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Curvature bounds for neighborhoods of self-similar setsSteffen WinterAbstra
t. In some re
ent work, fra
tal 
urvatures Cfk (F ) and fra
tal 
urvaturemeasures Cfk (F; �), k = 0; : : : ; d, have been determined for all self-similar sets Fin Rd, for whi
h the parallel neighborhoods satisfy a 
ertain regularity 
ondi-tion and a 
ertain rather te
hni
al 
urvature bound. The regularity 
onditionis 
onje
tured to be always satis�ed, while the 
urvature bound has re
entlybeen shown to fail in some 
on
rete examples. As a step towards a better un-derstanding of its meaning, we dis
uss several equivalent formulations of the
urvature bound 
ondition and also a very natural te
hni
ally simpler 
onditionwhi
h turns out to be stronger. These reformulations show that the validity ofthis 
ondition does not depend on the 
hoi
e of the open set and the 
onstantR appearing in the 
ondition and allow to dis
uss some 
on
rete examples ofself-similar sets. In parti
ular, it is shown that the 
lass of sets satisfying the
urvature bound 
ondition is stri
tly larger than the 
lass of sets satisfying theassumption of poly
onvexity used in earlier results.Keywords: self-similar set, parallel set, 
urvature measures, fra
tal 
urvatures,Minkowski 
ontent, Minkowski dimension, regularity 
ondition, 
urvature bound
onditionClassi�
ation: Primary 28A75, 28A80; Se
ondary 28A78, 53C651. Introdu
tionTotal 
urvatures and 
urvature measures are well known for 
ertain 
lasses ofsets in Eu
lidean spa
e Rd in
luding 
onvex bodies, di�erentiable submanifoldswith boundary, sets with positive rea
h and 
ertain unions of su
h sets. In 
onvexgeometry, total 
urvatures are better known as intrinsi
 volumes or Minkowskifun
tionals and in di�erential geometry as integrals of mean 
urvatures. Curva-ture measures were introdu
ed by Federer [4℄ for sets with positive rea
h and havelater been extended in various dire
tions, see e.g. [1℄, [2℄, [14℄, [15℄.In some re
ent work fra
tal 
ounterparts | so 
alled fra
tal 
urvatures andfra
tal 
urvature measures | have been introdu
ed for 
ertain 
lasses of self-similar fra
tals, 
f. [12℄, [16℄, [13℄, based on the following ideas: A 
ompa
t (fra
-tal) set K � Rd is well approximated by its "-parallel setsK" := fx 2 Rd : dist (x;K) � "gas " tends to 0 (in the sense of Hausdor� metri
) and for suÆ
iently regular setsKthe 
urvature measures behave ni
ely under su
h approximation. Also for singular



206 S. Wintersets K, the parallel sets are often regular enough to admit 
urvatures measuresCk(K"; �). In this 
ase fra
tal 
urvatures are explained as suitably s
aled limitsof the total 
urvatures Ck(K") := Ck(K";Rd) and fra
tal 
urvature measures asthe 
orresponding weak limits of the 
urvature measures, as " tends to zero.The fo
us of re
ent work has been to establish the existen
e of these limits for
ertain 
lasses of (self-similar) sets. In [12℄, where these 
on
epts were introdu
ed,the existen
e of fra
tal 
urvatures and fra
tal 
urvature measures was establishedfor self-similar sets with poly
onvex parallel sets. This poly
onvexity assumptionhas been dropped in [16℄ for the fra
tal 
urvatures and in [13℄ for fra
tal 
urvaturemeasures. In the former paper, also random self-similar sets are treated. In thesepapers the poly
onvexity is repla
ed by two te
hni
al 
onditions. One is a regu-larity 
ondition on the parallel sets, whi
h ensures that the 
urvature measures ofthe "-parallel sets are well de�ned for almost all " (see 
ondition RC below). This
ondition is 
ertainly weaker than the poly
onvexity assumption as it is knownto be satis�ed for all sets in Rd , d � 3. Moreover, it is 
onje
tured to be alwayssatis�ed for self-similar sets satisfying the open set 
ondition, see the dis
ussionbelow. The se
ond 
ondition is a bound on the 
urvature of F" near 
ertain in-terse
tions of the 
ylinder sets of F , 
f. 
ondition CBC below. This 
urvaturebound 
ondition is not very well understood. As it involves 
ylinder sets of F ofall s
ales, it is rather diÆ
ult to verify in 
on
rete examples. But it is believed tobe satis�ed for most self-similar fra
tals. Very re
ently, some self-similar sets forwhi
h CBC does not hold have been dis
overed independently by Andreas Wustand Jan Rataj, giving thus a negative answer to the question whether CBC holdsfor all self-similar sets, see Example 4.10 below.In this note we dis
uss the 
urvature bound 
ondition in some greater detail.We will give several equivalent reformulations of this 
ondition. In parti
ular, thiswill allow to show that the validity of CBC does neither depend on the 
hoi
eof the open set O (a feasible set for the strong open set 
ondition) nor on the
hoi
e of the 
onstant R, whi
h appear both in the original formulation of CBC.This removes some arbitrariness from the 
ondition. The 
ondition 
annot beweakened or strenghtened by making a di�erent 
hoi
e of O or R. Some of thereformulations of CBC are also helpful when dis
ussing examples, as they areeasier to verify. We also dis
uss a te
hni
ally mu
h simpler 
urvature boundwhi
h involves only �rst level 
ylinder sets. This bound was a natural 
andidatefor an equivalent reformulation of CBC but turned out to be slightly stronger,hen
e the term strong 
urvature bound 
ondition (SCBC) used in the sequel.This 
ondition is interesting in pra
ti
e, as it implies CBC and is mu
h easier toverify. On the other hand, it enlightens to some extent, why some knowledge ofthe �ne stru
ture provided by CBC is ne
