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A note on 
o
lones of topologi
al spa
esArtur BarkhudaryanAbstra
t. The 
lone of a topologi
al spa
e is known to have a stri
tly more ex-pressive �rst-order language than that of the monoid of 
ontinuous self-maps.The 
urrent paper studies 
o
lones of topologi
al spa
es (i.e. 
lones in the 
ate-gory dual to that of topologi
al spa
es and 
ontinuous maps) and proves that, in
ontrast to 
lones, the �rst-order properties of 
o
lones 
annot express anythingmore than those of the monoid, ex
ept for the 
ase of dis
rete and indis
retespa
es.Keywords: 
lone, 
o
lone, monoid of 
ontinuous self-maps, 
lone theory, monoidtheoryClassi�
ation: 54H15, 08A681. Introdu
tionThe monoid Mon(X) of a topologi
al spa
e X is the set of all 
ontinuous mapsfrom X to X , together with the 
omposition operator. This algebrai
 stru
turehas been extensively studied and is known to re
e
t many of the topologi
alproperties of the underlying spa
e. For some quite large 
lasses of spa
es |e.g. the 
lass of 
ompletely regular T1 spa
es whi
h 
ontain an ar
, this monoid
ompletely des
ribes the topology of the spa
e; see [9℄.In his monograph [11℄, W. Taylor introdu
ed a multi-sorted extension of themonoid of 
ontinuous self-maps, namely, the 
lone of a topologi
al spa
e. Morespe
i�
ally, Taylor studied those properties of spa
es whi
h 
an be des
ribed by aformula in the �rst order language of the theory of 
lones. Sin
e then, a numberof publi
ations have been devoted to this topi
; see [1℄ for a survey of these.Let ! denote the set of all �nite ordinals.Generally, in a 
ategory K with �nite produ
ts, the 
lone of an obje
tX 2 objKis the !-sorted algebra (in the sense of [2℄)Clo(X) = hCn;Snm;�ni im;n2!;i<nwith Cn = K(Xn; X) n 2 !;Snm : Cn � (Cm)n ! Cm m;n 2 !;�ni 2 Cn i < n 2 !;The work was supported by the institutional grant MSM 0021620839.



