets S!F whih are approximately ofsize " and the words in �b(") only those whih are also 2"-lose to the boundaryof the set SO, the �rst iterate of the set O under the set mapping S = SNi=1 Si.Note that S!F � SO for any ! 2 �(") whih is due to the well known relationF � O (see e.g. [7, x3.1(8)℄). Moreover, the family fS!F : ! 2 �(")g is a overingof F for eah ", whih is optimal in that none of the sets an be removed. It isan easy onsequene of the equation PNi=1 rDi = 1 that, for eah " 2 (0; R℄,(3.4) X!2�(") rD! = 1:In [13℄, the urvature bound ondition is formulated as follows:(CBC) There is a onstant k suh that for almost all " 2 (0; R) and all � 2 �b(")Cvark 0�F"; �(S�F )" \ � [�02�(")nf�g(S�0F )"1A � k"k:The following result on the limiting behaviour of the total urvatures wasobtained in [16℄. We restrit our attention to the deterministi ase. Set(3.5) Rk(") := Ck(F")� NXi=1 1(0;ri℄(")Ck((SiF )"); " > 0:Theorem 3.1 ([16, Theorem 2.3.8 and Corollary 2.3.9℄). Let k 2 f0; 1; : : : ; dgand F be a self-similar set in Rd , d � 1, satisfying OSC. If k � d � 2, assume



210 S. Winteradditionally that RC and CBC hold. Then(3.6) Cfk (F ) := limÆ!0 1j ln Æj Z 1Æ "D�kCk(F")d"" = 1� Z R0 rD�k�1Rk(r) dr;where � = �PNi=1 rDi ln ri. Moreover, if F is non-arithmeti, then(3.7) esslim"!0 "D�kCk(F") = Cfk (F ):The numbers Cfk (F ) are refered to as the fratal urvatures of the set F .Formula (3.6) in Theorem 3.1 should in partiular be understood to imply thatthe integral on the right hand side exists and thus the fratal urvatures are�nite. For k = d, the limits in (3.6) and (3.7) speialize to the average Minkowskiontent and the Minkowski ontent, respetively, and the result is due to Lapidusand Pomerane [8℄, Faloner [3℄ (for d = 1) and Gatzouras [6℄ (for general d). Thease k = d� 1 is treated in [10℄. In both ases the essential limits an be replaedby limits and the limits are always positive. Reall that for d � 3 RC is known tobe satis�ed. For the speial ase of polyonvex parallel sets, where the onditionsRC and CBC are not needed, see [12℄.It is shown in [13℄, that under the hypotheses of Theorem 3.1 also fratalurvature measures exist.Theorem 3.2 ([13, Theorem 2.3℄). Let k 2 f0; 1; : : : ; dg and F be a self-similarset in Rd , d � 1, satisfying OSC. If k � d � 2, assume additionally that RC andCBC hold. Then(3.8) Cfk (F; � ) := wlim"!0 1j ln "j Z 1" ~"D�kCk(F~"; � )d~"~" = Cfk (F )�F ;where �F is the normalized D-dimensional Hausdor� measure on F . Moreover, ifF is non-arithmeti, then also the essential weak limit esswlim"!0 "D�kCk(F"; � )exists and equals Cfk (F; � ).4. Equivalent reformulations of CBCWe give some alternative equivalent formulations of CBC with the intensionto larify the meaning of this ondition and also to simplify its veri�ation inonrete examples.Throughout we assume that k 2 f0; : : : ; d � 2g (sine for k 2 fd � 1; dg CBCis not needed) and that F is a self-similar set in Rd satisfying OSC and RC. The�rst equivalent reformulation of CBC is rather obvious and has been mentionedin [13, f. Remark 2.4℄ already: The boundary signs in CBC an be omitted. Itpaves the road for further reformulations. For " 2 (0; R) and � 2 �("), let(4.1) A�;" := [�02�(")nf�g(S�0F )":



Curvature bounds for neighborhoods of self-similar sets 211Proposition 4.1. The following ondition is equivalent to CBC:(CBC1) There is a onstant k and a null set N � (0; R) suh that for all" 2 (0; R) n N and all � 2 �b(")(4.2) Cvark (F"; (S�F )" \ A�;") � k"k:Proof: The assertion follows from the set equality(S�F )" \A�;" \ �F" = �(S�F )" \ �A�;" \ �F"and the fat that the urvature measure Ck(F"; � ) is onentrated on the boundaryof F", see also [13, Remark 2.4℄. �Remark 4.2. Without loss of generality, we an assume that the set N in CBC1has the following additional properties:(4.3) M� N and r�N � N for all � 2 ��;where M is the (Lebesgue null) set of exeptions in RC. Indeed, the existeneof a null set N satisfying these additional onditions learly implies the exis-tene of a null set at all satisfying CBC1. Conversely, if CBC1 holds with anarbitrary null set N of exeptions, then it also holds with the larger null setN � := S�2�� r�(M[ N ) � (0; R) of exeptions, whih has both of the aboveproperties. In the sequel we will always assume that the set N of exeptions hasthese two additional properties.For the proof of the