essary. In general, one needs to knowsomething about the interse
tions of 
ylinder sets at all s
ales. For 
ertain 'simple'fra
tals, knowledge of the �rst level suÆ
es. Here `simple' roughly means thatthe interse
tions of the parallel sets of �rst level 
ylinder sets have no `fra
tal'stru
ture. We illustrate the results by verifying CBC for the Ko
h 
urve (usingSCBC) and for some other set for whi
h SCBC fails. These two examples are
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h do not have poly
onvex parallel sets but for whi
h CBC holds. Theyshow in parti
ular, that the 
lass of sets 
overed by the results in [16℄ and [13℄is stri
tly larger than the 
lass of sets with poly
onvex parallel sets 
onsideredin [12℄.The paper is organized as follows. In the next se
tion, we 
olle
t some wellknown fa
ts about 
urvature measures required later on. In Se
tion 3, we re
allthe 
urvature bound 
ondition and the results from [16℄ and [13℄ on the existen
eof fra
tal 
urvatures and fra
tal 
urvature measures for self-similar sets. Finally, inSe
tions 4 and 5, the main results are presented. Several equivalent reformulationsof CBC and their 
onsequen
es are dis
ussed in Se
tions 4, while SCBC is thesubje
t of interest in Se
tion 5. In these se
tions also the examples are found.2. Curvature measuresWe denote the 
losure of the 
omplement of a 
ompa
t set K by eK. A dis-tan
e " � 0 is 
alled regular for the set K if fK" has positive rea
h in the senseof Federer [4℄ and the boundary �K" is a Lips
hitz manifold. In view of Fu[5℄, in spa
e dimensions d � 3 this is ful�lled for Lebesgue almost all ". (Forgeneral d, a suÆ
ient 
ondition for this property is that " is a regular value ofthe distan
e fun
tion of K in the sense of Morse theory, 
f. [5℄.) For regular "the Lips
hitz-Killing 
urvature measures of order k are determined by means ofFederer's versions for sets of positive rea
h:(2.1) Ck(K"; � ) := (�1)d�1�kCk(fK"; � ); k = 0; : : : ; d� 1;where the surfa
e area (k = d�1) is in
luded and the volume measureCd(K"; � ) :=�d(K" \ � ) is added for 
ompleteness. For more details and some ba
kground onsingular 
urvature theory for fra
tals we refer to [12℄, [16℄.The total 
urvatures of K" are denoted by(2.2) Ck(K") := Ck(K";Rd); k = 0; : : : ; d:We re
all now the main properties of 
urvature measures required for our pur-poses: By an asso
iated Gauss-Bonnet theorem the Gauss 
urvature C0(K") 
o-in
ides with the Euler-Poin
ar�e 
hara
teristi
 �(K").The 
urvature measures are motion invariant , i.e.,(2.3) Ck(g(K"); g( � )) = Ck(K"; � ) for any Eu
lidean motion g;the k-th measure is homogeneous of degree k, i.e.,(2.4) Ck(�K"; � � ) = �k Ck(K"; � ); � > 0;and they are lo
ally determined , i.e.,(2.5) Ck(K"; � \G) = Ck(K 0"0 ; � \G)



208 S. Winterfor any open set G � Rd su
h that K" \G = K 0"0 \G, where K" and K 0"0 are bothparallel sets su
h that the 
losures of their 
omplements have positive rea
h.Finally, for suÆ
iently large distan
es the parallel sets are always regular andthe 
urvature measures may be estimated by those of a ball of almost the samesize: For any 
ompa
t set K � Rd and any " � R > p2diamK we haveCvark (K") � 
k(K;R) "k;(2.6)for a 
onstant 
k(K;R) independent of ", see [16, Theorem 4.1℄. Here Cvark (K"; � )denotes the total variation measure of Ck(Kr; � ) and Cvark (Kr) := Cvark (Kr;Rd )its total mass.3. Existen
e of fra
tal 
urvatures and fra
tal 
urvature measuresIn this se
tion, we brie
y re
all the results on fra
tal 
urvatures and fra
tal
urvature measures obtained in [16℄, [13℄. For this purpose, we re
all �rst some
on
epts related to self-similar sets and give a pre
ise formulation of the regularity
ondition and the 
urvature bound 
ondition.For N 2 N and i = 1; : : : ; N , let Si : Rd ! Rd be a 
ontra
ting similarity with
ontra
tion ratio 0 < ri < 1. Let F � Rd be the self-similar set generated by thefun
tion system fS1; : : : ; SNg. That is, F is the unique nonempty, 
ompa
t setinvariant under the set mapping S( � ) := Si Si( � ), 
f. [7℄. The set F (or, morepre
isely, the system fS1; : : : ; SNg) is said to satisfy the open set 
ondition (OSC)if there exists a non-empty, open and bounded subset O of Rd su
h that[i SiO � O and SiO \ SjO = ; for i 6= j:The strong open set 
ondition (SOSC) holds for F (or fS1; : : : ; SNg), if there exista set O as in the OSC whi
h additionally satis�es O \ F 6= ;. It is well knownthat in Rd OSC and SOSC are equivalent, 
f. [11℄, i.e., for F satisfying OSC, thereexists always su
h a set O with O \ F 6= ;.The unique solution s = D of the equationPNi=1 rsi = 1 is 
alled the similaritydimension of F . It is well known that for self-similar sets F satisfying OSC, D
oin
ides with Minkowski and Hausdor� dimension of F . Further, a self-similarset F is 
alled arithmeti
 (or latti
e), if there exists some number h > 0 su
h that� ln ri 2 hZ for i = 1; : : : ; N , i.e. if f� ln r1; : : : ;� ln rNg generates a dis
retesubgroup of R. Otherwise F is 
alled non-arithmeti
 (or non-latti
e).Let �� := S1j=0f1; : : : ; Ngj be the set of all �nite words over the alphabetf1; : : : ; Ng in
luding the emtpy word. For ! = !1 : : : !n 2 �� we denote by j!jthe length of ! (i.e., j!j = n) and by !jk := !1 : : : !k the subword of the �rstk � n letters. We abbreviate r! := r!1 : : : r!n and S! := S!1 Æ : : : Æ S!n .Throughout we assume that F is a self-similar set in Rd satisfying OSC and thatD denotes its similarity dimension. Furthermore, we assume that the followingregularity 
ondition is satis�ed:(RC) Almost all " 2 (0;p2diam (F )) are regular for F .