404 A. Barkhudaryanwhere �ni is the i-th proje
tion of Xn onto X and Snm 
omposes a morphismf 2 K(Xn; X) with the diagonal produ
t of an n-tuple g0; : : : ; gn�1 2 K(Xm; X)to obtain Snm(f ; g0; : : : ; gn�1) = f Æ (g0 4 � � � 4 gn�1) 2 K(Xm; X):The k-segment Clok(X) is the redu
tion of Clo(X) to the �rst k sorts:Clok(X) = hCn;Snm;�ni im;n<k;i<n:The term 
lone was apparently 
oined by P. Hall in [4℄. The above de�nitionof a 
lone of an obje
t is tightly related to F.W. Lawvere's algebrai
 theories (see[7℄, [8℄).By the 
lone of a topologi
al spa
e X we mean its 
lone in the 
ategory of alltopologi
al spa
es and 
ontinuous maps. Clearly, the 
lone of a topologi
al spa
eextends the monoid of 
ontinuous maps in the sense that its 1-st sort hC1;S11 ;�10iis exa
tly Mon(X). Thus, every topologi
al property of the spa
e whi
h 
an bedes
ribed by an algebrai
 or �rst-order property of the monoid of 
ontinuous maps
an also be des
ribed by a 
orresponding property of the 
lone. The opposite isnot true: there are topologi
al properties whi
h 
an be des
ribed by a �rst orderproperty of the 
lone and yet whi
h 
annot be des
ribed by properties of themonoid. The following, mu
h stronger result was proved by Si
hler and Trnkov�ain [10℄:Theorem. For any triple 2 � n1 � n2 � n3 of �nite ordinals there exist metriz-able topologi
al spa
es X and Y on the same 
arrier set su
h that� Clon(X) and Clon(Y ) 
oin
ide if and only if n � n1;� Clon(X) is isomorphi
 to Clon(Y ) if and only if n � n2;� Clon(X) is elementarily equivalent to Clon(Y ) if and only if n � n3.It should be noted, however, that for a lot of spa
es the monoid of 
ontinuousself-maps possesses strong enough properties to determine properties of the 
loneof 
ontinuous maps. An obvious example of this was already presented above: for
ompletely regular T1 spa
es 
ontaining an ar
 the monoid of 
ontinuous mapsdetermines the topology of the spa
e. Hen
e, in the 
lass of 
ompletely regularT1 spa
es whi
h 
ontain an ar
, isomorphism of monoids implies isomorphism of
lones.Another example 
an be found in [5℄, [6℄. Consider a rigid spa
e, i.e. one withonly identi
al and 
onstant 
ontinuous self-maps (for example, a Cook 
ontin-uum [3℄). Under the assumption that the spa
e is Hausdor�, Herrli
h proved thatthe only 
ontinuous operations on su
h a spa
e are proje
tions and 
onstants.In [11℄, Taylor noted that Herrli
h's proof is valid in any 
on
rete 
ategory with
onstants as long as the obje
t has at least 3 elements. Thus, the 
lone of a rigidspa
e with at least 3 elements 
onsists solely of proje
tions and 
onstants. Onthe other hand, being rigid is a �rst order property of the monoid of 
ontinuousself-maps. The monoid of a rigid spa
e hen
e 
ompletely des
ribes its 
lone. In
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ontrast to the 
ase of 
ompletely regular T1 spa
es 
ontaining an ar
, the monoidof a rigid spa
e is not strong enough to des
ribe the topology of the spa
e, yet itis strong enough to fully determine the spa
e's 
lone.As usual in set theory, we will assume any natural number n is the set of smallernumbers f0; 1; : : : ; n� 1g. For a topologi
al spa
e X , denote by n�X = nX thedire
t sum of n 
opies of X . The i-th 
opy of X in the sum nX is fig �X fori = 0; 1; : : : ; n� 1.The 
o
lone of a topologi
al spa
e X is the 
lone of X in the 
ategory dual tothat of topologi
al spa
es and 
ontinuous maps. Thus, the 
o
lone Co
lo(X) ofthe spa
e X is the !-sorted algebrahCn;Snm; �ni im;n2!;i<n;where� Cn is the set of all 
ontinuous maps from X to nX ;� �ni is the identi
al inje
tion�ni : X ,! fig �X � nXfor i < n 2 !; and� Snm : nX � (mX)n ! mX is the 
omposition operation whi
h maps any(n + 1)-tuple (f ; g0; : : : ; gn�1) to the 
ontinuous fun
tion F : X ! mXde�ned as follows:F (x) = gi(f(x)) if f(x) 2 fig �X:The �rst sort hC1;S11 ; �10i of Co
lo(X) is again a monoid | one whi
h is dualto Mon(X). Let us denote this monoid by Mond(X).In this paper, we show that results similar to those obtained by Si
hler andTrnkov�a 
annot be proved for 
o
lones of topologi
al spa
es. In Se
tion 3, weprove that for non-indis
rete spa
es, isomorphism of monoids implies isomor-phism of 
o
lones. Similarly, in Se
tion 4 we prove that elementary equivalen
e ofmonoids of non-indis
rete spa
es implies elementary equivalen
e of their 
o
lones.Note that a map F : Mon(X) ! Mon(Y ) is an isomorphism of Mon(X) andMon(Y ) if and only if it is an isomorphism of Mond(X) and Mond(Y ). Also, thebije
tion ' 7! 'd of the set of all monoid-theoreti
 �rst-order formulas onto itselfwhi
h turns the order of multipli
ation around has the property that Mon(X) j= 'if and only if Mond(X) j= 'd. In light of these fa
ts, in the later se
tions we willnot distinguish between Mon(X) and Mond(X) and will thus identify the �rstsort of Co
lo(X) with Mon(X).2. PreliminariesIn Se
tion 4, we will 
onstru
t transformations of �rst order formulas of thetheory of (
o)
lones. For this reason, we need to exa
tly spe
ify the �rst orderlanguage of this theory that we will be using.