next reformulation we require the following estimate, whihis proved in [13℄. Reall the de�nition of the set A�;" from (4.1).Lemma 4.3 ([13, Lemma 3.2℄). Let k 2 f0; : : : ; d� 2g and let F be a self-similarset in Rd satisfying OSC, RC and CBC. Then there is a onstant  > 0 suh that,for all " 2 (0; R) n N and all � 2 �("),Cvark (F"; (S�F )" \ A�;") � "k:(4.4)In the following reformulation of CBC we shift the parameter r in the families�(r) in order to be able to work with larger ylinder sets ompared to the parallelwidth ". Condition CBC2 below roughly means that one an work with ylindersets of diameter �", � � 1. Pratially, this allows to redue the number ofmutual intersetions between the ylinder sets. It also enables us to show thatthe validity of CBC for a given self-similar set F does not depend on the hoieof the onstant R.Theorem 4.4. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Let � � 1. Then the following ondition is equivalent toCBC:



212 S. Winter(CBC2) There exist bk = bk(�) > 0 and a null set N suh that for all " 2(0; R=�) n N and all ! 2 �b(�")Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A � bk"k;and suh that for all " 2 [R=�;R) n NCvark (F") � bk"k:Remark 4.5. The seond inequality should be viewed as an extension of the rangeof (2.6) to the interval [R=�;R). Note that it an equivalently be formulated withthe expression bk"k on the right hand side replaed by bk (adapting the onstantif neessary), sine "k is bounded on the relevant interval. We use this slightlymore ompliated formulation with "k not only beause it is more onvenient inthe proofs, but mainly beause it is more onsistent with the general philosophythat for the k-th urvature measure Ck(F"; � ) bounds of order "k are needed at allsales. The same applies to the seond inequalities in CBC3, CBC2' and CBC3'below.Proof: For � = 1, CBC1 and CBC2 are obviously equivalent, sine the �rstinequality in CBC2 redues to CBC1 in this ase and the range of the seond oneis the empty set.So �x some � > 1. We �rst show that CBC1 implies CBC2. For ! =!1 : : : !m 2 �(�"), let�!(") := f� 2 �(") : �i = !i for i = 1; : : : ;mg:Observe that the ardinality of the sets �!(") is bounded by a onstant (indepen-dent of " 2 (0; R) and ! 2 �(�")). Indeed, eah � 2 �!(") is of the form � = !~�with ~� 2 �("=r!). Hene#�!(") � #�("=r!) � #�(��1R) =: ̂;where the last inequality is due to the relation "=r! > ��1R (sine ! 2 �(�"))and the monotoniity of #�( � ). Sine (S!F )" = S�2�!(")(S�F )", we have foreah " 2 (0; ��1R) n N ,Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A= Cvark 0�F"; [�2�!(")(S�F )" \ [!02�(�")nf!g(S!0F )"1A



Curvature bounds for neighborhoods of self-similar sets 213� X�2�!(")Cvark 0�F"; (S�F )" \ [!02�(�")nf!g(S!0F )"1A� X�2�!(")Cvark 0�F"; (S�F )" \ [�02�(")nf�g(S�0F )"1A= X�2�!(")Cvark (F"; (S�F )" \ A�;") ;where the last inequality is due to the set inlusion[!02�(�")nf!g(S!0F )" � [�02�(")nf�g(S�0F )"and the last equality to (4.1). Now, sine CBC1 is assumed to hold (whih isequivalent to CBC by Proposition 4.1), we an apply Lemma 4.3 and obtain thateah of the terms in this sum is bounded from above by "k. Therefore, the wholesum is bounded by bk"k with bk := ̂, showing the �rst inequality of CBC2.The seond inequality follows immediately from [13, Corollary 4.1℄, whih statesthat CBC implies the uniform boundedness of " 7! Cvark (F") on ompat intervals[a; b℄ � (0;1). For the onveniene of the reader, we provide the following diretalternative proof of the seond inequality: Observe that for " 2 (0; R) n NCvark (F") = Cvark 0�F"; [�2�(")(S�F )"1A� X�2�(")Cvark (F"; (S�F )")� X�2�(")Cvark (F"; (S�F )" \A�;") + Cvark (F"; (S�F )" \ (A�;")) :By Lemma 4.3, for eah � 2 �("), the �rst term in this sum is bounded by "k.For the seond term, we have F" \ (A�;") = (S�F )" \ (A�;") and so, by theloality property (2.5),Cvark (F"; (S�F )" \ (A�;")) = Cvark ((S�F )"; (S�F )" \ (A�;"))� Cvark ((S�F )") = rk�Cvark �F"=r�� :Sine � 2 �(") implies "r� > R, the last term is bounded by rk�k(F;R)( "r� )k =k(F;R)"k, by (2.6). Finally observe that, for " 2 [��1R;R), the ardinality ofthe family �(") is bounded by the onstant ~ := #�(��1R) and thus we onludethat Cvark (F") is bounded by bk"k (with bk = ~( + k(F;R))) for " 2 [��1R;R)as laimed in the seond inequality in CBC2. This ompletes the proof of theimpliation CBC1 ) CBC2.



