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Charaterization of power digraphs modulo nUzma Ahmad, Syed HusnineAbstrat. A power digraph modulo n, denoted by G(n; k), is a direted graphwith Zn = f0; 1; : : : ; n � 1g as the set of verties and E = f(a; b) : ak � b(mod n)g as the edge set, where n and k are any positive integers. In this paperwe �nd neessary and suÆient onditions on n and k suh that the digraphG(n; k) has at least one isolated �xed point. We also establish neessary andsuÆient onditions on n and k suh that the digraph G(n; k) ontains exatlytwo omponents. The primality of Fermat number is also disussed.Keywords: iteration digraph, isolated �xed points, Charmihael lambda funtion,Fermat numbers, Regular digraphsClassi�ation: 11A07, 11A15, 20K01, 05C20, 11A511. IntrodutionPower digraphs provide a link between graph theory and number theory. Byusing graph theoreti properties of Power digraphs, we an infer many numbertheoreti properties of the ongruene ak � b (mod n). Some harateristis ofpower digraph G(n; k), where n and k are arbitrary positive integers, have beeninvestigated by C. Luheta et al. [2℄, Wilson [1℄, Somer and K�r���zek [7℄, [8℄, [9℄, [10℄,Kramer-Miller [5℄, S.M. Husnine, Uzma and Somer [15℄. We ontinue their workby generalizing previous results. The existene of isolated �xed point for k = 2 isstudied in [7℄ and for k = 3 in [16℄. In this paper we study the existene of isolated�xed points in G(n; k) for any positive integers n and k. We obtain neessary andsuÆient onditions on n and k suh that the digraph G(n; k) has at least oneisolated �xed point. We also establish neessary and suÆient onditions on nand k suh that the digraph G(n; k) ontains exatly two omponents.Let g : Zn ! Zn be any funtion, where Zn = f0; 1; : : : n� 1g and n � 1. Aniteration digraph de�ned by g is a direted graph whose verties are the elementsfrom Zn, suh that there exists exatly one edge from x to y if and only if g(x) � y(mod n). In this paper, we onsider g(x) � xk (mod n). For the �xed values ofn and k the iteration digraph is represented by G(n; k), where k � 2 and is alledpower digraph modulo n. Eah x 2 G(n; k) orresponds uniquely to a residuemodulo n.The researh of the �rst author is partially supported by the Higher Eduation Commission,Pakistan.



360 U. Ahmad, S. HusnineA omponent ofG(n; k) is a subdigraph whih is the largest onneted subgraphof the assoiated nondireted graph. The indegree of x, denoted by indegn(x) isthe number of direted edges oming into a vertex x, and the number of edgesoming out of x is referred to as the outdegree of x denoted by outdegn(x).A digraph G(n; k) is said to be regular if every vertex of G(n; k) has sameindegree. We note that a regular digraph does not ontain any vertex of indegree0. We an see that a digraph G(n; k) is regular if and only if eah omponent ofG(n; k) is a yle and for eah vertex x, indegn(x) = outdegn(x) = 1. A digraphG(n; k) is said to be semi-regular of degree j if every vertex of G(n; k) has indegreej or 0.A yle is a direted path from a vertex a to a, and a yle is a z-yle if itontains preisely z verties. A yle of length one is alled a �xed point. It islear that 0 and 1 are �xed points of G(n; k). Sine eah vertex has outdegreeone, it follows that eah omponent ontains a unique yle. A vertex a is saidto be an isolated �xed point if it is a �xed point and there does not exist a nonyle vertex b suh that bk � a (mod n). In other words a has indegree 1.The Carmihael lambda-funtion �(n) is de�ned as the smallest positive integersuh that x�(n) � 1 (mod n) for all x relatively prime to n. The values of theCarmihael lambda-funtion �(n) are�(1) = 1;�(2) = 1;�(4) = 2;�(2k) = 2k�2 for k � 3;�(pk) = (p� 1)pk�1;for any odd prime p and k � 1 and�(pe11 pe22 : : : perr ) = lm(�(pe11 ); �(pe22 ); : : : ; �(perr ));where p1; p2; : : : ; pr are distint primes and ei � 1 for all i.The subdigraph of G(n; k), ontaining all verties relatively prime to n, isdenoted by G1(n; k) and the subdigraph ontaining all verties not relativelyprime to n is denoted by G2(n; k). It is obvious that G1(n; k) and G2(n; k)are disjoint and there is no edge between G1(n; k) and G2(n; k) and G(n; k) =G1(n; k) [G2(n; k).Let n = ml, where gd(m; l) = 1. We an easily see with the help of the ChineseRemainder Theorem that orresponding to eah vertex x 2 G(n; k), there is anordered pair (x1; x2), where 0 � x1 < m and 0 � x2 < l and xk orrespondsto (xk1 ; xk2). The produt of digraphs, G(m; k) and G(l; k) is de�ned as follows:a vertex x 2 G(m; k)�G(l; k) is an ordered pair (x1; x2) suh that x1 2 G(m; k)and x2 2 G(l; k). Also there is an edge from (x1; x2) to (y1; y2) if and only ifthere is an edge from x1 to y1 in G(m; k) and there is an edge from x2 to y2 inG(l; k). This implies that (x1; x2) has an edge leading to (xk1 ; xk2). We then see



Charaterization of power digraphs modulo n 361that G(n; k) �= G(m; k)�G(l; k). We an further assert that if !(n) denotes thenumber of distint prime divisors of n and(1.1) n = pe11 pe22 : : : perr ;where p1 < p2 < � � � < pr and ei > 0, i.e. r = !(n), then(1.2) G(n; k) �= G(pe11 ; k)�G(pe22 ; k)� � � � �G(perr ; k):Let N(n; k; b) denote the number of inongruent solutions of the ongruenexk � b (mod n). Then N(n; k; b) = indegn(b) and by the Chinese RemainderTheorem, we haveN(n; k; b) = indegn(b) = rYi=1N(peii ; k; b):(1.3)2. Some previous resultsTheorem 2.1 (Carmihael [14℄). Let a; n 2 N. Thena�(n) � 1 (mod n)if and only if gd (a; n) = 1. Moreover, there exists an integer g suh thatordn a = �(n);where ordn g denotes the multipliative order of g modulo n.Lemma 2.2 ([1℄). Let n = n1n2, where gd(n1; n2) = 1 and a = (a1; a2) be a ver-tex in G(n; k) �= G(n1; k)�G(n2; k). Then N(n; k; a) = N(n1; k; a1) �N(n2; k; a2).Theorem 2.3 ([1℄). Let n be an integer having fatorization as given in (1.1)and a be a vertex of G1(n; k). Thenindegn(a) = N(n; k; a) = rYi=1N(peii ; k; a) = rYi=1 "i gd(�(peii ); k);or N(n; k; a) = 0;where "i = 2 if 2 j k and 8 j peii , and "i = 1 otherwise.Theorem 2.4 ([1℄). There exists a t-yle in G1(n; k) if and only if t = ordd k forsome fator d of u, where �(n) = uv and u is the highest fator of �(n) relativelyprime to k.Theorem 2.5 ([9℄). Let n � 1 and k � 2 be integers. Then(1) G1(n; k) is regular if and only if gd(�(n); k) = 1;(2) G2(n; k) is regular if and only if either n is square free and gd(�(n); k) = 1or n = p, where p is prime;(3) G(n; k) is regular if and only if n is square free and gd(�(n); k) = 1.



362 U. Ahmad, S. HusnineLemma 2.6 ([10℄). Let p be a prime and � � 1, k � 2 be integers. ThenN(p�; k; 0) = p��d�k e.Theorem 2.7 ([10℄). Let n be an integer having fatorization as given in (1.1).ThenAt(G(n; k)) = 1t " rYi=1(Æi gd(�(peii ); kt � 1) + 1)� Xdjt;d6=t dAd(G(n; k))#;where Æi = 2 if 2 j kt � 1 and 8 j peii , and Æi = 1 otherwise.Theorem 2.8 ([10℄). Let n = n1n2, where gd(n1; n2) = 1 and a = (a1; a2) bea vertex in G(n; k) �= G(n1; k)�G(n2; k). Then a is a yle vertex if and only ifa1 is a yle vertex in G(n1; k) and a2 is a yle vertex in G(n2; k).Lemma 2.9 ([5℄). Let n = n1n2, where gd(n1; n2) = 1 and J(n1; k) be aomponent of G(n1; k) and L(n2; k) be a omponent of G(n2; k). Suppose s isthe length of L(n2; k)'s yle and let t be the length of J(n1; k)'s yle. ThenC(n; k) �= J(n1; k) � L(n2; k) is a subdigraph of G(n; k) onsisting of gd(s; t)omponents, eah having yles of length lm(s; t).3. Existene of isolated �xed pointsWe know that if n is square free then 0 is an isolated �xed point of G(n; k).Now if G1(n; k) is regular then 1 is an isolated �xed point of