406 A. BarkhudaryanAs we are talking about an !-sorted theory, we need in�nitely many variablesof ea
h sort n 2 !. We will take symbols fni to be the n-th sort variables of thetheory of 
o
lones, i 2 !. In ea
h sort n we have n 
onstants: �n0 ; : : : ; �nn�1. Forany pair m;n 2 ! of �nite ordinals, Snm is a heterogeneous operation symbol oftype n�mn ! m. And, of 
ourse, in addition to these the alphabet of the theoryof 
o
lones 
ontains parentheses, 
omma, equation sign =, logi
al operations &and : and the universal quanti�er 8 . All other logi
al operations, as well as theexisten
e quanti�er, are de�ned in terms of & , : and 8 in the traditional way.Terms in the �rst order theory of 
o
lones are 
onstru
ted by the followings
heme:� ea
h variable fni and ea
h 
onstant �ni is an n-th sort term;� if t is an n-th sort term and t0; : : : ; tn�1 are m-th sort terms, then thesequen
e Snm(t; t0; : : : ; tn�1) is an m-th sort term.Note that we usually write Snm(t; t0; : : : ; tn�1) instead of Snm(t; t0; : : : ; tn�1). Thesemi
olon has neither synta
ti
 nor semanti
al meaning here | we use it merelyfor better visual separation of the two parts of the 
omposition.Formulas of the �rst order theory of 
o
lones are again 
onstru
ted a

ordingto the usual s
heme:� if t and t0 are terms of the same sort, t = t0 is a formula (an elementaryformula);� if ' and  are formulas, so are (' &  ) and (:');� if ' is a formula, so is (8 fni )'.And again as usual, we will omit parentheses in formulas if doing so does notintrodu
e ambiguity in the meaning of the formula, and will add unne
essaryparentheses if they improve readability.The 1-st sort of the 
lone is simply a monoid. Similarly, the redu
tion of theabove spe
i�ed language to the 1-st sort is the language of the theory of monoids.Hen
e we will 
onsider monoid-theoreti
al formulas to also be 
lone-theoreti
alformulas.However, we will allow a ri
her set of variables for the �rst order language ofthe theory of monoids and will usually denote monoid-theoreti
 variables by smallletters of the Latin alphabet. Also, we will write g Æ f instead of S11(f; g).Let us 
onsider the following example of a monoid-theoreti
 formula:(1) 8 f(x Æ f = x):Obviously, (1) 
laims that x is a left zero. Now, if we are 
onsidering a monoid of
ontinuous self-maps of some topologi
al spa
e, left zeroes 
oin
ide with 
onstantmaps. Taking this into a

ount, we denote formula (1) by Const(x). We willabbreviate the formula8x8 y : : :8 z(Const(x) & Const(y) & � � � & Const(z)! ')
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es 407as (8x; y; : : : ; z 2 Const) ':In the same way, we will abbreviate9x9y : : : 9z(Const(x) & Const(y) & � � � & Const(z) & ')as (9x; y; : : : ; z 2 Const) ':We will also sometimes write f(x) instead of f Æ x, in 
ases when x is assumed tobe 
onstant.Lastly, to avoid symbol overloading, we denote formula equality by �.Let us 
onsider another example of a monoid-theoreti
al formula:(2) ?Dis
r � 8x; y 2 Const 9f(f(x) = y &8 z 2 Const (z 6= x! f(z) = x)):Note that this formula holds for both dis
rete and indis
rete spa
es.Conversely, let X be a non-indis
rete spa
e for whi
h Mon(X) j= ?Dis
r. AsX is non-indis
rete, it 
ontains a non-empty proper open subset U � X . Pi
kany x =2 U and any y 2 U ; then there is a 
ontinuous map f : X ! X whi
hmaps x into U and the 
omplement outside of U . Thus, the singleton fxg is openas the preimage of the open set U under the 
ontinuous map f . Applying thesame reasoning to fxg instead of U , we get that every other singleton in X is alsoopen. Thus, X is dis
rete.To summarize, the monoid-theoreti
al formula (2) 
hara
terizes dis
rete andindis
rete spa
es in the 
lass of all topologi
al spa
es.Note that dis
rete and indis
rete topologies on a set with at least two elementshave the same monoid of 
ontinuous self-maps and are thus indistinguishable bytheir monoids. Co
lones of these spa
es, on the other hand, are di�erent. The
o
lone of the indis
rete topologi
al spa
e satis�es the following formula:(3) Conn � 8 f209f10 ff20 = S12(f10 ; �20) _ f20 = S12(f10 ; �21)g:The 
o
lone of a dis
rete non-trivial spa
e 
learly does not satisfy this formula.Thus, the formula ?Dis
r & Conn identi�es indis
rete spa
es, and ?Dis
r &:Conn identi�es dis
rete non-trivial spa
es in the �rst-order language of the the-ory of 
o
lones. The monoid of 
ontinuous self-maps is only able to identify spa
eswith dis
rete and indis
rete topologies but is not able to distinguish between those.A subset of a topologi
al spa
e whi
h is both open and 
losed is 
alled 
lopen.A partition of a topologi
al spa
e into n 
lopen subsets is 
alled a 
lopen n-partition. A 
entral aspe
t of our paper is the representation of 
lopen partitionsof a spa
e X in Mon(X). As the only obje
ts we possess in Mon(X) are maps,we have to represent 
lopen partitions as 
olle
tions of 
ontinuous self-maps.