214 S. WinterFor the reverse impliation, let �rst " 2 [��1R;R) n N . Then, by the seondinequality in CBC2, we immediately obtain for eah � 2 �("),Cvark (F"; (S�F )" \ A�;") � Cvark (F") � bk"k;whih veri�es the inequality in CBC1 for " 2 [��1R;R) n N . Now let " 2(0; ��1R) n N and � 2 �("). Let ! 2 �(�") be the unique sequene suh that� = !~�. In analogy with (4.1), we set(4.5) B!;" := [!02�(�")nf!g(S!0F )":Sine (S�F )" � (S!F )" and obviously A�;" � Rd = B!;" [ (B!;") we infer, that(4.6) Cvark (F"; (S�F )" \A�;") � Cvark (F"; (S!F )" \ B!;")+ Cvark (F"; (S!F )" \ (B!;")) :Now, if we assume � 2 �b("), then ! 2 �b(�"). Therefore, by CBC2, the �rstterm in the above expression is bounded by bk"k. For the seond term observethat, by the loality property (2.5) (appliable, sine " and thus "=r! are regularvalues for F , f. (4.3)), in the open set (B!;") we an replae F" by (S!F )".Hene this term is bounded byCvark ((S!F )"; (S!F )" \ (B!;")) � rk!Cvark �F"=r!� :Finally, realling that w 2 �(�") and so ��1R < "=r! � (�r!n)�1R, we onludefrom the seond inequality in CBC2 and (2.6) that the last expression is boundedeither by rk!bk("=r!)k or by rk!k(F;R)("=r!)k depending on whether "=r! is lessor greater than R. In any ase, there is a onstant b0k (given by the maximum ofk(F;R) and bk) independent of " and ! suh that the last expression (and thusthe seond term in (4.6)) is bounded by b0k"k. This veri�es the inequality in CBC1for " 2 (0; ��1R) n N and � 2 �b(") and ompletes the proof of the impliationCBC2 ) CBC1. �Note that ondition CBC2 in Theorem 4.4 an equivalently be phrased \Thereexists a onstant � � 1, a onstant bk = bk(�) and . . . ," or \For all � � 1, thereexists a onstant bk = bk(�) and . . . ". The next statement shows that it is notimportant how the onstant R is hosen. If for a self-similar set, CBC fails tohold for some R, it annot be veri�ed by hoosing a di�erent R.Corollary 4.6. CBC is independent of the hoie of the onstant R, i.e., if R1and R2 are two onstants with Ri > p2diamF , then CBC with R = R1 is satis�edif and only if CBC with R = R2 is.Proof: Without loss of generality, we may assume that R1 > R2. Suppose CBC1holds with R = R1 and let � := R1R2 > 1. Then, by Theorem 4.4, CBC2 holdswith R = R1 and � = R1R2 . Sine R1� = R2 and �(R1)(�") = �(R2)(") (where the



Curvature bounds for neighborhoods of self-similar sets 215supersripts R1 and R2 indiate whih R we have to use in the de�nition of �(r)),we have in partiular that for all " 2 (0; R2) n N and for all w 2 �(R2)b (")Cvark 0�F"; (S!F )" \ [!02�(R2)(�")nf!g(S!0F )"1A � bk"k;whih is just CBC1 with R = R2.Conversely, if CBC1 with R = R2 holds, then the argument from above showsthat the �rst inequality of CBC2 with R = R1 and � = R1R2 also holds. Moreover,by (2.6), there exists a onstant  = (F;R2) suh that Cvark (F") � "k for " >R2 = R1� , i.e., in partiular, for " 2 (R1� ; R1℄. Hene, the seond inequality ofCBC2 with R = R1 is also satis�ed. Now, again by Theorem 4.4, we infer thatCBC1 with R = R1 holds, whih ompletes the proof. �Condition CBC3 below shows that if the ylinder sets are hosen large enough(ompared to "), then one an pass over to mutual intersetions of pairs of ylindersets. The proof is based on a lemma in [12℄, whih roughly says that a set (S�F )"from a family f(S!F )" : ! 2 �(�")g does not interset too many of the othermembers of this family, provided � is large enough, f. [12, Lemma 5.3.1℄. Morepreisely, � needs to be larger than R��1, where � is given as follows: Beauseof SOSC, there exists a word u 2 �� suh that SuF � O and the ompatnessof SuF implies that there is a onstant � > 0 suh that eah point x 2 SuFhas a distane greater than � to �O, i.e., d(x;O) > �. Set � := rmin �2 , wherermin := minfri : 1 � i � Ng. (Note that � depends on the hoie of O and theword u. Any hoie � � rmin �2 is also �ne.) Compare also [12, Setion 5.1℄.Theorem 4.7. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Let � � maxf1; R��1g. Then the following ondition isequivalent to CBC:(CBC3) There is a onstant ak = ak(�) and a null set N suh that for all" 2 (0; R=�) n N , ! 2 �b(�") and !0 2 �(�") n f!gCvark (F"; (S!F )" \ (S!0F )") � ak"kand suh that for all " 2 [R=�;R) n NCvark (F") � ak"k:Proof: Fix some � � maxf1; R��1g. In view of Theorem 4.4, it suÆes to showthat CBC3 is equivalent to CBC2 (with the same � and N ). The impliationCBC2 ) CBC3 is easy: If " 2 (0; R=�) n N , ! 2 �b(�") and !0 2 �(�"), thenCvark (F"; (S!F )" \ (S!0F )") � Cvark 0�F"; (S!F )" \ [v2�(�")nf!g(SvF )"1A