G(n; k). We alsoknow that for k = 1, the digraph G(n; k) onsists of isolated �xed points only.However, the riteria for the existene of isolated point for other ases are yet notstudied by any other author. In the following setion we attempt to sort out thisproblem for the ase when G1(n; k) is not regular and n is not square free.Lemma 3.1. Let n = ml, where gd(m; l) = 1 and x = (x1; x2) be a vertex inG(n; k) �= G(m; k) � G(l; k). Then x is an isolated �xed point of G(n; k) if andonly if x1 and x2 are isolated �xed points of G(m; k) and G(l; k), respetively.Proof: Let x be an isolated �xed point. Then x is yle of length one andN(n; k; x) = 1. From Theorems 2.8 and 2.9, x1 and x2 are �xed points of G(m; k)and G(l; k), respetively. Also by Theorem 2.2, N(m; k; x1) = 1 = N(l; k; x2).Hene, x1 and x2 are isolated �xed points in G(m; k) and G(l; k), respetively.Converse is similar. �Theorem 3.2. The power digraph G(n; k), where n is de�ned as in (1.1) andk � 2, has at least one isolated �xed point if and only if either ei = 1 orgd(�(peii ); k) = 1 for all 1 � i � r in prime fatorization of n.Proof: Suppose G(n; k) has an isolated �xed point a. For all peii k n, where 1 �i � r, either ei = 1 or ei > 1. Suppose to the ontrary that there exists 1 � j � rsuh that gd(�(pejj ); k) 6= 1 and ej > 1. Sine a is a �xed point, by Theorems 2.8,



Charaterization of power digraphs modulo n 363Theorem 2.9 and equation (1.2) there exist �xed points ai 2 G(peii ; k) for all1 � i � r suh that a = (a1; : : : ; aj ; : : : ; ar). Now from Theorem 2.2, we an writeN(n; k; a) = rYi=1N(n; k; ai):(3.1)If aj 2 G1(pejj ; k) then N(pejj ; k; aj) = gd(�(pejj ); k) 6= 1. Thus in this asefrom equation (3.1), N(n; k; a) 6= 1, whih ontradits the fat that a is an isolated�xed point. Hene, we may suppose aj 2 G2(pejj ; k). Now we know that G2(pejj ; k)onsists of one omponent ontaining �xed point 0. Thus aj � 0 (mod pejj ). FromLemma 2.6, N(pejj ; k; aj) = N(pejj ; k; 0) = pej�d ejk ej . Sine ej > 1 and k � 2,N(pejj ; k; aj) 6= 1. Now from equation (3.1) it follows that N(n; k; a) 6= 1 whihagain is a ontradition.Conversely, suppose for all peii k n, where 1 � i � r, either ei = 1 orgd(�(peii ); k) = 1. If ei = 1, 0 is an isolated �xed point in G(pi; k). If ei > 1and gd(�(peii ); k) = 1, 1 is an isolated point in G(peii ; k). Now onsider a =(a1; a2; : : : ; ar), where ai = 0 if ei = 1;= 1 if ei > 1:From Lemma 3.1, a is an isolated �xed point of G(n; k). �Corollary 3.3. Suppose k is even and n > 2 is de�ned as in (1:1). The powerdigraph G(n; k) has at least one isolated �xed point if and only if n is square free.Proof: We know that 2 j �(peii ) for all 1 � i � r. Sine k is even, gd(�(peii ); k) 6=1 for any 1 � i � r. Hene, from Theorem 3.2, ei = 1 for all 1 � i � r whihimplies n is square free.Conversely, if n is square free, 0 is an isolated �xed point of G(n; k). �Corollary 3.4. Suppose G1(n; k) is not regular and n is not square free. Thepower digraph G(n; k), where n is de�ned as in (1.1) and k � 2, has an isolated�xed point if and only if the following statements are satis�ed.(1) k must be odd.(2) The sets l = fpeii j ei > 1 and gd(�(peii ; k) = 1)g and m = fpejj j ej = 1gare non empty. Also G(n; k) �= G(l; k)�G(m; k).(3) The digraph G1(m; k) is not regular.Proof: Suppose G(n; k) has an isolated �xed point a. If k is even then fromCorollary 3.3, n is square free whih is a ontradition. Now from Theorem 3.2,either ei = 1 or gd(�(peii ); k) = 1 for all 1 � i � r in the prime fatorization of n.Sine G1(n; k) is not regular and n is not square free, there must exist 1 � s < rsuh that ei = 1 for all 1 � i � s and gd(�(peii ); k) = 1 for all i > s. Hene, thesets l and m are non empty. Sine l and m are disjoint, from equation (1.2), weget G(n; k) �= G(l; k)�G(m; k).