408 A. BarkhudaryanLet C be a non-empty 
lopen subset of a topologi
al spa
e X . Choose anarbitrary point 
 2 C. The map pC;
 de�ned by the following formula is obviously
ontinuous:(4) pC;
(x) = (x; if x 2 C;
; if x =2 C:It is also a proje
tion: pC;
 Æ pC;
 = pC;
:The set C 
an be determined as the set of �xed points of pC;
.On the other hand, every 
ontinuous map p identi�es a subsetCp = fx 2 X ; p(x) = xg:If p is a proje
tion, then Cp = =(p) is non-empty.Continuous proje
tions are obje
ts whi
h 
an be des
ribed in the �rst-ordertheory of monoids (and 
lones). Taking this into a

ount, we will represent non-empty 
lopen sets by the proje
tions as de�ned by (4). Empty sets are, 
uriously,more tri
ky to deal with. In the 
ase of dis
onne
ted spa
es, we will representthem by 
ontinuous maps with no �xed points. Note, however, that the sets of�xed points in general do not need to be open or 
losed.LetX be a non-indis
rete and non-trivial spa
e; then there exist points a; b 2 Xsu
h that a has a neighborhood whi
h does not 
ontain b. If A � X is a 
lopenset, the fun
tion whi
h maps A to a and the 
omplement to b is 
ontinuous. Sois the fun
tion mapping A to b and the 
omplement to a. Conversely, if there are
ontinuous fun
tions mapping A and its 
omplement to a and b and vi
e-versa,then A is ne
essarily a 
lopen set. This 
ondition 
an be expressed in the �rstorder theory of monoids. The following formula is equivalent to the set of �xedpoints of p being a 
lopen set:(5) Clopen(p) �8x; y 2 Const 9f 8 z 2 Constf(p(z) = z ! f(z) = x) & (p(z) 6= z ! f(z) = y)g:It is easily seen that the requirement of the spa
e X being non-trivial 
an berelaxed. Really, the only self-map of a trivial spa
e satis�es (5), and its set of�xed points is 
lopen. Thus, the formula Clopen des
ribes maps whi
h represent
lopen sets for any non-indis
rete spa
e.Let p and q be two 
ontinuous maps. The sets they represent are 
omplemen-tary if and only if they satisfy the following 
onditions:� p and q do not have 
ommon �xed points;� ea
h point is a �xed point for either p or q.These 
onditions are des
ribed by the following monoid-theoreti
 formula:Compl(p; q) � 8x 2 Const (p(x) = x$ q(x) 6= x):
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es 409This formula 
an be easily generalized to des
ribe an arbitrary partition of theset into �nitely many sets:(6) Compl(p0; p1; : : : ;pn�1) �8x 2 Const f(p0(x) = x _ � � � _ pn�1(x) = x) &&i6=j(pi(x) = x! pj(x) 6= x)g:Combining Compl and Clopen, we get a formula whi
h des
ribes maps repre-senting a 
lopen n-partition for non-indis
rete spa
es:(7) ClopenPart(p0; p1; : : : ; pn�1) �Compl(p0; : : : ; pn�1) &Clopen(p0) & � � � & Clopen(pn�1):3. The isomorphism 
aseTheorem 1. Suppose X and Y are non-indis
rete spa
es. Further, suppose thatMon(X) is isomorphi
 to Mon(Y ). Then Co
lo(X) is isomorphi
 to Co
lo(Y ).Proof: Let F : Mon(X) ! Mon(Y ) be a monoid isomorphism. We will extendF to an isomorphism of 
o
lones of X and Y .Suppose f : X ! nX = f0; : : : ; n � 1g � X is a 
ontinuous fun
tion. As afun
tion into the produ
t of two sets, the fun
tion f is uniquely determined byits 
ontinuous 
omponents fn : X ! n and fX : X ! X . The �rst of these isin its turn uniquely determined by the 
lopen n-partition fXi; i = 0; : : : ; n� 1g,where Xi = fx 2 X ; fn(x) = ig = fx 2 X ; f(x) 2 fig �Xg:Let I be the set of those indi
es i for whi
h Xi is not empty. For any 
olle
tionof symbols �0; : : : ; �n�1, let �!�I denote the sequen
e�!�I = (�i)i2I :For i =2 I we de�ne Yi = ;. For i 2 I , we de�ne the set Yi � Y below.As in the previous se
tion, we represent Xi (i 2 I) by a 
ontinuous proje
-tion pi. We know that the 
olle
tion �!pI satis�es the formula ClopenPart(�!pI ).As F is a monoid isomorphism, the images ���!F (pI) are also proje
tions and alsosatisfy ClopenPart(���!F (pI )). Thus, these proje
tions represent sets Yi � Y fori 2 I whi
h, together with the empty sets Yi for i =2 I , form a 
lopen n-partitionY0; : : : ; Yn�1 of Y .We now denote gY = F (fX) and 
onstru
t the 
ontinuous map eF (f) = g asfollows: g(y) = (i; gY (y)) for y 2 Yi:We will show that eF : Co
lo(X)! Co
lo(Y ) is a 
lone isomorphism.First, note that eF (f) does not depend on the 
hoi
e of proje
tions pi. Indeed,F is a bije
tion of the set of left zeroes of Mon(X) onto that of Mon(Y ), i.e. F