216 S. Winterand, by CBC2, the right hand side is bounded by bk"k, verifying the �rst inequalityof CBC3. The seond inequalities are obviously equivalent in both onditions.To show that CBC3 implies CBC2, let " 2 (0; R=�)nN and ! 2 �b(�"). Usingthe notation B!(") from (4.5), we observe thatCvark (F"; (S!F )" \ B!;") � X!02�(�")nf!gCvark (F"; (S!F )" \ (S!0F )") :(4.7)We an restrit the summation to those !0 for whih the intersetion (S!F )" \(S!0F )" is nonempty. By [12, Lemma 5.3.1, p. 45℄, the number of suh terms isbounded by some onstant �max (independent of " or !). (Note that this is wherethe assumption � > R��1 is used.) Sine CBC3 is assumed to hold, eah termin this sum is bounded by ak"k, giving the upper bound �maxak"k for the wholesum. This ompletes the proof. �The following statement establishes that the families �b(�), whih our inonditions CBC1{CBC3 above, an equivalently be replaed by the larger fami-lies �(�).Theorem 4.8. Eah of the following onditions is equivalent to CBC:(CBC1') There is a onstant k and a null set N � (0; R) suh that for all" 2 (0; R) n N and all � 2 �(")(4.8) Cvark 0�F"; (S�F )" \ [�02�(")nf�g(S�0F )"1A � k"k:(CBC2') There exist � � 1, bk = bk(�) > 0 and a null set N suh that for all" 2 (0; R=�) n N and all ! 2 �(�")Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A � bk"kand suh that for all " 2 [R=�;R) n NCvark (F") � bk"k:(CBC3') There exist � � maxf1; R��1g, ak = ak(�) > 0 and a null set N suhthat for all " 2 (0; R=�) n N and !!0 2 �(�") with ! 6= !0Cvark (F"; (S!F )" \ (S!0F )") � ak"kand suh that for all " 2 [R=�;R) n NCvark (F") � ak"k:



Curvature bounds for neighborhoods of self-similar sets 217Proof: The impliations CBC1') CBC1, CBC2') CBC2 and CBC3') CBC3are obvious. The impliation CBC1) CBC2' holds, sine in the proof of CBC1)CBC2 in Theorem 4.4 it is only used that ! 2 �(�") but not that ! 2 �b(�"). Theproofs of the impliations CBC2' ) CBC1' and CBC2' ) CBC3' are ompletelyanalogous to the proofs of CBC2 ) CBC1 and CBC2 ) CBC3 in Theorems 4.4and 4.7, respetively. One an replae eah instane of �b(�) by �(�) and use the\stronger" ondition CBC2' instead of CBC2. Thus we have the following ylesof impliations: CBC1 ) CBC2' ) CBC1') CBC1 and CBC1 ) CBC2' )CBC3' ) CBC3, whih, together with the equivalenes in Theorems 4.4 and 4.7,show the equivalene to CBC of eah of these three onditions. �Corollary 4.9. The validity of CBC is independent of the hoie of the openset O.Proof: By Theorem 4.8, CBC is equivalent to CBC1', a ondition in whih theopen set O does not our. �We point out that in onrete examples some of these onditions are easier toverify than the original ondition. However, we postpone examples to the nextsetion, where a simpler but slightly stronger ondition is disussed whih is eveneasier to verify.To omplete the piture of the present state of the art regarding the urvaturebound ondition, we briey disuss an example of a self-similar set not satisfyingCBC. It was disovered independently by Andreas Wust and Jan Rataj. In fat,in the example below we disuss a one-parameter family of sets F (p), p 2 (0; 12 ),for whih CBC fails. In the proof we use one of the equivalent reformulationsof CBC.Example 4.10. For p 2 (0; 12 ), let F = F (p) be the self-similar set in R2 gene-rated by the four similarities S1; : : : ; S4 eah with ontration ratio p, whih mapthe unit square Q = [0; 1℄2 to the four squares of side length p in the orners ofQ, f. Figure 1. F is a Cantor set satisfying the strong separation ondition (andthus in partiular SOSC). F an also be viewed as the Cartesian produt C �C,where C = C(p) is the self-similar Cantor set on R generated by the two mappingsf1(x) = px and f2(x) = px+ (1� p), x 2 R. It is lear that g2 is a ritial