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A note on olones of topologial spaesArtur BarkhudaryanAbstrat. The lone of a topologial spae is known to have a stritly more ex-pressive �rst-order language than that of the monoid of ontinuous self-maps.The urrent paper studies olones of topologial spaes (i.e. lones in the ate-gory dual to that of topologial spaes and ontinuous maps) and proves that, inontrast to lones, the �rst-order properties of olones annot express anythingmore than those of the monoid, exept for the ase of disrete and indisretespaes.Keywords: lone, olone, monoid of ontinuous self-maps, lone theory, monoidtheoryClassi�ation: 54H15, 08A681. IntrodutionThe monoid Mon(X) of a topologial spae X is the set of all ontinuous mapsfrom X to X , together with the omposition operator. This algebrai struturehas been extensively studied and is known to reet many of the topologialproperties of the underlying spae. For some quite large lasses of spaes |e.g. the lass of ompletely regular T1 spaes whih ontain an ar, this monoidompletely desribes the topology of the spae; see [9℄.In his monograph [11℄, W. Taylor introdued a multi-sorted extension of themonoid of ontinuous self-maps, namely, the lone of a topologial spae. Morespei�ally, Taylor studied those properties of spaes whih an be desribed by aformula in the �rst order language of the theory of lones. Sine then, a numberof publiations have been devoted to this topi; see [1℄ for a survey of these.Let ! denote the set of all �nite ordinals.Generally, in a ategory K with �nite produts, the lone of an objetX 2 objKis the !-sorted algebra (in the sense of [2℄)Clo(X) = hCn;Snm;�ni im;n2!;i<nwith Cn = K(Xn; X) n 2 !;Snm : Cn � (Cm)n ! Cm m;n 2 !;�ni 2 Cn i < n 2 !;The work was supported by the institutional grant MSM 0021620839.



404 A. Barkhudaryanwhere �ni is the i-th projetion of Xn onto X and Snm omposes a morphismf 2 K(Xn; X) with the diagonal produt of an n-tuple g0; : : : ; gn�1 2 K(Xm; X)to obtain Snm(f ; g0; : : : ; gn�1) = f Æ (g0 4 � � � 4 gn�1) 2 K(Xm; X):The k-segment Clok(X) is the redution of Clo(X) to the �rst k sorts:Clok(X) = hCn;Snm;�ni im;n<k;i<n:The term lone was apparently oined by P. Hall in [4℄. The above de�nitionof a lone of an objet is tightly related to F.W. Lawvere's algebrai theories (see[7℄, [8℄).By the lone of a topologial spae X we mean its lone in the ategory of alltopologial spaes and ontinuous maps. Clearly, the lone of a topologial spaeextends the monoid of ontinuous maps in the sense that its 1-st sort hC1;S11 ;�10iis exatly Mon(X). Thus, every topologial property of the spae whih an bedesribed by an algebrai or �rst-order property of the monoid of ontinuous mapsan also be desribed by a orresponding property of the lone. The opposite isnot true: there are topologial properties whih an be desribed by a �rst orderproperty of the lone and yet whih annot be desribed by properties of themonoid. The following, muh stronger result was proved by Sihler and Trnkov�ain [10℄:Theorem. For any triple 2 � n1 � n2 � n3 of �nite ordinals there exist metriz-able topologial spaes X and Y on the same arrier set suh that� Clon(X) and Clon(Y ) oinide if and only if n � n1;� Clon(X) is isomorphi to Clon(Y ) if and only if n � n2;� Clon(X) is elementarily equivalent to Clon(Y ) if and only if n � n3.It should be