Curvature bounds for neighborhoods of self-similar sets 209That is, the set M of irregular values is a Lebesgue null set. This 
ondition isalways satis�ed for subsets of Rd , d � 3, 
f. Se
tion 2. For self-similar sets inRd satisfying OSC, it is 
onje
tured to be true for all d. Note that there are noirregular values " � p2diam (F ), 
f. for instan
e [16, Theorem 4.1℄.In order to be able to formulate the 
urvature bound 
ondition (CBC), we needto �x some 
onstant R = R(F ) for F su
h that(3.1) R > p2diamF(to be able to apply (2.6)) and some open set O = O(F ) satisfying SOSC. Notethat the 
hoi
e of R and O are otherwise 
ompletely arbitrary. For 0 < " � R,let �(") be the family of all �nite words ! = !1 : : : !n 2 �� su
h that(3.2) Rr! < " � Rr!jj!j�1;and let(3.3) �b(") := f! 2 �(") : (S!F )" \ ((SO)
)" 6= ;g:The words ! in �(") des
ribe those 
ylinder sets S!F whi
h are approximately ofsize " and the words in �b(") only those whi
h are also 2"-
lose to the boundaryof the set SO, the �rst iterate of the set O under the set mapping S = SNi=1 Si.Note that S!F � SO for any ! 2 �(") whi
h is due to the well known relationF � O (see e.g. [7, x3.1(8)℄). Moreover, the family fS!F : ! 2 �(")g is a 
overingof F for ea
h ", whi
h is optimal in that none of the sets 
an be removed. It isan easy 
onsequen
e of the equation PNi=1 rDi = 1 that, for ea
h " 2 (0; R℄,(3.4) X!2�(") rD! = 1:In [13℄, the 
urvature bound 
ondition is formulated as follows:(CBC) There is a 
onstant 
k su
h that for almost all " 2 (0; R) and all � 2 �b(")Cvark 0�F"; �(S�F )" \ � [�02�(")nf�g(S�0F )"1A � 
k"k:The following result on the limiting behaviour of the total 
urvatures wasobtained in [16℄. We restri
t our attention to the deterministi
 
ase. Set(3.5) Rk(") := Ck(F")� NXi=1 1(0;ri℄(")Ck((SiF )"); " > 0:Theorem 3.1 ([16, Theorem 2.3.8 and Corollary 2.3.9℄). Let k 2 f0; 1; : : : ; dgand F be a self-similar set in Rd , d � 1, satisfying OSC. If k � d � 2, assume



210 S. Winteradditionally that RC and CBC hold. Then(3.6) Cfk (F ) := limÆ!0 1j ln Æj Z 1Æ "D�kCk(F")d"" = 1� Z R0 rD�k�1Rk(r) dr;where � = �PNi=1 rDi ln ri. Moreover, if F is non-arithmeti
, then(3.7) esslim"!0 "D�kCk(F") = Cfk (F ):The numbers Cfk (F ) are refered to as the fra
tal 
urvatures of the set F .Formula (3.6) in Theorem 3.1 should in parti
ular be understood to imply thatthe integral on the right hand side exists and thus the fra
tal 
urvatures are�nite. For k = d, the limits in (3.6) and (3.7) spe
ialize to the average Minkowski
ontent and the Minkowski 
ontent, respe
tively, and the result is due to Lapidusand Pomeran
e [8℄, Fal
oner [3℄ (for d = 1) and Gatzouras [6℄ (for general d). The
ase k = d� 1 is treated in [10℄. In both 
ases the essential limits 
an be repla
edby limits and the limits are always positive. Re
all that for d � 3 RC is known tobe satis�ed. For the spe
ial 
ase of poly
onvex parallel sets, where the 
onditionsRC and CBC are not needed, see [12℄.It is shown in [13℄, that under the hypotheses of Theorem 3.1 also fra
tal
urvature measures exist.Theorem 3.2 ([13, Theorem 2.3℄). Let k 2 f0; 1; : : : ; dg and F be a self-similarset in Rd , d � 1, satisfying OSC. If k � d � 2, assume additionally that RC andCBC hold. Then(3.8) Cfk (F; � ) := wlim"!0 1j ln "j Z 1" ~"D�kCk(F~"; � )d~"~" = Cfk (F )�F ;where �F is the normalized D-dimensional Hausdor� measure on F . Moreover, ifF is non-arithmeti
, then also the essential weak limit esswlim"!0 "D�kCk(F"; � )exists and equals Cfk (F; � ).4. Equivalent reformulations of CBCWe give some alternative equivalent formulations of CBC with the intensionto 
larify the meaning of this 
ondition and also to simplify its veri�
ation in
on
rete examples.Throughout we assume that k 2 f0; : : : ; d � 2g (sin
e for k 2 fd � 1; dg CBCis not needed) and that F is a self-similar set in Rd satisfying OSC and RC. The�rst equivalent reformulation of CBC is rather obvious and has been mentionedin [13, 
f. Remark 2.4℄ already: The boundary signs in CBC 
an be omitted. Itpaves the road for further reformulations. For " 2 (0; R) and � 2 �("), let(4.1) A�;" := [�02�(")nf�g(S�0F )":



Curvature bounds for neighborhoods of self-similar sets 211Proposition 4.1. The following 
ondition is equivalent to CBC:(CBC1) There is a 
onstant 
k and a null set N � (0; R) su
h that for all" 2 (0; R) n N and all � 2 �b(")(4.2) Cvark (F"; (S�F )" \ A�;") � 
k"k:Proof: The assertion follows from the set equality(S�F )" \A�;" \ �F" = �(S�F )" \ �A�;" \ �F"and the fa
t that the 
urvature measure Ck(F"; � ) is 
on
entrated on the boundaryof F", see also [13, Remark 2.4℄. �Remark 4.2. Without loss of generality, we 
an assume that the set N in CBC1has the following additional properties:(4.3) M� N and r�N � N for all � 2 ��;where M is the (Lebesgue null) set of ex
eptions in RC. Indeed, the existen
eof a null set N satisfying these additional 
onditions 
learly implies the exis-ten
e of a null set at all satisfying CBC1. Conversely, if CBC1 holds with anarbitrary null set N of ex
eptions, then it also holds with the larger null setN � := S�2�� r�(M[ N ) � (0; R) of ex
eptions, whi
h has both of the aboveproperties. In the sequel we will always assume that the set N of ex
eptions hasthese two additional properties.For the proof of the next reformulation we require the following estimate, whi
his proved in [13℄. Re