valueof the distane funtion of F , where g := 1� 2p is the minimal distane betweenS1F and S2F . Note that for " < g2 , the intersetion (S1F )" \ (S2F )" is empty,while for " = g2 it is a Cantor set eC on the vertial line x = 12 , whih is similarto C (but shrinked by a fator 13 ). For " > g2 , the intersetion onsists of a �nitenumber of (roughly lense-shaped) onneted omponents whose number inreasesas "& g2 . The fat, that the number of these omponents is unbounded as "& g2 ,is essentially the reason, why CBC fails.To provide a rigorous argument, we will now demonstrate that CBC2' (andthus, by Theorem 4.8, CBC) is not satis�ed for F . Choose R and � suh thatR� = g2p , R > p2diam (F ) = 2 and � � 1. (This an for instane be ahievedas follows: For p � 18 , hoose R = 3 and � = R 2p1�2p � 1. For p < 18 , hoose
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εFigure 1: (Left): the iterates of the unit square Q = [0; 1℄2 under the IFS ge-nerating the set F (p) of Example 4.10; (Right): enlargement of the intersetion(S1F )" \ (S2F )" for some " > g2 .R = 1�2p2p > 3 and � = 1.) Let ! = 1 and !0 = 2. These hoies ensure that!; !0 2 �(�") for eah " 2 (pR� ; R� ℄ = ( g2 ; g2p ℄. The validity of CBC2' would inpartiular imply the existene of a onstant b0 and a null set N suh that for all" 2 (pR� ; R� ) n NCvar0 (F"; (S1F )" \ (S2F )") � Cvar0 (F"; (S1F )" \[i6=1(SiF )") � b0:Therefore, it suÆes to show that for eah onstant b > 0 there is a set I = I(b) �(pR=�;R=�℄ with �1(I) > 0 suh that for all " 2 I ,Cvar0 (F"; (S1F )" \ (S2F )") � b:Observe that the number N(") of onneted omponents of the set (S1F )" \(S2F )" is given by one plus the number of those omplementary intervals L ofthe set eC, whose length l satis�es l2 > 4"2� g2, f. Figure 1. Eah omponent Kof (S1F )" \ (S2F )" has exatly 2 points in ommon with the set �F", namely theendpoints of the segment K \ fx = 12g. Moreover, by symmetry, the urvatureC0(F"; � ) at eah of these points is the same (for �xed ") and given by the angle� = �(") at the point T in Figure 1. It is not diÆult to see that � = 2arsin( g2" ),



Curvature bounds for neighborhoods of self-similar sets 219whih implies that � > g" , sine arsin(x) > x for x 2 (0; 1). Hene we obtain, for" 2 ( g2 ; g2p ℄, that � > 2p and thusCvar0 (F"; (S1F )" \ (S2F )") = 2N(")Cvar0 (F"; fQg) = 2N(") �2� > 2p� N("):So �x some b > 0. Choose u > g2 suh that N(u) 2p� > b. (This hoie is possible,sine N(") ! 1 as " & g2 ). Let I := ( g2 ; u). Clearly, �1(I) > 0 and, sineN( � ) is monotone dereasing, we have for all " 2 I , Cvar0 (F"; (S1F )" \ (S2F )") >2p� N(") � 2p� N(u) > b as desired. This shows that CBC fails for eah of the setsF = F (p) with p 2 (0; 12 ).5. A simpler but stronger onditionIn view of the results in [9℄ and [12℄, it is a natural question to ask, whetherthe urvature bound ondition an also be formulated in terms of intersetionsof �rst level ylinder sets. Indeed, even formula (3.6) in Theorem 3.1 suggeststhis, sine the funtion Rk de�ned in (3.5) desribes essentially the urvature(of F") in the intersetions of �rst level ylinder sets. However, it turns out thatthe ondition below whih involves only �rst level ylinder sets is suÆient butnot neessary for CBC to be satis�ed. We all this simpler ondition the strongurvature bound ondition (SCBC). It provides a useful tool for the disussion ofonrete examples.Theorem 5.1. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Then the following ondition implies CBC:(SCBC) There is a onstant dk and a null set N suh that for all " 2 (0; R) nNand all i; j 2 f1; : : : ; Ng with i 6= j,Cvark (F"; (SiF )" \ (SjF )") � dk"k:Proof: Fix some � � maxf1; R��1g. We show that SCBC implies CBC2' (withthe same null set N and this hoie of �), whih is equivalent to CBC by Theo-rem 4.8.For " 2 (0; R=�) n N and ! 2 �(�"), onsider the family
 := f!0 2 �(�") n f!g : (S!F )" \ (S!0F )" 6= ;g:By [12, Lemma 5.3.1, p. 45℄, the ardinality of 
 is bounded by some onstant �max(independent of " and ! 2 �(�")), giving an upper bound for the number of termsin the double union below. Write m := j!j, ! = !1!2 : : : !m and !jn := !1 : : : !nfor n = 0; 1; : : : ;m. Observe that(S!F )" \ B!;" = (S!F )" \ [!02