noted, however, that for a lot of spaes the monoid of ontinuousself-maps possesses strong enough properties to determine properties of the loneof ontinuous maps. An obvious example of this was already presented above: forompletely regular T1 spaes ontaining an ar the monoid of ontinuous mapsdetermines the topology of the spae. Hene, in the lass of ompletely regularT1 spaes whih ontain an ar, isomorphism of monoids implies isomorphism oflones.Another example an be found in [5℄, [6℄. Consider a rigid spae, i.e. one withonly idential and onstant ontinuous self-maps (for example, a Cook ontin-uum [3℄). Under the assumption that the spae is Hausdor�, Herrlih proved thatthe only ontinuous operations on suh a spae are projetions and onstants.In [11℄, Taylor noted that Herrlih's proof is valid in any onrete ategory withonstants as long as the objet has at least 3 elements. Thus, the lone of a rigidspae with at least 3 elements onsists solely of projetions and onstants. Onthe other hand, being rigid is a �rst order property of the monoid of ontinuousself-maps. The monoid of a rigid spae hene ompletely desribes its lone. In



A note on olones of topologial spaes 405ontrast to the ase of ompletely regular T1 spaes ontaining an ar, the monoidof a rigid spae is not strong enough to desribe the topology of the spae, yet itis strong enough to fully determine the spae's lone.As usual in set theory, we will assume any natural number n is the set of smallernumbers f0; 1; : : : ; n� 1g. For a topologial spae X , denote by n�X = nX thediret sum of n opies of X . The i-th opy of X in the sum nX is fig �X fori = 0; 1; : : : ; n� 1.The olone of a topologial spae X is the lone of X in the ategory dual tothat of topologial spaes and ontinuous maps. Thus, the olone Colo(X) ofthe spae X is the !-sorted algebrahCn;Snm; �ni im;n2!;i<n;where� Cn is the set of all ontinuous maps from X to nX ;� �ni is the idential injetion�ni : X ,! fig �X � nXfor i < n 2 !; and� Snm : nX � (mX)n ! mX is the omposition operation whih maps any(n + 1)-tuple (f ; g0; : : : ; gn�1) to the ontinuous funtion F : X ! mXde�ned as follows:F (x) = gi(f(x)) if f(x) 2 fig �X:The �rst sort hC1;S11 ; �10i of Colo(X) is again a monoid | one whih is dualto Mon(X). Let us denote this monoid by Mond(X).In this paper, we show that results similar to those obtained by Sihler andTrnkov�a annot be proved for olones of topologial spaes. In Setion 3, weprove that for non-indisrete spaes, isomorphism of monoids implies isomor-phism of olones. Similarly, in Setion 4 we prove that elementary equivalene ofmonoids of non-indisrete spaes implies elementary equivalene of their olones.Note that a map F : Mon(X) ! Mon(Y ) is an isomorphism of Mon(X) andMon(Y ) if and only if it is an isomorphism of Mond(X) and Mond(Y ). Also, thebijetion ' 7! 'd of the set of all monoid-theoreti �rst-order formulas onto itselfwhih turns the order of multipliation around has the property that Mon(X) j= 'if and only if Mond(X) j= 'd. In light of these fats, in the later setions we willnot distinguish between Mon(X) and Mond(X) and will thus identify the �rstsort of Colo(X) with Mon(X).2. PreliminariesIn Setion 4, we will onstrut transformations of �rst order formulas of thetheory of (o)lones. For this reason, we need to exatly speify the �rst orderlanguage of this theory that we will be using.