364 U. Ahmad, S. HusnineNow if G1(m; k) is regular then from equation (1.2) and Theorem 2.5, G1(n; k)= G1(l; k)�G1(m; k) is also regular whih is a ontradition.Conversely, suppose all three onditions are true. Sine l is non empty andG1(l; k) is regular, 1 is an isolated �xed point in G(l; k). Again sine m isnonempty, 0 is an isolated �xed point of G2(m; k). Thus from Lemma 3.1,a = (1; 0) is an isolated �xed point of G(n; k) �= G(l; k)�G(m; k). �Example 3.5. Let n = 28 = 22 � 7 and k = 15. Here we an see that the setsl = f22g and m = f7g are non empty. Sine gd(�(4); 15) = 1 and gd(�(7); 15) =3 6= 1, from Theorem 2.5, G1(l; k) is regular and G1(m; k) is not regular. ThusG(28; 15) satis�es onditions 1, 2 and 3 of Theorem 3.2. Hene, G(28; 15) ontainsan isolated �xed point. It is shown in Figure 1.

Figure 1. The isolated �xed points of G(28,15) are 7 and 214. Power digraphs of Fermat numbersTheorem 4.1. The power digraph G(n; k), where n > 2 and k � 2 are positiveintegers exhibits the following properties:(1) G(n; k) onsists of exatly two omponents ontaining �xed points 0and 1,(2) G1(n; k) is semi-regular of degree 2d for some d � 1if and only if k is even and n = 2l or n = Fm, where l � 2, m � 1 are integersand Fm = 22m + 1 is Fermat prime.Proof: Suppose that a power digraph G(n; k) exhibits the above properties (1)and (2). Sine 0 and 1 are �xed points of G(n; k), G2(n; k) and G1(n; k) bothonsist of one omponent ontaining �xed points 0 and 1, respetively.First suppose k is odd; then 2 j k � 1. Sine n > 2, 2 divides �(peii ) for all1 � i � r. Thus from Theorem 2.6, A1(G(n; k)) � 3. This along with the fatthat eah omponent of G(n; k) ontains a unique yle implies that the numberof omponents of G(n; k) is greater than or equal to 3 whih ontradits (1).We know that the Euler funtion �(n) is a power of 2 if and only n = 2lFm1Fm2: : : Fms . Also it is easy to show that �(n) = 2i if and only if �(n) = 2j , where



Charaterization of power digraphs modulo n 365j � i. Now we laim that n must be of the form 2lFm1Fm2 : : : Fms , where l � 0and Fmi are Fermat primes for all i. For if n 6= 2lFm1Fm2 : : : Fms then �(n) isnot a power of 2. Therefore, there exists an odd prime divisor p of �(n). Thenby de�nition of �(n) there exists i, where 1 � i � r suh that p is a prime divisorof �(peii ). If p j k, by Theorem 2.3, either N(n; k; a) = 0 or p j N(n; k; a) for alla 2 G1(n; k) whih ontradits (2). Thus we may suppose p - k. Now p is a fatorof �(n) whih is relatively prime to k. Thus from Theorem 2.4 there exists a yleof length t in G1(n; k) suh thatkt � 1 (mod p):If t = 1 then p j k � 1. Now from Theorem 2.6, A1(G(n; k)) � p + 1 whihontradits (1). Hene, we may suppose t > 1. But then there exists a omponentontaining a yle of length t > 1 whih again ontradit (1). Thus in any ase,we get a ontradition. Hene, n = 2lFm1Fm2 : : : Fms , where l � 0 and Fmi areFermat primes for all i.Now sine G2(n; k) onsists of only one omponent ontaining the �xed point 0,nmust be of the form p�, where p is any prime and � � 1. Thus n = 2l or n = Fm,where l � 2, m � 1 are integers and Fm = 22m + 1 is Fermat prime.Conversely, suppose k is even and n = 2l or n = Fm, where l � 2, m � 1 areintegers and Fm = 22m +1 is Fermat prime. It is easy to see that �(n) is a powerof 2. Property (2) an be proved from Theorem 2.3. To prove property (1), we�rst show that G1(n; k) does not ontain any yle of length greater than 1. FromTheorem 2.4 and the fat that the greatest divisor of �(n) whih is relativelyprime to k is 1, it follows that all yles of G1(n; k) are �xed points. Now fromTheorem 2.6, A1(G(n; k)) = 1. Sine the number of omponents in G1(n; k) isequal to the number of yles in G1(n; k), G1(n; k) onsists