(S!0F )"(5.1)



220 S. Winter= m�1[n=0 [!02
!0jn=!jn;!0n+1 6=!n+1 2664(S!F )" \ (S!0F )" n [�2�(�")�jn6=!jn(S�F )"3775 :Indeed, for eah !0 2 
 there is a unique n 2 f0; : : : ;m� 1g suh that !0jn = !jnbut !0n+1 6= !n+1. Moreover, from the intersetion (S!F )"\(S!0F )" we an safelysubtrat all sets (S�F )" with � 2 �(�") and �jn 6= !jn, sine either � =2 
, inwhih ase (S�F )" has no intersetion with (S!F )" and thus no intersetion with(S!F )" \ (S!0F )", or � 2 
, in whih ase the set (S�F )" ours already in theunion for some smaller n.We infer that(5.2) Cvark (F"; (S!F )" \ B!;")� m�1Xn=0 X!02
!0jn=!jn;!0n+1 6=!n+1Cvark 0BB�F"; (S!F )" \ (S!0F )" n [�2�(�")�jn6=!jn(S�F )"1CCA ;where we keep in mind that the number of terms in this double sum is boundedby �max. Furthermore, eah term in the double sum is bounded from above asfollows. For �xed !0 2 
 (and the orresponding n) write ~! := !jn = !0jn. Thesets F" and (S~!F )" oinide inside the open setU := 0BB� [�2�(�")�jn6=~! (S�F )"1CCA :Hene, by the loality property (2.5) and by the saling properties (2.3) and (2.4),we obtain Cvark (F"; (S!F )" \ (S!0F )" \ U)= Cvark ((S~!F )"; (S!F )" \ (S!0F )" \ U)� Cvark ((S~!F )"; (S!F )" \ (S!0F )")� Cvark �S~!F"=r~! ; S~! �(S!n+1F )"=r~! \ (S!0n+1F )"=r~!��= rk~�Cvark �F"=r~! ; (S!n+1F )"=r~! \ (S!0n+1F )"=r~!� :Applying now SCBC, we onlude that the last term is bounded by dk"k and thusthe whole expression in (5.2) by bk"k, where bk := �maxdk. Sine this bound isvalid for all " 2 (0; R=�) n N and ! 2 �(�"), the proof of the �rst inequality ofCBC2' is omplete.



Curvature bounds for neighborhoods of self-similar sets 221For the seond inequality of CBC2', we deompose the set F" as followsF" = [�2�(")(S�F )" = [�2�(") (((S�F )" \ A�;") [ ((S�F )" \ (A�;"))) :For " 2 (R=�;R), the ardinality of �(") is uniformly bounded by the onstant̂ := #�(R=�). Therefore, it suÆes to show that there is a onstant  suhthat the urvature of eah set in this union is bounded by "k. For the sets(S�F )" \ (A�;"), one an use diretly (2.5) (in the open set (A�;")) to infer thatCvark (F"; (S�F )" \ (A�;")) = Cvark ((S�F )"; (S�F )" \ (A�;"))� Cvark ((S�F )") � rk�Cvark �F"=r�� :Sine � 2 �(") and thus "=r� > R, we onlude from (2.6), that the last expressionis bounded by k(F;R)"k as desired. For the sets (S�F )"\A�;" a similar argumentas for the sets (S!F )" \ B!;" in (5.1) works. One has the deomposition(S�F )" \ A�;" = j�j�1[n=0 [�02�(")nf�g�0jn=�jn;�0n+1 6=�n+10BB�(S�F )" \ (S�0F )" n [�2�(")� jn6=�jn(S�F )"1CCA :Again the number of sets in this double union is bounded, but for a di�erent reasonas before. Here the ardinality of �(") is bounded by ̂ (sine " > R=�). Theremaining arguments arry over from the ase (S!F )" \B!;" and one obtains thebound ̂dk"k for Cvark (F"; (S�F )" \ A�;"). This ompletes the proof of the seondinequality of CBC2'. �We will now show that the onverse of Theorem 5.1 is not true, i.e., that SCBCis not equivalent to CBC, by providing a ounterexample. We will disuss a setwhih satis�es CBC but not SCBC.Example 5.2 (U-set). Consider the self-similar set F � R2 generated by theseven similarities S1; : : : ; S7, eah with ratio r = 13 , mapping the unit squareQ := [0; 1℄2 to one of the seven subsquares forming the set U as depited inFigure 2. (Note that S4 inludes a lokwise rotation by �2 .) This modi�ationof the Sierpinski arpet is similar to the U-sets disussed in [9℄ and [12℄, but inontrast to those sets, the present set F does not have polyonvex parallel sets.For instane, for large ", the intersetion of F" with the upper half spae y � 1annot be represented as a �nite union of onvex sets.First we look at the measure C0(F"; � ) at the intersetion (S1F )" \ (S2F )".We will show that for " 2 [ 123�(m+2); 123�(m+1)) and m = 1; 2; : : :Cvar0 (F"; (S1F )" \ (S2F )") = 12(2m � 1);(5.3)