406 A. BarkhudaryanAs we are talking about an !-sorted theory, we need in�nitely many variablesof eah sort n 2 !. We will take symbols fni to be the n-th sort variables of thetheory of olones, i 2 !. In eah sort n we have n onstants: �n0 ; : : : ; �nn�1. Forany pair m;n 2 ! of �nite ordinals, Snm is a heterogeneous operation symbol oftype n�mn ! m. And, of ourse, in addition to these the alphabet of the theoryof olones ontains parentheses, omma, equation sign =, logial operations &and : and the universal quanti�er 8 . All other logial operations, as well as theexistene quanti�er, are de�ned in terms of & , : and 8 in the traditional way.Terms in the �rst order theory of olones are onstruted by the followingsheme:� eah variable fni and eah onstant �ni is an n-th sort term;� if t is an n-th sort term and t0; : : : ; tn�1 are m-th sort terms, then thesequene Snm(t; t0; : : : ; tn�1) is an m-th sort term.Note that we usually write Snm(t; t0; : : : ; tn�1) instead of Snm(t; t0; : : : ; tn�1). Thesemiolon has neither syntati nor semantial meaning here | we use it merelyfor better visual separation of the two parts of the omposition.Formulas of the �rst order theory of olones are again onstruted aordingto the usual sheme:� if t and t0 are terms of the same sort, t = t0 is a formula (an elementaryformula);� if ' and  are formulas, so are (' &  ) and (:');� if ' is a formula, so is (8 fni )'.And again as usual, we will omit parentheses in formulas if doing so does notintrodue ambiguity in the meaning of the formula, and will add unneessaryparentheses if they improve readability.The 1-st sort of the lone is simply a monoid. Similarly, the redution of theabove spei�ed language to the 1-st sort is the language of the theory of monoids.Hene we will onsider monoid-theoretial formulas to also be lone-theoretialformulas.However, we will allow a riher set of variables for the �rst order language ofthe theory of monoids and will usually denote monoid-theoreti variables by smallletters of the Latin alphabet. Also, we will write g Æ f instead of S11(f; g).Let us onsider the following example of a monoid-theoreti formula:(1) 8 f(x Æ f = x):Obviously, (1) laims that x is a left zero. Now, if we are onsidering a monoid ofontinuous self-maps of some topologial spae, left zeroes oinide with onstantmaps. Taking this into aount, we denote formula (1) by Const(x). We willabbreviate the formula8x8 y : : :8 z(Const(x) & Const(y) & � � � & Const(z)! ')



A note on olones of topologial spaes 407as (8x; y; : : : ; z 2 Const) ':In the same way, we will abbreviate9x9y : : : 9z(Const(x) & Const(y) & � � � & Const(z) & ')as (9x; y; : : : ; z 2 Const) ':We will also sometimes write f(x) instead of f Æ x, in ases when x is assumed tobe onstant.Lastly, to avoid symbol overloading, we denote formula equality by �.Let us onsider another example of a monoid-theoretial formula:(2) ?Disr � 8x; y 2 Const 9f(f(x) = y &8 z 2 Const (z 6= x! f(z) = x)):Note that this formula holds for both disrete and indisrete spaes.Conversely, let X be a non-indisrete spae for whih Mon(X) j= ?Disr. AsX is non-indisrete, it ontains a non-empty proper open subset U � X . Pikany x =2 U and any y 2 U ; then there is a ontinuous map f : X ! X whihmaps x into U and the omplement outside of U . Thus, the singleton fxg is openas the preimage of the open set U under the ontinuous map f . Applying thesame reasoning to fxg instead of U , we get that every other singleton in X is alsoopen. Thus, X is disrete.To summarize, the monoid-theoretial formula (2) haraterizes disrete andindisrete spaes in the lass of all topologial spaes.Note that disrete and indisrete topologies on a set with at least two elementshave the same monoid of ontinuous self-maps and are thus indistinguishable bytheir monoids. Colones of these spaes, on the other hand, are di�erent. Theolone of the indisrete topologial spae satis�es the following formula:(3) Conn � 8 f209f10 ff20 = S12(f10 ; �20) _ f20 = S12(f10 ; �21)g:The olone of a disrete non-trivial spae learly does not satisfy this formula.Thus, the formula ?Disr & Conn identi�es indisrete spaes, and ?Disr &:Conn identi�es disrete non-trivial spaes in the �rst-order language of the the-ory of olones. The monoid of ontinuous self-maps is only able to identify spaeswith disrete and indisrete topologies but is not able to distinguish between those.A subset of a topologial spae whih is both open and losed is alled lopen.A partition of a topologial spae into n lopen subsets is alled a lopen n-partition. A entral aspet of our paper is the representation of lopen partitionsof a spae X in Mon(X). As the only objets we possess in Mon(X) are maps,we have to represent lopen partitions as olletions of ontinuous self-maps.