all the de�nition of the set A�;" from (4.1).Lemma 4.3 ([13, Lemma 3.2℄). Let k 2 f0; : : : ; d� 2g and let F be a self-similarset in Rd satisfying OSC, RC and CBC. Then there is a 
onstant 
 > 0 su
h that,for all " 2 (0; R) n N and all � 2 �("),Cvark (F"; (S�F )" \ A�;") � 
"k:(4.4)In the following reformulation of CBC we shift the parameter r in the families�(r) in order to be able to work with larger 
ylinder sets 
ompared to the parallelwidth ". Condition CBC2 below roughly means that one 
an work with 
ylindersets of diameter �", � � 1. Pra
ti
ally, this allows to redu
e the number ofmutual interse
tions between the 
ylinder sets. It also enables us to show thatthe validity of CBC for a given self-similar set F does not depend on the 
hoi
eof the 
onstant R.Theorem 4.4. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Let � � 1. Then the following 
ondition is equivalent toCBC:



212 S. Winter(CBC2) There exist bk = bk(�) > 0 and a null set N su
h that for all " 2(0; R=�) n N and all ! 2 �b(�")Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A � bk"k;and su
h that for all " 2 [R=�;R) n NCvark (F") � bk"k:Remark 4.5. The se
ond inequality should be viewed as an extension of the rangeof (2.6) to the interval [R=�;R). Note that it 
an equivalently be formulated withthe expression bk"k on the right hand side repla
ed by bk (adapting the 
onstantif ne
essary), sin
e "k is bounded on the relevant interval. We use this slightlymore 
ompli
ated formulation with "k not only be
ause it is more 
onvenient inthe proofs, but mainly be
ause it is more 
onsistent with the general philosophythat for the k-th 
urvature measure Ck(F"; � ) bounds of order "k are needed at alls
ales. The same applies to the se
ond inequalities in CBC3, CBC2' and CBC3'below.Proof: For � = 1, CBC1 and CBC2 are obviously equivalent, sin
e the �rstinequality in CBC2 redu
es to CBC1 in this 
ase and the range of the se
ond oneis the empty set.So �x some � > 1. We �rst show that CBC1 implies CBC2. For ! =!1 : : : !m 2 �(�"), let�!(") := f� 2 �(") : �i = !i for i = 1; : : : ;mg:Observe that the 
ardinality of the sets �!(") is bounded by a 
onstant (indepen-dent of " 2 (0; R) and ! 2 �(�")). Indeed, ea
h � 2 �!(") is of the form � = !~�with ~� 2 �("=r!). Hen
e#�!(") � #�("=r!) � #�(��1R) =: 
̂;where the last inequality is due to the relation "=r! > ��1R (sin
e ! 2 �(�"))and the monotoni
ity of #�( � ). Sin
e (S!F )" = S�2�!(")(S�F )", we have forea
h " 2 (0; ��1R) n N ,Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A= Cvark 0�F"; [�2�!(")(S�F )" \ [!02�(�")nf!g(S!0F )"1A



Curvature bounds for neighborhoods of self-similar sets 213� X�2�!(")Cvark 0�F"; (S�F )" \ [!02�(�")nf!g(S!0F )"1A� X�2�!(")Cvark 0�F"; (S�F )" \ [�02�(")nf�g(S�0F )"1A= X�2�!(")Cvark (F"; (S�F )" \ A�;") ;where the last inequality is due to the set in
lusion[!02�(�")nf!g(S!0F )" � [�02�(")nf�g(S�0F )"and the last equality to (4.1). Now, sin
e CBC1 is assumed to hold (whi
h isequivalent to CBC by Proposition 4.1), we 
an apply Lemma 4.3 and obtain thatea
h of the terms in this sum is bounded from above by 
"k. Therefore, the wholesum is bounded by bk"k with bk := 
̂
, showing the �rst inequality of CBC2.The se
ond inequality follows immediately from [13, Corollary 4.1℄, whi
h statesthat CBC implies the uniform boundedness of " 7! Cvark (F") on 
ompa
t intervals[a; b℄ � (0;1). For the 
onvenien
e of the reader, we provide the following dire
talternative proof of the se
ond inequality: Observe that for " 2 (0; R) n NCvark (F") = Cvark 0�F"; [�2�(")(S�F )"1A� X�2�(")Cvark (F"; (S�F )")� X�2�(")Cvark (F"; (S�F )" \A�;") + Cvark (F"; (S�F )" \ (A�;")
) :By Lemma 4.3, for ea
h � 2 �("), the �rst term in this sum is bounded by 
"k.For the se
ond term, we have F" \ (A�;")
 = (S�F )" \ (A�;")
 and so, by thelo
ality property (2.5),Cvark (F"; (S�F )" \ (A�;")
) = Cvark ((S�F )"; (S�F )" \ (A�;")
)� Cvark ((S�F )") = rk�Cvark �F"=r�� :Sin
e � 2 �(") implies "r� > R, the last term is bounded by rk�
k(F;R)( "r� )k =
k(F;R)"k, by (2.6). Finally observe that, for " 2 [��1R;R), the 
ardinality ofthe family �(") is bounded by the 
onstant ~
 := #�(��1R) and thus we 
on
ludethat Cvark (F") is bounded by bk"k (with bk = ~
(
 + 
k(F;R))) for " 2 [��1R;R)as 
laimed in the se
ond inequality in CBC2. This 
ompletes the proof of theimpli
ation CBC1 ) CBC2.



214 S. WinterFor the reverse impli
ation, let �rst " 2 [��1R;R) n N . Then, by the se
ondinequality in CBC2, we immediately obtain for ea
h � 2 �("),Cvark (F"; (S�F )" \ A�;") � Cvark (F") � bk"k;whi
h veri�es the inequality in CBC1 for " 2 [��1R;R) n N . Now let " 2(0; ��1R) n N and � 2 �("). Let ! 2 �(�") be the unique sequen
e su
h that� = !~�. In analogy with (4.1), we set(4.5) B!;" := [!02�(�")nf!g(S!0F )":Sin
e (S�F )" � (S!F )" and obviously A�;" � Rd = B!;" [ (B!;")
 we infer, that(4.6) Cvark (F"; (S�F )" \A�;") � Cvark (F"; (S!F )" \ B!;")+ Cvark (F"; (S!F )" \ (B!;")
) :Now, if we assume � 2 �b("), then ! 2 �b(�"). Therefore, by CBC2, the �rstterm in the above expression is bounded by bk"k. For the se
ond term observethat, by the lo
ality property (2.5) (appli
able, sin
e " and thus "=r! are regularvalues for F , 
f. (4.3)), in the open set (B!;")
 we 
an repla
e F" by (S!F )".Hen
e this term is bounded byCvark ((S!F )"; (S!F )" \ (B!;")
) � rk!Cvark �F"=r!� :Finally, re
alling that w 2 �(�") and so ��1R < "=r! � (�r!n)�1R, we 
on
ludefrom the se
ond inequality in CBC2 and (2.6) that the last expression is boundedeither by rk!bk("=r!)k or by rk!