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Figure 2: (Left): the iterates of the set U under the IFS in Example 5.2; (Right):enlargement of the intersetion (S1F )" \ (S2F )" for " = 145 .whih immediately implies that Cvar0 (F"; (S1F )" \ (S2F )")!1 as "! 0. Henethis urvature annot be bounded by a onstant on the whole interval (0; R) andso SCBC does not hold.For a proof of (5.3), observe that the intersetion S1F \ S2F is a saled opyeC of the usual middle-third Cantor set (saled by a fator 13 ) on the line y = 23 .Moreover, for " 2 (0; R), the intersetion �F"\(S1F )"\(S2F )" onsists of a �nitenumber of pairs of points on the line y = 23 � ", where eah pair orresponds toa omplementary interval of eC of length greater than 2", f. Figure 2. (Thereare two more intersetion points with oordinates (�"; 23 ) and ( 13 + "; 23 ), whiharry no urvature.) In eC, we have one omplementary interval of length 19 , twoof length 133 , four of length 133 and so on, i.e., 2k of length 13k+2 for k = 0; 1; : : :.Therefore, the number J(") of omplementary intervals of eC with length greaterthan 2" is given by J(") = m�1Xk=0 2k = 2m � 1for 2" 2 [3�(m+2); 3�(m+1)) and m = 1; 2; : : :. Sine eah of the points ontributesa urvature of � 14 to C0(F"; � ), we obtain the result laimed in (5.3). Thisompletes the proof of the assertion that SCBC is not satis�ed.It remains to show that, on the ontrary, CBC is satis�ed. We demonstratethis by verifying CBC2' for F . For this purpose, �x R > 2 and hoose � � 1 largeenough to ensure that, for any !; !0 2 �(�"), the intersetion (S!F )" \ (S!0F )"is nonempty only if the intersetion S!F \ S!0F is, i.e., only if the ylinder setsS!F , S!0F are diret neighbors. (Any hoie � � 6R works. Two ylindersets !; !0 2 �(�"), whih do not interset eah other, have distane at leastrj!j as there is a square of this side length between them. On the other hand,!; !0 2 �(�") implies �" � Rrj!j�1, i.e. 2" < rj!j.) Obviously, a ylinder set



Curvature bounds for neighborhoods of self-similar sets 223S!F an have at most eight neighbors (orresponding to the eight neighboringsquares). In fat, it an have at most 5 neighbors, sine there are always at leastthree neighboring squares whose interior is outside F and whih do not ontainany ylinder set of F , but we will not use this. To verify the �rst inequality ofCBC2', it suÆes to show that there is a onstant b > 0 suh that for " 2 (0; R=�)and !; !0 2 �(�") with ! 6= !0,Cvar0 (F"; (S!F )" \ (S0!F )") � b;(5.4)sine this learly implies that Cvar0 (F"; (S!F )" \ Bw;") is bounded by 8b. So �x" 2 (0; R=�) and !; !0 2 �(�") with ! 6= !0. Then the intersetion (S!F )" \(S!0F )" is a saled opy of one of the following four sets: K1 := (S1F )Æ \ (S2F )Æ,K2 := (S3F )Æ \ (S4F )Æ , K3 := (S2F )Æ \ (S4F )Æ or K4 := (S4F )Æ \ (S6F )Æ whereÆ := "3j!j�1. Moreover, the intersetion of (S!F )" \ (S!0F )" with �F" is a saledopy of the orresponding intersetion Ki \ �FÆ . This impliesCvar0 (F"; (S!F )" \ (S0!F )") � maxi2f1;2;3;4gCvar0 (FÆ ;Ki):For i = 2; 3; 4, it is easily seen that the set �FÆ \ Ki onsists of 2 points (forall Æ > 0) and thus Cvar0 (FÆ ;Ki) is ertainly bounded by 2. For i = 1, we inferthat Æ � R� r (sine !; !0 2 �(�")) and thus Æ > 13 212 = 118 by the hoie of Rand �. Hene K1 is onneted and so �FÆ \Ki onsists of 2 points as in the otherases. Therefore the maximium above is learly bounded by 2, whih ompletesthe proof of (5.4) and thus of the �rst inequality of CBC2'.It remains to provide a proof of the seond inequality of CBC2'. With thehoie � = 6R above, it remains to show that Cvar0 (F") is bounded by someonstant for " 2 ( 16 ; R). It is easy to see that F" and the parallel set Q" of theunit square Q =: [0; 1℄2 oinide in the open half plane H := f(x; y) 2 R2 : y < 1g.Hene, by (2.5), Cvar0 (F"; H) = Cvar0 (Q"; H) � Cvar0 (Q") = 1;where the last equality is due to the onvexity of Q". It remains to show that forsome � > 0 and H� := f(x; y) : y � 1� �g we also haveCvar0 (F"; H�) � bfor " 2 ( 16 ; R).Fix � < 16 . Let 
 = f1; 7g2 and A" := S!2
(S!F )". Observe that for 16 < ",F" \H� = A" \H�:Sine the diameter of eah of the ylinder sets S!F in A" is p2r2, we an inferfrom (2.6), that Cvar0 ((S!F )") is bounded by some onstant  = (R0) for all" � R0 := Rr2 (and all ! 2 
). Therefore,Cvar0 (F"; H�) = Cvar0 (A"; H�) � Cvar0 (A")