408 A. BarkhudaryanLet C be a non-empty lopen subset of a topologial spae X . Choose anarbitrary point  2 C. The map pC; de�ned by the following formula is obviouslyontinuous:(4) pC;(x) = (x; if x 2 C;; if x =2 C:It is also a projetion: pC; Æ pC; = pC;:The set C an be determined as the set of �xed points of pC;.On the other hand, every ontinuous map p identi�es a subsetCp = fx 2 X ; p(x) = xg:If p is a projetion, then Cp = =(p) is non-empty.Continuous projetions are objets whih an be desribed in the �rst-ordertheory of monoids (and lones). Taking this into aount, we will represent non-empty lopen sets by the projetions as de�ned by (4). Empty sets are, uriously,more triky to deal with. In the ase of disonneted spaes, we will representthem by ontinuous maps with no �xed points. Note, however, that the sets of�xed points in general do not need to be open or losed.LetX be a non-indisrete and non-trivial spae; then there exist points a; b 2 Xsuh that a has a neighborhood whih does not ontain b. If A � X is a lopenset, the funtion whih maps A to a and the omplement to b is ontinuous. Sois the funtion mapping A to b and the omplement to a. Conversely, if there areontinuous funtions mapping A and its omplement to a and b and vie-versa,then A is neessarily a lopen set. This ondition an be expressed in the �rstorder theory of monoids. The following formula is equivalent to the set of �xedpoints of p being a lopen set:(5) Clopen(p) �8x; y 2 Const 9f 8 z 2 Constf(p(z) = z ! f(z) = x) & (p(z) 6= z ! f(z) = y)g:It is easily seen that the requirement of the spae X being non-trivial an berelaxed. Really, the only self-map of a trivial spae satis�es (5), and its set of�xed points is lopen. Thus, the formula Clopen desribes maps whih representlopen sets for any non-indisrete spae.Let p and q be two ontinuous maps. The sets they represent are omplemen-tary if and only if they satisfy the following onditions:� p and q do not have ommon �xed points;� eah point is a �xed point for either p or q.These onditions are desribed by the following monoid-theoreti formula:Compl(p; q) � 8x 2 Const (p(x) = x$ q(x) 6= x):



A note on olones of topologial spaes 409This formula an be easily generalized to desribe an arbitrary partition of theset into �nitely many sets:(6) Compl(p0; p1; : : : ;pn�1) �8x 2 Const f(p0(x) = x _ � � � _ pn�1(x) = x) &&i6=j(pi(x) = x! pj(x) 6= x)g:Combining Compl and Clopen, we get a formula whih desribes maps repre-senting a lopen n-partition for non-indisrete spaes:(7) ClopenPart(p0; p1; : : : ; pn�1) �Compl(p0; : : : ; pn�1) &Clopen(p0) & � � � & Clopen(pn�1):3. The isomorphism aseTheorem 1. Suppose X and Y are non-indisrete spaes. Further, suppose thatMon(X) is isomorphi to Mon(Y ). Then Colo(X) is isomorphi to Colo(Y ).Proof: Let F : Mon(X) ! Mon(Y ) be a monoid isomorphism. We will extendF to an isomorphism of olones of X and Y .Suppose f : X ! nX = f0; : : : ; n � 1g � X is a ontinuous funtion. As afuntion into the produt of two sets, the funtion f is uniquely determined byits ontinuous omponents fn : X ! n and fX : X ! X . The �rst of these isin its turn uniquely determined by the lopen n-partition fXi; i = 0; : : : ; n� 1g,where Xi = fx 2 X ; fn(x) = ig = fx 2 X ; f(x) 2 fig �Xg:Let I be the set of those indies i for whih Xi is not empty. For any olletionof symbols �0; : : : ; �n�1, let �!