k(F;R)("=r!)k depending on whether "=r! is lessor greater than R. In any 
ase, there is a 
onstant b0k (given by the maximum of
k(F;R) and bk) independent of " and ! su
h that the last expression (and thusthe se
ond term in (4.6)) is bounded by b0k"k. This veri�es the inequality in CBC1for " 2 (0; ��1R) n N and � 2 �b(") and 
ompletes the proof of the impli
ationCBC2 ) CBC1. �Note that 
ondition CBC2 in Theorem 4.4 
an equivalently be phrased \Thereexists a 
onstant � � 1, a 
onstant bk = bk(�) and . . . ," or \For all � � 1, thereexists a 
onstant bk = bk(�) and . . . ". The next statement shows that it is notimportant how the 
onstant R is 
hosen. If for a self-similar set, CBC fails tohold for some R, it 
annot be veri�ed by 
hoosing a di�erent R.Corollary 4.6. CBC is independent of the 
hoi
e of the 
onstant R, i.e., if R1and R2 are two 
onstants with Ri > p2diamF , then CBC with R = R1 is satis�edif and only if CBC with R = R2 is.Proof: Without loss of generality, we may assume that R1 > R2. Suppose CBC1holds with R = R1 and let � := R1R2 > 1. Then, by Theorem 4.4, CBC2 holdswith R = R1 and � = R1R2 . Sin
e R1� = R2 and �(R1)(�") = �(R2)(") (where the
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ripts R1 and R2 indi
ate whi
h R we have to use in the de�nition of �(r)),we have in parti
ular that for all " 2 (0; R2) n N and for all w 2 �(R2)b (")Cvark 0�F"; (S!F )" \ [!02�(R2)(�")nf!g(S!0F )"1A � bk"k;whi
h is just CBC1 with R = R2.Conversely, if CBC1 with R = R2 holds, then the argument from above showsthat the �rst inequality of CBC2 with R = R1 and � = R1R2 also holds. Moreover,by (2.6), there exists a 
onstant 
 = 
(F;R2) su
h that Cvark (F") � 
"k for " >R2 = R1� , i.e., in parti
ular, for " 2 (R1� ; R1℄. Hen
e, the se
ond inequality ofCBC2 with R = R1 is also satis�ed. Now, again by Theorem 4.4, we infer thatCBC1 with R = R1 holds, whi
h 
ompletes the proof. �Condition CBC3 below shows that if the 
ylinder sets are 
hosen large enough(
ompared to "), then one 
an pass over to mutual interse
tions of pairs of 
ylindersets. The proof is based on a lemma in [12℄, whi
h roughly says that a set (S�F )"from a family f(S!F )" : ! 2 �(�")g does not interse
t too many of the othermembers of this family, provided � is large enough, 
f. [12, Lemma 5.3.1℄. Morepre
isely, � needs to be larger than R��1, where � is given as follows: Be
auseof SOSC, there exists a word u 2 �� su
h that SuF � O and the 
ompa
tnessof SuF implies that there is a 
onstant � > 0 su
h that ea
h point x 2 SuFhas a distan
e greater than � to �O, i.e., d(x;O
) > �. Set � := rmin �2 , wherermin := minfri : 1 � i � Ng. (Note that � depends on the 
hoi
e of O and theword u. Any 
hoi
e � � rmin �2 is also �ne.) Compare also [12, Se
tion 5.1℄.Theorem 4.7. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Let � � maxf1; R��1g. Then the following 
ondition isequivalent to CBC:(CBC3) There is a 
onstant ak = ak(�) and a null set N su
h that for all" 2 (0; R=�) n N , ! 2 �b(�") and !0 2 �(�") n f!gCvark (F"; (S!F )" \ (S!0F )") � ak"kand su
h that for all " 2 [R=�;R) n NCvark (F") � ak"k:Proof: Fix some � � maxf1; R��1g. In view of Theorem 4.4, it suÆ
es to showthat CBC3 is equivalent to CBC2 (with the same � and N ). The impli
ationCBC2 ) CBC3 is easy: If " 2 (0; R=�) n N , ! 2 �b(�") and !0 2 �(�"), thenCvark (F"; (S!F )" \ (S!0F )") � Cvark 0�F"; (S!F )" \ [v2�(�")nf!g(SvF )"1A



216 S. Winterand, by CBC2, the right hand side is bounded by bk"k, verifying the �rst inequalityof CBC3. The se
ond inequalities are obviously equivalent in both 
onditions.To show that CBC3 implies CBC2, let " 2 (0; R=�)nN and ! 2 �b(�"). Usingthe notation B!(") from (4.5), we observe thatCvark (F"; (S!F )" \ B!;") � X!02�(�")nf!gCvark (F"; (S!F )" \ (S!0F )") :(4.7)We 
an restri
t the summation to those !0 for whi
h the interse
tion (S!F )" \(S!0F )" is nonempty. By [12, Lemma 5.3.1, p. 45℄, the number of su
h terms isbounded by some 
onstant �max (independent of " or !). (Note that this is wherethe assumption � > R��1 is used.) Sin
e CBC3 is assumed to hold, ea
h termin this sum is bounded by ak"k, giving the upper bound �maxak"k for the wholesum. This 
ompletes the proof. �The following statement establishes that the families �b(�), whi
h o

ur in
onditions CBC1{CBC3 above, 
an equivalently be repla
ed by the larger fami-lies �(�).Theorem 4.8. Ea
h of the following 
onditions is equivalent to CBC:(CBC1') There is a 
onstant 
k and a null set N � (0; R) su
h that for all" 2 (0; R) n N and all � 2 �(")(4.8) Cvark 0�F"; (S�F )" \ [�02�(")nf�g(S�0F )"1A � 
k"k:(CBC2') There exist � � 1, bk = bk(�) > 0 and a null set N su
h that for all" 2 (0; R=�) n N and all ! 2 �(�")Cvark 0�F"; (S!F )" \ [!02�(�")nf!g(S!0F )"1A � bk"kand su
h that for all " 2 [R=�;R) n NCvark (F") � bk"k:(CBC3') There exist � � maxf1; R��1g, ak = ak(�) > 0 and a null set N su
hthat for all " 2 (0; R=�) n N and !!0 2 �(�") with ! 6= !0Cvark (F"; (S!F )" \ (S!0F )") � ak"kand su
h that for all " 2 [R=�;R) n NCvark (F") � ak"k:
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ations CBC1') CBC1, CBC2') CBC2 and CBC3') CBC3are obvious. The impli
ation CBC1) CBC2' holds, sin
e in the proof of CBC1)CBC2 in Theorem 4.4 it is only used that ! 2 �(�") but not that ! 2 �b(�"). Theproofs of the impli
ations CBC2' ) CBC1' and CBC2' ) CBC3' are 
ompletelyanalogous to the proofs of CBC2 ) CBC1 and CBC2 ) CBC3 in Theorems 4.4and 4.7, respe
tively. One 
an repla
e ea
h instan
e of �b(�) by �(�) and use the\stronger" 
ondition CBC2' instead of CBC2. Thus we have the following 
y
lesof impli
ations: CBC1 ) CBC2' ) CBC1') CBC1 and CBC1 ) CBC2' )CBC3' ) CBC3, whi
h, together with the equivalen
es in Theorems 4.4 and 4.7,show the equivalen
e to CBC of ea
h of these three 
onditions. �Corollary 4.9. The validity of CBC is independent of the 
hoi
e of the openset O.Proof: By Theorem 4.8, CBC is equivalent to CBC1', a 
ondition in whi
h theopen set O does not o

ur. �We point out that in 
on
rete examples some of these 
onditions are easier toverify than the original 
ondition. However, we postpone examples to the nextse
tion, where a simpler but slightly stronger 
ondition is dis
ussed whi
h is eveneasier to verify.To 
omplete the pi
ture of the present state of the art regarding the 
urvaturebound 
ondition, we brie
y dis
uss an example of a self-similar set not satisfyingCBC. It was dis
overed independently by Andreas Wust and Jan Rataj. In fa
t,in the example below we dis
uss a one-parameter family of sets F (p), p 2 (0; 12 ),for whi