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Cvar0 (A"; (S�F )" nB) + Cvar0 (A"; B);where B := S!;!02
;! 6=!0(S!F )" \ (S!0F )". Sine, by (2.5),Cvar0 (A"; (S�F )" nB) = Cvar0 ((S�F )"; (S�F )" nB) � Cvar0 ((S�F )") � ;we infer that the sum above is bounded by 4. For the last term observe thatCvar0 (A"; B) � X!;!02
;! 6=!0 Cvar0 (A"; (S!F )" \ (S!0F )"):By noting that eah of the intersetions (S!F )"\(S!0F )" above is a onvex set (orempty) and that the intersetion with �A" onsists of just two points (or none)eah ontributing at most 12 to the urvature of A", we onlude that eah termin the latter sum is bounded by 1 and thus the whole sum by 6. This ompletesthe proof of the seond inequality in CBC2'.We onlude this setion with a disussion of the well-known Koh urve. Asits parallel sets are learly not polyonvex, it provides an example of a self-similarset to whih the results in [16℄ and [13℄ apply but whih is not overed by theresults in [12℄. It also illustrates how SCBC simpli�es the veri�ation of CBC(ompare with Example 5.2).Example 5.3 (Koh urve). Let K � R2 �= C be the self-similar set generated bythe two similarity mappings S1; S2 given (in omplex oordinates) by S1(z) = �zand S2(z) = (1 � )(�z � 1) + 1, respetively, where  = 12 + ip36 . The ontra-tion ratios are r1 = r2 = r = 1p3 . It is well known (and easily seen) that Ksatis�es OSC.The ritial values of the distane funtion are 19rk , k = 0; 1; 2; : : :. In partiu-lar, these values form a null set so that RC is satis�ed. (More preisely, all ritialpoints lie either on the axis Re(z) = 12 or on one of its iterates S!(fRe(z) = 12g),! 2 ��. For " = 19 , for instane, p = 12 + ip318 is the unique ritial point withthis distane from K (f. Figure 3). Note that also for the ritial values " theurvature measure C0(K"; � ) is well de�ned in this ase.)Now we want to look more losely at the urvature bound ondition for k = 0.We will verify that SCBC holds, whih implies CBC by Theorem 5.1. Heneinstead of having to work with ylinder sets of all levels, it is enough to look at the�rst level ylinder sets, of whih there are only two in this ase. It suÆes to showthat, for all " > (0; R), the expression Cvar0 (K"; (S1K)" \ (S2K)") is bounded bysome onstant d0. Sine the measure C0(K"; � ) is onentrated on the boundaryof K", it is enough to onsider the intersetion �(S1K)"\�(S2K)", whih onsistsof some ar A = A(") of the irle of radius " entered at the intersetion point ofS1K and S2K and a single point p = p("), the intersetion point of the two urvesbounding the parallel sets (S1K)" and (S2K)" from below, ompare Figure 3. (Infat, it requires some justi�ation to see that those two urves interset in a
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Figure 3: Approximation of the Koh urve and its "-parallel set for the ritialvalue " = 19 . p is a ritial point realizing this value. The intersetion �(S1K)" \�(S2K)" onsists of the ar A and the point p.single point for eah �xed " > 0. We skip the details of the rather elementaryomputations at this point.) Now observe that C0(K"; A) = �2� where � = �3 isthe angle determining the ar A (independent of "). Hene, C0(K"; A) = 16 forall " > 0. The measure C0(K"; fpg) depends on " and is negative. It is ertainlybounded from below by �1. (In fat, it is bounded by � 12 .) Hene, we get that,for all " > 0,Cvar0 (K"; (S1K)" \ (S2K)") � Cvar0 (K"; A [ fpg) � 16 + 1 =: d0;whih veri�es SCBC and thus CBC.Sine K is lattie, Theorem 3.1 implies the existene of the average limitCf0 (K), as given by (3.6), but not the existene of the essential limit in (3.7).Moreover, by Theorem 3.2, the orresponding fratal urvature measure Cf0 (K; � )exists and is given by Cf0 (K)�K , where �K = HDbK( � )HD(K) is the normalized D-dimensional Hausdor� measure on K with D = log3 4.Referenes[1℄ Cheeger J., M�uller W., Shrader R., On the urvature of pieewise at spaes, Comm.Math. Phys. 92 (1984), 405{454.[2℄ Br�oker L., Kuppe M., Integral geometry of tame sets, Geom. Dediata 82 (2000), 1897{1924.[3℄ Faloner K.J., On the Minkowski measurability of fratals, Pro. Am. Math. So. 123(1995), no. 4, 1115{1124.
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