�I denote the sequene�!�I = (�i)i2I :For i =2 I we de�ne Yi = ;. For i 2 I , we de�ne the set Yi � Y below.As in the previous setion, we represent Xi (i 2 I) by a ontinuous proje-tion pi. We know that the olletion �!pI satis�es the formula ClopenPart(�!pI ).As F is a monoid isomorphism, the images ���!F (pI) are also projetions and alsosatisfy ClopenPart(���!F (pI )). Thus, these projetions represent sets Yi � Y fori 2 I whih, together with the empty sets Yi for i =2 I , form a lopen n-partitionY0; : : : ; Yn�1 of Y .We now denote gY = F (fX) and onstrut the ontinuous map eF (f) = g asfollows: g(y) = (i; gY (y)) for y 2 Yi:We will show that eF : Colo(X)! Colo(Y ) is a lone isomorphism.First, note that eF (f) does not depend on the hoie of projetions pi. Indeed,F is a bijetion of the set of left zeroes of Mon(X) onto that of Mon(Y ), i.e. F



410 A. Barkhudaryanmaps onstants bijetively onto onstants. Thus, is we identify onstant mapsand their values, y 2 Yi if and only if F (pi) Æ y = y, whih in turn is equivalentto pi Æ F�1(y) = F�1(y), and the latter is the same as F�1(y) 2 Xi. So the setsYi do not depend on the hoie of pi and thus neither does eF (f).The map eF is inverse to gF�1. Indeed, eF (f) = g is uniquely determined by then-partition Y0; : : : ; Yn�1 and the map gY : Y ! Y . Eah non-empty Yi an berepresented by the projetion F (pi) whih F�1 maps to pi. The latter representsthe set Xi. The funtion gF�1(g) is then given by the partition X0; : : : ; Xn�1 andthe funtion F�1(gY ) = fX and hene oinides with f . Thus the bijetion of eFis established.Now, let f : X ! nX and g0; : : : ; gn�1 : X ! mX be ontinuous maps.Denote h = Snm(f ; g0; : : : ; gn�1). As above, let fX be the seond omponent of fand let X0; : : : ; Xn�1 be the lopen partition assoiated with its �rst omponent.Similarly, for eah gi let giX denote its seond omponent and let X i0; : : : ; X im�1denote the partition orresponding to its �rst omponent. DenoteX ii;j = Xi \ f�1X (X ij)for j = 0; 1; : : : ;m� 1. Evidently X ii;0; : : : ; X ii;m�1 is a lopen partition of Xi.Note that the �rst omponent of h is given by the lopen partitionn�1[i=0 X ii;0; : : : ; n�1[i=0 X ii;m�1:Denote Xj = Sn�1i=0 X ii;j . On eah omponent Xj , the seond omponent of hequals(8) hX j Xj = n�1[i=0 giX Æ fX jX ii;j :Suppose eah non-emptyXi is represented by the projetion pi, eah non-emptyX ii;j is represented by the projetion pii;j , and eah non-empty Xj is representedby pj . Evidently pj Æ pii;j = pii;j , thus also F (pj) Æ F (pii;j) = F (pii;j). Hene,if we denote by Y ii;j and Y j the lopen sets represented by F (pii;j) and F (pj),respetively, then Y ii;j � Y j . Similarly, if Yi is the set represented by the projetionF (pi), we get Y ii;j � Yi. Now, asfX ii;j ; i = 0; : : : ; n� 1; j = 0; : : : ;m� 1gis a lopen partition of X , the same is true offY ii;j ; i = 0; : : : ; n� 1; j = 0; : : : ;m� 1gand Y (here we take Y ii;j = ; if X ii;j = ;).