h CBC fails. In the proof we use one of the equivalent reformulationsof CBC.Example 4.10. For p 2 (0; 12 ), let F = F (p) be the self-similar set in R2 gene-rated by the four similarities S1; : : : ; S4 ea
h with 
ontra
tion ratio p, whi
h mapthe unit square Q = [0; 1℄2 to the four squares of side length p in the 
orners ofQ, 
f. Figure 1. F is a Cantor set satisfying the strong separation 
ondition (andthus in parti
ular SOSC). F 
an also be viewed as the Cartesian produ
t C �C,where C = C(p) is the self-similar Cantor set on R generated by the two mappingsf1(x) = px and f2(x) = px+ (1� p), x 2 R. It is 
lear that g2 is a 
riti
al valueof the distan
e fun
tion of F , where g := 1� 2p is the minimal distan
e betweenS1F and S2F . Note that for " < g2 , the interse
tion (S1F )" \ (S2F )" is empty,while for " = g2 it is a Cantor set eC on the verti
al line x = 12 , whi
h is similarto C (but shrinked by a fa
tor 13 ). For " > g2 , the interse
tion 
onsists of a �nitenumber of (roughly lense-shaped) 
onne
ted 
omponents whose number in
reasesas "& g2 . The fa
t, that the number of these 
omponents is unbounded as "& g2 ,is essentially the reason, why CBC fails.To provide a rigorous argument, we will now demonstrate that CBC2' (andthus, by Theorem 4.8, CBC) is not satis�ed for F . Choose R and � su
h thatR� = g2p , R > p2diam (F ) = 2 and � � 1. (This 
an for instan
e be a
hievedas follows: For p � 18 , 
hoose R = 3 and � = R 2p1�2p � 1. For p < 18 , 
hoose
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εFigure 1: (Left): the iterates of the unit square Q = [0; 1℄2 under the IFS ge-nerating the set F (p) of Example 4.10; (Right): enlargement of the interse
tion(S1F )" \ (S2F )" for some " > g2 .R = 1�2p2p > 3 and � = 1.) Let ! = 1 and !0 = 2. These 
hoi
es ensure that!; !0 2 �(�") for ea
h " 2 (pR� ; R� ℄ = ( g2 ; g2p ℄. The validity of CBC2' would inparti
ular imply the existen
e of a 
onstant b0 and a null set N su
h that for all" 2 (pR� ; R� ) n NCvar0 (F"; (S1F )" \ (S2F )") � Cvar0 (F"; (S1F )" \[i6=1(SiF )") � b0:Therefore, it suÆ
es to show that for ea
h 
onstant b > 0 there is a set I = I(b) �(pR=�;R=�℄ with �1(I) > 0 su
h that for all " 2 I ,Cvar0 (F"; (S1F )" \ (S2F )") � b:Observe that the number N(") of 
onne
ted 
omponents of the set (S1F )" \(S2F )" is given by one plus the number of those 
omplementary intervals L ofthe set eC, whose length l satis�es l2 > 4"2� g2, 
f. Figure 1. Ea
h 
omponent Kof (S1F )" \ (S2F )" has exa
tly 2 points in 
ommon with the set �F", namely theendpoints of the segment K \ fx = 12g. Moreover, by symmetry, the 
urvatureC0(F"; � ) at ea
h of these points is the same (for �xed ") and given by the angle� = �(") at the point T in Figure 1. It is not diÆ
ult to see that � = 2ar
sin( g2" ),
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h implies that � > g" , sin
e ar
sin(x) > x for x 2 (0; 1). Hen
e we obtain, for" 2 ( g2 ; g2p ℄, that � > 2p and thusCvar0 (F"; (S1F )" \ (S2F )") = 2N(")Cvar0 (F"; fQg) = 2N(") �2� > 2p� N("):So �x some b > 0. Choose u > g2 su
h that N(u) 2p� > b. (This 
hoi
e is possible,sin
e N(") ! 1 as " & g2 ). Let I := ( g2 ; u). Clearly, �1(I) > 0 and, sin
eN( � ) is monotone de
reasing, we have for all " 2 I , Cvar0 (F"; (S1F )" \ (S2F )") >2p� N(") � 2p� N(u) > b as desired. This shows that CBC fails for ea
h of the setsF = F (p) with p 2 (0; 12 ).5. A simpler but stronger 
onditionIn view of the results in [9℄ and [12℄, it is a natural question to ask, whetherthe 
urvature bound 
ondition 
an also be formulated in terms of interse
tionsof �rst level 
ylinder sets. Indeed, even formula (3.6) in Theorem 3.1 suggeststhis, sin
e the fun
tion Rk de�ned in (3.5) des
ribes essentially the 
urvature(of F") in the interse
tions of �rst level 
ylinder sets. However, it turns out thatthe 
ondition below whi
h involves only �rst level 
ylinder sets is suÆ
ient butnot ne
essary for CBC to be satis�ed. We 
all this simpler 
ondition the strong
urvature bound 
ondition (SCBC). It provides a useful tool for the dis
ussion of
on
rete examples.Theorem 5.1. Let k 2 f0; : : : ; d � 2g and let F be a self-similar set in Rdsatisfying OSC and RC. Then the following 
ondition implies CBC:(SCBC) There is a 
onstant dk and a null set N su
h that for all " 2 (0; R) nNand all i; j 2 f1; : : : ; Ng with i 6= j,Cvark (F"; (SiF )" \ (SjF )") � dk"k:Proof: Fix some � � maxf1; R��1g. We show that SCBC implies CBC2' (withthe same null set N and this 
hoi
e of �), whi
h is equivalent to CBC by Theo-rem 4.8.For " 2 (0; R=�) n N and ! 2 �(�"), 
onsider the family
 := f!0 2 �(�") n f!g : (S!F )" \ (S!0F )" 6= ;g:By [12, Lemma 5.3.1, p. 45℄, the 
ardinality of 
 is bounded by some 
onstant �max(independent of " and ! 2 �(�")), giving an upper bound for the number of termsin the double union below. Write m := j!j, ! = !1!2 : : : !m and !jn := !1 : : : !nfor n = 0; 1; : : : ;m. Observe that(S!F )" \ B!;" = (S!F )" \ [!02
(S!0F )"(5.1)
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!0jn=!jn;!0n+1 6=!n+1 2664(S!F )" \ (S!0F )" n [�2�(�")�jn6=!jn(S�F )"3775 :Indeed, for ea
h !0 2 
 there is a unique n 2 f0; : : : ;m� 1g su
h that !0jn = !jnbut !0n+1 6= !n+1. Moreover, from the interse
tion (S!F )"\(S!0F )" we 
an safelysubtra
t all sets (S�F )" with � 2 �(�") and �jn 6= !jn, sin
e either � =2 
, inwhi
h 
ase (S�F )" has no interse
tion with (S!F )" and thus no interse
tion with(S!F )" \ (S!0F )", or � 2 
, in whi
h 
ase the set (S�F )" o

urs already in theunion for some smaller n.We infer that(5.2) Cvark (F"; (S!F )" \ B!;")� m�1Xn=0 X!02
!0jn=!jn;!0n+1 6=!n+1Cvark 0BB�F"; (S!F )" \ (S!0F )" n [�2�(�")�jn6=!jn(S�F )"1CCA ;where we keep in mind that the number of terms in this double sum is boundedby �max. Furthermore, ea
h term in the double sum is bounded from above asfollows. For �xed !0 2 
 (and the 
orresponding n) write ~! := !jn = !0jn. Thesets F" and (S~!F )" 
oin
ide inside the open setU := 0BB� [�2�(�")�jn6=~! (S�F )"1CCA
 :Hen
e, by the lo
ality property (2.5) and by the s
aling properties (2.3) and (2.4),we obtain Cvark (F"; (S!F )" \ (S!0F )" \ U)= Cvark ((S~!F )"; (S!F )" \ (S!0F )" \ U)� Cvark ((S~!F )"; (S!F )" \ (S!0F )")� Cvark �S~!F"=r~! ; S~! �(S!n+1F )"=r~! \ (S!0n+1F )"=r~!��= rk~�Cvark �F"=r~! ; (S!n+1F )"=r~! \ (S!0n+1F )"=r~!� :Applying now SCBC, we 
on
lude that the last term is bounded by dk"k and thusthe whole expression in (5.2) by bk"k, where bk := �maxdk. Sin
e this bound isvalid for all " 2 (0; R=�) n N and ! 2 �(�"), the proof of the �rst inequality ofCBC2' is 
omplete.