of only one ompo-nent ontaining 1. This along with the fat that G2(n; k) always onsists of oneomponent whenever n is a power of a prime, ompletes the proof. �Remark 4.2. In Theorem 4.1, we have taken n > 2 as for n = 2, the power digraphG(2; k) always onsists of two omponents whih are isolated �xed points. It doesnot depend on value of k. We also note that property (2) is not satis�ed in thisase.Corollary 4.3. Let n be a positive integer and k = 2s, where s � 1. The powerdigraph G(n; k) onsists of exatly two omponents ontaining �xed points 0 and1 if and only if n = 2l or n = Fm, where Fm = 22m + 1 is Fermat prime for all1 � i � s and l � 1.Proof: Sine k = 2s, from Theorem 2.3 N(n; k; a) = Qri=1 gd(�(peii ); k) = 2dfor some d � 1 or N(n; k; a) = 0. Hene, G1(n; k) is semi-regular of degree 2d forsome d � 1. Corollary follows from Theorem 4.1. �Corollary 4.4. Let k be an even integer (k � 2). A Fermat number Fm = 22m+1is prime if and only if following are satis�ed:(1) G(Fm; k) onsists of two omponents ontaining �xed points 0 and 1,



366 U. Ahmad, S. Husnine(2) G1(Fm; k) is semi-regular of degree 2d for some 1 � d � 2m.Proof: It is straight forward from Theorem 4.1. �Corollary 4.5. Let n be a positive integer and k = 2s, where s � 1. A Fermatnumber Fm = 22m+1 is prime if and only if G(Fm; k) onsists of two omponentsontaining �xed points 0 and 1.Proof: It an be proved from Theorem 2.3 and Corollary 4.4. �Corollaries 4.3 and 4.5 for s = 1 has been proved in [7℄.Theorem 4.6. Let n > 2 be a positive integer and k = q�11 : : : q�ss be the primedeomposition of k. The power digraph G(n; k) onsists of two omponents ifand only if k is even and n has one of the following forms:(1) n = p, where p = 1+Q1�i�s qii is prime and i � 0 for all i;(2) n = q�j for some 1 � j � s and qj = 1 +Q1�i�s;i6=j qii , where i � 0 forall i.Proof: Suppose the power digraph G(n; k) onsists of two omponents. Nowif k is odd then 2 j k � 1. Also sine n > 2, 2 j �(peii ) for all 1 � i � r.Hene, from Theorem 2.6, A1(G(n; k)) � 3. This along with the fat that thenumber of omponents is equal to the number of yles in power digraphs impliesthat the number of omponents of G(n; k) is greater than or equal to 3 whih isa ontradition. Hene, k must be even.As the verties 0 and 1 belong to G(n; k), both of its omponents ontain �xedpoints and there does not exist any other omponent ontaining a yle of lengthgreater than 1. Sine G2(n; k) itself is a omponent ontaining 0, n must be ofthe form n = p�, where p is any prime. Suppose on the ontrary that n does notsatisfy the onditions given in (1) and (2). The following ases arise:Case 1. If n = p�, where p 6= qi for any 1 � i � s and � > 1, then p j �(n) =�(p�) = p��1(p � 1). We an see that p - k whih shows that p is a fator of�(n) relatively prime to k. Thus from Theorem 2.4, there exists a yle of lengtht suh that(4.1) kt � 1 (mod p):The fat that there does not exist any other omponent ontaining the yle oflength greater than 1 fores t = 1. But then p j k � 1 from (4.1). Consequentlyfrom Theorem 2.7, A1(G(n; k)) � p+ 1. This further implies that the number ofomponents of G(n; k) is greater than or equal to p+ 1 whih is a ontradition.Case 2. Now suppose n = p, where p is any prime or n = q�j for some 1 � j � s,but there exist prime divisors p1 6= qi and p2 6= qi for any i suh that p1 j p � 1and p2 j qj � 1. Then p1 and p2 are prime divisor of �(n) relatively prime to k.Now again by the same argument as in Case 1, we �nd the ontradition.Conversely, suppose k is even and n has one of the forms given in (1) and (2).We note that in either ase �(n) does not ontain any prime fator relatively prime
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