410 A. Barkhudaryanmaps 
onstants bije
tively onto 
onstants. Thus, is we identify 
onstant mapsand their values, y 2 Yi if and only if F (pi) Æ y = y, whi
h in turn is equivalentto pi Æ F�1(y) = F�1(y), and the latter is the same as F�1(y) 2 Xi. So the setsYi do not depend on the 
hoi
e of pi and thus neither does eF (f).The map eF is inverse to gF�1. Indeed, eF (f) = g is uniquely determined by then-partition Y0; : : : ; Yn�1 and the map gY : Y ! Y . Ea
h non-empty Yi 
an berepresented by the proje
tion F (pi) whi
h F�1 maps to pi. The latter representsthe set Xi. The fun
tion gF�1(g) is then given by the partition X0; : : : ; Xn�1 andthe fun
tion F�1(gY ) = fX and hen
e 
oin
ides with f . Thus the bije
tion of eFis established.Now, let f : X ! nX and g0; : : : ; gn�1 : X ! mX be 
ontinuous maps.Denote h = Snm(f ; g0; : : : ; gn�1). As above, let fX be the se
ond 
omponent of fand let X0; : : : ; Xn�1 be the 
lopen partition asso
iated with its �rst 
omponent.Similarly, for ea
h gi let giX denote its se
ond 
omponent and let X i0; : : : ; X im�1denote the partition 
orresponding to its �rst 
omponent. DenoteX ii;j = Xi \ f�1X (X ij)for j = 0; 1; : : : ;m� 1. Evidently X ii;0; : : : ; X ii;m�1 is a 
lopen partition of Xi.Note that the �rst 
omponent of h is given by the 
lopen partitionn�1[i=0 X ii;0; : : : ; n�1[i=0 X ii;m�1:Denote Xj = Sn�1i=0 X ii;j . On ea
h 
omponent Xj , the se
ond 
omponent of hequals(8) hX j Xj = n�1[i=0 giX Æ fX jX ii;j :Suppose ea
h non-emptyXi is represented by the proje
tion pi, ea
h non-emptyX ii;j is represented by the proje
tion pii;j , and ea
h non-empty Xj is representedby pj . Evidently pj Æ pii;j = pii;j , thus also F (pj) Æ F (pii;j) = F (pii;j). Hen
e,if we denote by Y ii;j and Y j the 
lopen sets represented by F (pii;j) and F (pj),respe
tively, then Y ii;j � Y j . Similarly, if Yi is the set represented by the proje
tionF (pi), we get Y ii;j � Yi. Now, asfX ii;j ; i = 0; : : : ; n� 1; j = 0; : : : ;m� 1gis a 
lopen partition of X , the same is true offY ii;j ; i = 0; : : : ; n� 1; j = 0; : : : ;m� 1gand Y (here we take Y ii;j = ; if X ii;j = ;).
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es 411It is now suÆ
ient to prove that eF (h) and Snm( eF (f); eF (g0); : : : ; eF (gn�1)) 
o-in
ide on ea
h nonempty set Y ii;j . A