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ond inequality of CBC2', we de
ompose the set F" as followsF" = [�2�(")(S�F )" = [�2�(") (((S�F )" \ A�;") [ ((S�F )" \ (A�;")
)) :For " 2 (R=�;R), the 
ardinality of �(") is uniformly bounded by the 
onstant
̂ := #�(R=�). Therefore, it suÆ
es to show that there is a 
onstant 
 su
hthat the 
urvature of ea
h set in this union is bounded by 
"k. For the sets(S�F )" \ (A�;")
, one 
an use dire
tly (2.5) (in the open set (A�;")
) to infer thatCvark (F"; (S�F )" \ (A�;")
) = Cvark ((S�F )"; (S�F )" \ (A�;")
)� Cvark ((S�F )") � rk�Cvark �F"=r�� :Sin
e � 2 �(") and thus "=r� > R, we 
on
lude from (2.6), that the last expressionis bounded by 
k(F;R)"k as desired. For the sets (S�F )"\A�;" a similar argumentas for the sets (S!F )" \ B!;" in (5.1) works. One has the de
omposition(S�F )" \ A�;" = j�j�1[n=0 [�02�(")nf�g�0jn=�jn;�0n+1 6=�n+10BB�(S�F )" \ (S�0F )" n [�2�(")� jn6=�jn(S�F )"1CCA :Again the number of sets in this double union is bounded, but for a di�erent reasonas before. Here the 
ardinality of �(") is bounded by 
̂ (sin
e " > R=�). Theremaining arguments 
arry over from the 
ase (S!F )" \B!;" and one obtains thebound 
̂dk"k for Cvark (F"; (S�F )" \ A�;"). This 
ompletes the proof of the se
ondinequality of CBC2'. �We will now show that the 
onverse of Theorem 5.1 is not true, i.e., that SCBCis not equivalent to CBC, by providing a 
ounterexample. We will dis
uss a setwhi
h satis�es CBC but not SCBC.Example 5.2 (U-set). Consider the self-similar set F � R2 generated by theseven similarities S1; : : : ; S7, ea
h with ratio r = 13 , mapping the unit squareQ := [0; 1℄2 to one of the seven subsquares forming the set U as depi
ted inFigure 2. (Note that S4 in
ludes a 
lo
kwise rotation by �2 .) This modi�
ationof the Sierpinski 
arpet is similar to the U-sets dis
ussed in [9℄ and [12℄, but in
ontrast to those sets, the present set F does not have poly
onvex parallel sets.For instan
e, for large ", the interse
tion of F" with the upper half spa
e y � 1
annot be represented as a �nite union of 
onvex sets.First we look at the measure C0(F"; � ) at the interse
tion (S1F )" \ (S2F )".We will show that for " 2 [ 123�(m+2); 123�(m+1)) and m = 1; 2; : : :Cvar0 (F"; (S1F )" \ (S2F )") = 12(2m � 1);(5.3)
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Figure 2: (Left): the iterates of the set U under the IFS in Example 5.2; (Right):enlargement of the interse
tion (S1F )" \ (S2F )" for " = 145 .whi
h immediately implies that Cvar0 (F"; (S1F )" \ (S2F )")!1 as "! 0. Hen
ethis 
urvature 
annot be bounded by a 
onstant on the whole interval (0; R) andso SCBC does not hold.For a proof of (5.3), observe that the interse
tion S1F \ S2F is a s
aled 
opyeC of the usual middle-third Cantor set (s
aled by a fa
tor 13 ) on the line y = 23 .Moreover, for " 2 (0; R), the interse
tion �F"\(S1F )"\(S2F )" 
onsists of a �nitenumber of pairs of points on the line y = 23 � ", where ea
h pair 
orresponds toa 
omplementary interval of eC of length greater than 2", 
f. Figure 2. (Thereare two more interse
tion points with 
oordinates (�"; 23 ) and ( 13 + "; 23 ), whi
h
arry no 
urvature.) In eC, we have one 
omplementary interval of length 19 , twoof length 133 , four of length 133 and so on, i.e., 2k of length 13k+2 for k = 0; 1; : : :.Therefore, the number J(") of 
omplementary intervals of eC with length greaterthan 2" is given by J(") = m�1Xk=0 2k = 2m � 1for 2" 2 [3�(m+2); 3�(m+1)) and m = 1; 2; : : :. Sin
e ea
h of the points 
ontributesa 
urvature of � 14 to C0(F"; � ), we obtain the result 
laimed in (5.3). This
ompletes the proof of the assertion that SCBC is not satis�ed.It remains to show that, on the 
ontrary, CBC is satis�ed. We demonstratethis by verifying CBC2' for F . For this purpose, �x R > 2 and 
hoose � � 1 largeenough to ensure that, for any !; !0 2 �(�"), the interse
tion (S!F )" \ (S!0F )"is nonempty only if the interse
tion S!F \ S!0F is, i.e., only if the 
ylinder setsS!F , S!0F are dire
t neighbors. (Any 
hoi
e � � 6R works. Two 
ylindersets !; !0 2 �(�"), whi
h do not interse
t ea
h other, have distan
e at leastrj!j as there is a square of this side length between them. On the other hand,!; !0 2 �(�") implies �" � Rrj!j�1, i.e. 2" < rj!j.) Obviously, a 
ylinder set
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an have at most eight neighbors (
orresponding to the eight neighboringsquares). In fa
t, it 
an have at most 5 neighbors, sin
e there are always at leastthree neighboring squares whose interior is outside F and whi
h do not 
ontainany 
ylinder set of F , but we will not use this. To verify the �rst inequality ofCBC2', it suÆ
es to show that there is a 
onstant b > 0 su
h that for " 2 (0; R=�)and !; !0 2 �(�") with ! 6= !0,Cvar0 (F"; (S!F )" \ (S0!F )") � b;(5.4)sin
e this 
learly implies that Cvar0 (F"; (S!F )" \ Bw;") is bounded by 8b. So �x" 2 (0; R=�) and !; !0 2 �(�") with ! 6= !0. Then the interse
tion (S!F )" \(S!0F )" is a s
aled 
opy of one of the following four sets: K1 := (S1F )Æ \ (S2F )Æ,K2 := (S3F )Æ \ (S4F )Æ , K3 := (S2F )Æ \ (S4F )Æ or K4 := (S4F )Æ \ (S6F )Æ whereÆ := "3j!j�1. Moreover, the interse
tion of (S!F )" \ (S!0F )" with �F" is a s
aled
opy of the 
orresponding interse