A note on olones of topologial spaes 411It is now suÆient to prove that eF (h) and Snm( eF (f); eF (g0); : : : ; eF (gn�1)) o-inide on eah nonempty set Y ii;j . Aording to the de�nition,eF (h)(y) = (j; F (hX)(y)) for y 2 Y ii;j :Taking into aount the equation (8) and the fat that y 2 Y ii;j is equivalent toF (pii;j)(y) = y, for y 2 Y ii;j we get(9) eF (h)(y) = (j; F (hX )(F (pii;j)(y)))= (j; F (hX Æ pii;j)(y))= (j; F (giX Æ fX Æ pii;j)(y))= (j; F (giX Æ fX)(y)):On the other hand, as Y ii;j � Yi, we have eF (f)(y) = (i; F (fX)(y)) for y 2 Y ii;j . Letpij be a projetion representing X ij and let Y ij be the set represented by F (pij). AsfX(X ii;j) � X ij , we get F (fX)(Y ii;j) � Y ij and again, aording to the de�nitionof eF ,(10) eF (gi)(F (fX )(y)) = (j; F (giX )(F (fX)(y))):Comparing (9) and (10) ompletes the proof. �Remark. Suppose the isomorphism F in Theorem 1 is idential, i.e. X and Y arede�ned on the same set and their monoids of ontinuous self-maps oinide. Thenthe lone isomorphism eF onstruted in the above proof is again idential. In otherwords, for non-indisrete spaes monoid oinidene implies olone oinidene.4. The elementary equivalene aseWe have hosen to represent lopen sets as sets of �xed points of ontinuousmaps. Thus, we annot represent empty sets in spaes with the �xed point prop-erty. Suh spaes are neessarily onneted; hene, in this setion, we will onsiderthe ases of onneted and disonneted spaes separately.First, for a non-indisrete spae, its onnetedness an be expressed by thefollowing monoid-theoretial formula:(11) Conneted � 8 p8 q(p Æ p = p & q Æ q = q ! :ClopenPart(p; q)):For onneted spaes, the olone di�ers very little from the monoid. Eah on-tinuous map F : X ! nX is given by an index i < n and a ontinuous mapf : X ! X , for whih F (x) = (i; f(x)) for every x 2 X . If F : X ! nXis given by the pair (i; f) and G0; : : : ; Gn�1 : X ! mX are given by the pairs(j0; g0); : : : ; (jn�1; gn�1), respetively, then the omposition Snm(F ;G0; : : : ; Gn�1)is given by the pair (ji; gi Æ f).



412 A. BarkhudaryanThe above gives an idea for translating �rst order properties of olones ofonneted topologial spaes into �rst order properties of their monoids. Forany variable fni in the language of lones, let us have n new \shadow" variablesfni;0; : : : :fni;n�1. Let '(fni ) be an arbitrary �rst order lone-theoreti formula. Thevariable fni may or may not atually our in '. By '(fni ) we denote the formula(12) '(fni ) = &j<n'(fni;j):For every lone-theoreti formula ' in the original language we de�ne anotherlone-theoreti formula '0 in the language enrihed with shadow variables. Theformula '0 is onstruted by reursion on the omplexity of the formula ':� if ' is an elementary formula, then '0 � ';� if ' �  & �, then '0 �  0 & �0;� if ' � : , then '0 � : 0;� if ' � 8 fni ( (fni )), then '0 � 8 fni ( (fni )).Note that if ' is a losed formula, then '0 only ontains non-shadow variables asparts of quanti�ers (e.g. 8 fni ). In other words, eah variable ourring in a termis annotated with an index. We an now translate lone-theoreti formulas havingthe latter property into the �rst order language of monoids. To do that, we �rstde�ne a monoid-theoreti term and an integer index for every lone-theoreti termhaving no non-shadow variables. For any variable fni , pik a monoid-theoretivariable fn;i. Clone-theoreti terms are translated aording to the followingrules:� if t � �nj , take tM � 1 and i(t) = j;� if t � fni;j , take tM � fn;i and i(t) = j;� if t � Snm(� ; t0; : : : ; tn�1), take tM � tMi(�) Æ �M and i(t) = i(ti(�)).The translation of formulas ' with no non-shadow variables in terms is on-struted as follows:� if ' is the elementary formula t = � with i(t) = i(�), we take 'M �tM = �M;� if ' is the elementary formula t = � with i(t) 6= i(�), we take 'M � 1 6= 1;� if ' �  & �, we take 'M �  M & �M;� if ' � : , we take 'M � : M;� if ' � 8 fni ( ), take 'M � 8 fn;i( M).The omposition ' 7! '0 7! ('0)M ahieves the sought translation of �rstorder properties of olones to those of monoids for onneted spaes. We willheneforth write 'M instead of ('0)M.Theorem 2. Let X be a onneted non-indisrete spae and let ' be an arbitrarylosed lone-theoreti formula. Then Colo(X) j= ' if and only if Mon(X) j='M.Proof: The proof losely follows the onstrution of the mapping ' 7! 'M.



A note on olones of topologial spaes 413Suppose X is a onneted non-indisrete spae. Let'(fn1i1 ; : : : ; fnkik )be a lone-theoreti formula with free variables among fn1i1 ; : : : ; fnkik and let F1 :X ! n1X , : : : , Fk : X ! nkX be any ontinuous maps. Suppose Fs is givenby the index js and the ontinuous map fs : X ! X , i.e. Fs(x) = (js; fs(x)) forx 2 X , s = 1; : : : ; k. The formula'I � '(fn1i1;j1 ; : : : ; fnkik;j1)only ontains bound non-shadow variables. This implies that '0I only ontainsindexed variables in terms and hene ('0I)M an be onstruted. Again, we willwrite 'MI instead of ('0I )M. We will prove that Colo(X) j= '(F1; : : : ; Fk) ifand only if Mon(X) j= 'MI (f1; : : : ; fk).The proof of the latter laim is onstruted by indution on the omplexityof '.If ' is the elementary formula t = � , then Colo(X) j= '(F1; : : : ; Fk) if andonly if t(F1; : : : ; Fk) and �(F1; : : : ; Fk) are represented by the same index andontinuous map X ! X . Due to the way the translation of terms is done, thisis true if and only if tMI and �MI evaluate to the same index and map on thek-tuple (f1; : : : ; fk), that is Mon(X) j= 'MI (f1; : : : ; fk).If ' �  & � or ' � : , and the laim is true for  and �, then it is alsolearly true for '.If ' � 8 fni ( (fni ; fn1i1 ; : : : ; fnkik )), then Colo(X) j= '(F1; : : : ; Fk) if and onlyif for every ontinuous F : X ! nX Colo(X) j=  (F; F1; : : : ; Fk). Aordingto the indution hypothesis, the latter means that Mon(X) j=  MI (f; f1; : : : ; fk)for eah index j hosen for fni and for every ontinuous f : X ! X , or, equiva-lently, Mon(X) j= ( (fni ))MI (f; f1; : : : ; fk). The latter is equivalent to Mon(X) j='MI (f1; : : : ; fk). This ompletes the proof of the laim.Now, if ' is a losed formula, then 'I is idential with ', hene 'MI is identialwith 'M and the above laim redues to Colo(X) j= ' if and only if Mon(X) j='M. �We will now do a similar onstrution for disonneted spaes. Disonnetedspaes neessarily have ontinuous self-maps with no �xed points, whih will havethe task of representing empty sets in lopen partitions.In Setion 3, for every ontinuous map f : X ! nX we onstruted a lopenpartition X0, : : : , Xn�1 of the spae X and a ontinuous self-map fX . We havea monoid-theoreti formula (7) whih desribes lopen partitions. Hene, fordisonneted spaes, we an represent a ontinuous map f : X ! nX by aolletion of n maps whih satisfy ClopenPart, and another map whih representsthe seond omponent of f .