tion Ki \ �FÆ . This impliesCvar0 (F"; (S!F )" \ (S0!F )") � maxi2f1;2;3;4gCvar0 (FÆ ;Ki):For i = 2; 3; 4, it is easily seen that the set �FÆ \ Ki 
onsists of 2 points (forall Æ > 0) and thus Cvar0 (FÆ ;Ki) is 
ertainly bounded by 2. For i = 1, we inferthat Æ � R� r (sin
e !; !0 2 �(�")) and thus Æ > 13 212 = 118 by the 
hoi
e of Rand �. Hen
e K1 is 
onne
ted and so �FÆ \Ki 
onsists of 2 points as in the other
ases. Therefore the maximium above is 
learly bounded by 2, whi
h 
ompletesthe proof of (5.4) and thus of the �rst inequality of CBC2'.It remains to provide a proof of the se
ond inequality of CBC2'. With the
hoi
e � = 6R above, it remains to show that Cvar0 (F") is bounded by some
onstant for " 2 ( 16 ; R). It is easy to see that F" and the parallel set Q" of theunit square Q =: [0; 1℄2 
oin
ide in the open half plane H := f(x; y) 2 R2 : y < 1g.Hen
e, by (2.5), Cvar0 (F"; H) = Cvar0 (Q"; H) � Cvar0 (Q") = 1;where the last equality is due to the 
onvexity of Q". It remains to show that forsome � > 0 and H� := f(x; y) : y � 1� �g we also haveCvar0 (F"; H�) � bfor " 2 ( 16 ; R).Fix � < 16 . Let 
 = f1; 7g2 and A" := S!2
(S!F )". Observe that for 16 < ",F" \H� = A" \H�:Sin
e the diameter of ea
h of the 
ylinder sets S!F in A" is p2r2, we 
an inferfrom (2.6), that Cvar0 ((S!F )") is bounded by some 
onstant 
 = 
(R0) for all" � R0 := Rr2 (and all ! 2 
). Therefore,Cvar0 (F"; H�) = Cvar0 (A"; H�) � Cvar0 (A")
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Cvar0 (A"; (S�F )" nB) + Cvar0 (A"; B);where B := S!;!02
;! 6=!0(S!F )" \ (S!0F )". Sin
e, by (2.5),Cvar0 (A"; (S�F )" nB) = Cvar0 ((S�F )"; (S�F )" nB) � Cvar0 ((S�F )") � 
;we infer that the sum above is bounded by 4
. For the last term observe thatCvar0 (A"; B) � X!;!02
;! 6=!0 Cvar0 (A"; (S!F )" \ (S!0F )"):By noting that ea
h of the interse
tions (S!F )"\(S!0F )" above is a 
onvex set (orempty) and that the interse
tion with �A" 
onsists of just two points (or none)ea
h 
ontributing at most 12 to the 
urvature of A", we 
on
lude that ea
h termin the latter sum is bounded by 1 and thus the whole sum by 6. This 
ompletesthe proof of the se
ond inequality in CBC2'.We 
on
lude this se
tion with a dis
ussion of the well-known Ko
h 
urve. Asits parallel sets are 
learly not poly
onvex, it provides an example of a self-similarset to whi
h the results in [16℄ and [13℄ apply but whi
h is not 
overed by theresults in [12℄. It also illustrates how SCBC simpli�es the veri�
ation of CBC(
ompare with Example 5.2).Example 5.3 (Ko
h 
urve). Let K � R2 �= C be the self-similar set generated bythe two similarity mappings S1; S2 given (in 
omplex 
oordinates) by S1(z) = 
�zand S2(z) = (1 � 
)(�z � 1) + 1, respe
tively, where 
 = 12 + ip36 . The 
ontra
-tion ratios are r1 = r2 = r = 1p3 . It is well known (and easily seen) that Ksatis�es OSC.The 
riti
al values of the distan
e fun
tion are 19rk , k = 0; 1; 2; : : :. In parti
u-lar, these values form a null set so that RC is satis�ed. (More pre
isely, all 
riti
alpoints lie either on the axis Re(z) = 12 or on one of its iterates S!(fRe(z) = 12g),! 2 ��. For " = 19 , for instan
e, p = 12 + ip318 is the unique 
riti
al point withthis distan
e from K (
f. Figure 3). Note that also for the 
riti
al values " the
urvature measure C0(K"; � ) is well de�ned in this 
ase.)Now we want to look more 
losely at the 
urvature bound 
ondition for k = 0.We will verify that SCBC holds, whi
h implies CBC by Theorem 5.1. Hen
einstead of having to work with 
ylinder sets of all levels, it is enough to look at the�rst level 
ylinder sets, of whi
h there are only two in this 
ase. It suÆ
es to showthat, for all " > (0; R), the expression Cvar0 (K"; (S1K)" \ (S2K)") is bounded bysome 
onstant d0. Sin
e the measure C0(K"; � ) is 
on
entrated on the boundaryof K", it is enough to 
onsider the interse
tion �(S1K)"\�(S2K)", whi
h 
onsistsof some ar
 A = A(") of the 
ir
le of radius " 
entered at the interse
tion point ofS1K and S2K and a single point p = p("), the interse
tion point of the two 
urvesbounding the parallel sets (S1K)" and (S2K)" from below, 
ompare Figure 3. (Infa
t, it requires some justi�
ation to see that those two 
urves interse
t in a
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Figure 3: Approximation of the Ko
h 
urve and its "-parallel set for the 
riti
alvalue " = 19 . p is a 
riti
al point realizing this value. The interse
tion �(S1K)" \�(S2K)" 
onsists of the ar
 A and the point p.single point for ea
h �xed " > 0. We skip the details of the rather elementary
omputations at this point.) Now observe that C0(K"; A) = �2� where � = �3 isthe angle determining the ar
 A (independent of "). Hen
e, C0(K"; A) = 16 forall " > 0. The measure C0(K"; fpg) depends on " and is negative. It is 
ertainlybounded from below by �1. (In fa
t, it is bounded by � 12 .) Hen
e, we get that,for all " > 0,Cvar0 (K"; (S1K)" \ (S2K)") � Cvar0 (K"; A [ fpg) � 16 + 1 =: d0;whi
h veri�es SCBC and thus CBC.Sin
e K is latti
e, Theorem 3.1 implies the existen
e of the average limitCf0 (K), as given by (3.6), but not the existen
e of the essential limit in (3.7).Moreover, by Theorem 3.2, the 
orresponding fra
tal 
urvature measure Cf0 (K; � )exists and is given by Cf0 (K)�K , where �K = HDbK( � )HD(K) is the normalized D-dimensional Hausdor� measure on K with D = log3 4.Referen
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