414 A. BarkhudaryanEvery lone-theoreti formula is equivalent to one with simple elementary for-mulas, where a simple elementary formula is one of the form�1 = �2or t0 = Snm(t; t0; : : : ; tn�1)with �1; �2 being variables or onstants and t0; t; t0; : : : ; tn�1 being variables. Wewill onstrut a translation of lone-theoretial formulas whih only ontain simpleelementary subformulas to the language of the theory of monoids.For eah variable fni take n+ 1 distint monoid-theoreti variables pn;i;0, : : : ,pn;i;n�1, fn;i.First, we onstrut a monoid-theoreti formula 'Md for every simple elemen-tary formula '.Let ' denote the formula �ni = �nj . If i = j, put 'Md � 1 = 1; if i 6= j, put'Md � 1 6= 1. Let ' be the formula �ni = fnj or fnj = �ni . In this ase, put'Md � pn;j;i = 1 & fn;j = 1. For ' � fni = fnj , put(13) 'Md �8x 2 Const � &l=0;:::;n�1[pn;i;l(x) = x! pn;j;l(x) = x℄� &fn;i = fn;j :Now, let ' � fmj = Snm(fni ; fmj0 ; : : : ; fmjn�1). In this ase, put(14) 'Md � 8x 2 Const � &k=0;:::;m�1l=0;:::;n�1 [pm;j;k(x) = x & pn;i;l(x) = x!pm;jl;k(fn;i(x)) = fn;i(x) &fm;jl(fn;i(x)) = fm;j(x)℄�:By reursion on the omplexity of ', we extend the above onstrution toarbitrary lone-theoreti formulas with only simple elementary subformulas. If' �  & �, put 'Md �  Md & �Md. If ' � : , put 'Md � : Md. If' � 8 fni ( ), put(15) 'Md � 8 pn;i;0 : : :8 pn;i;n�1fClopenPart(pn;i;0; : : : ; pn;i;n�1)!8 fn;i( Md)g:The following theorem holds for the mapping ' 7! 'Md:Theorem 3. Let X be a disonneted spae and let'(fn1i1 ; : : : ; fnkik )



A note on olones of topologial spaes 415be a lone-theoreti formula ontaining only simple elementary subformulas, withfree variables among fn1i1 ; : : : ; fnkik . Evidently, the free variables of 'Md are thenamong pn1;i1;i; : : : ; pnk;ik;i, fn1;i1 ; : : : ; fnk;ik .Suppose F1 : X ! n1X , : : : , Fk : X ! nkX are ontinuous maps with their�rst omponents given by projetions Pn1;i1;i; : : : ; Pnk;ik;i and seond omponentsFn1;i1 ; : : : ; Fnk ;ik . Then Colo(X) j= '(F1; : : : ; Fk)if and only if Mon(X) satis�es the formula 'Md, with maps Pnj ;ij ;i and Fnj ;ijsubstituted for eah of the variables pnj ;ij ;i and fnj ;ij , respetively.Proof: Again, we prove this theorem by indution on the omplexity of theformula '.It is easy to see that the laim of the theorem holds for simple elementaryformulas. The same is true for formulas of type  & � and : when the laimof the theorem is known to be true for  and �.Let now ' be the formula 8 fni ( ) and suppose the laim of the theorem is truefor  (fni ; fn1i1 ; : : : ; fnkik ). Thus, for every ontinuous funtion F : X ! nX givenby projetions Pn;i;0; : : : ; Pn;i;n�1 and a map Fn;i,(16) Colo(X) j=  (F; F1; : : : ; Fk)if and only if(17) Mon(X) j=  Md(Pn;i;0; : : : ; Pn;i;n�1; Fn;i; : : : ):Now, Colo(X) j= '(F1; : : : ; Fk) if and only if (16) holds for any ontinuousF : X ! nX , whih is the ase if and only if (17) holds for any ontinuousPn;i;0; : : : ; Pn;i;n�1 and Fn;i suh that ClopenPart(Pn;i;0; : : : ; Pn;i;n�1) is satis�ed.The latter is equivalent to Mon(X) j= 'Md(: : : ). �We an easily extend the mapping ' 7! 'Md to arbitrary formulas. For anylone-theoreti formula ' we an hoose a lone-theoretially equivalent formula'0 with only simple equivalent subformulas and then take 'Md � ('0)Md. We getan easy onsequene of Theorem 3 for this extension:Consequene. If X is a disonneted spae and if ' is a losed formula, thenColo(X) j= ' if and only if Mon(X) j= 'Md.We an now prove the main theorem of this paper:Theorem 4. There is a mapping ' 7! 'M of �rst order formulas of lones tothose of monoids whih satis�es the following ondition: for any non-indisretetopologial spae X and any losed formula ' of the theory of lones,Colo(X) j= '
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