ording to the de�nition,eF (h)(y) = (j; F (hX)(y)) for y 2 Y ii;j :Taking into a

ount the equation (8) and the fa
t that y 2 Y ii;j is equivalent toF (pii;j)(y) = y, for y 2 Y ii;j we get(9) eF (h)(y) = (j; F (hX )(F (pii;j)(y)))= (j; F (hX Æ pii;j)(y))= (j; F (giX Æ fX Æ pii;j)(y))= (j; F (giX Æ fX)(y)):On the other hand, as Y ii;j � Yi, we have eF (f)(y) = (i; F (fX)(y)) for y 2 Y ii;j . Letpij be a proje
tion representing X ij and let Y ij be the set represented by F (pij). AsfX(X ii;j) � X ij , we get F (fX)(Y ii;j) � Y ij and again, a

ording to the de�nitionof eF ,(10) eF (gi)(F (fX )(y)) = (j; F (giX )(F (fX)(y))):Comparing (9) and (10) 
ompletes the proof. �Remark. Suppose the isomorphism F in Theorem 1 is identi
al, i.e. X and Y arede�ned on the same set and their monoids of 
ontinuous self-maps 
oin
ide. Thenthe 
lone isomorphism eF 
onstru
ted in the above proof is again identi
al. In otherwords, for non-indis
rete spa
es monoid 
oin
iden
e implies 
o
lone 
oin
iden
e.4. The elementary equivalen
e 
aseWe have 
hosen to represent 
lopen sets as sets of �xed points of 
ontinuousmaps. Thus, we 
annot represent empty sets in spa
es with the �xed point prop-erty. Su
h spa
es are ne
essarily 
onne
ted; hen
e, in this se
tion, we will 
onsiderthe 
ases of 
onne
ted and dis
onne
ted spa
es separately.First, for a non-indis
rete spa
e, its 
onne
tedness 
an be expressed by thefollowing monoid-theoreti
al formula:(11) Conne
ted � 8 p8 q(p Æ p = p & q Æ q = q ! :ClopenPart(p; q)):For 
onne
ted spa
es, the 
o
lone di�ers very little from the monoid. Ea
h 
on-tinuous map F : X ! nX is given by an index i < n and a 
ontinuous mapf : X ! X , for whi
h F (x) = (i; f(x)) for every x 2 X . If F : X ! nXis given by the pair (i; f) and G0; : : : ; Gn�1 : X ! mX are given by the pairs(j0; g0); : : : ; (jn�1; gn�1), respe
tively, then the 
omposition Snm(F ;G0; : : : ; Gn�1)is given by the pair (ji; gi Æ f).



412 A. BarkhudaryanThe above gives an idea for translating �rst order properties of 
o
lones of
onne
ted topologi
al spa
es into �rst order properties of their monoids. Forany variable fni in the language of 
lones, let us have n new \shadow" variablesfni;0; : : : :fni;n�1. Let '(fni ) be an arbitrary �rst order 
lone-theoreti
 formula. Thevariable fni may or may not a
tually o

ur in '. By '(fni ) we denote the formula(12) '(fni ) = &j<n'(fni;j):For every 
lone-theoreti
 formula ' in the original language we de�ne another
lone-theoreti
 formula '0 in the language enri
hed with shadow variables. Theformula '0 is 
onstru
ted by re
ursion on the 
omplexity of the formula ':� if ' is an elementary formula, then '0 � ';� if ' �  & �, then '0 �  0 & �0;� if ' � : , then '0 � : 0;� if ' � 8 fni ( (fni )), then '0 � 8 fni ( (fni )).Note that if ' is a 
losed formula, then '0 only 
ontains non-shadow variables asparts of quanti�ers (e.g. 8 fni ). In other words, ea
h variable o

urring in a termis annotated with an index. We 
an now translate 
lone-theoreti
 formulas havingthe latter property into the �rst order language of monoids. To do that, we �rstde�ne a monoid-theoreti
 term and an integer index for every 
lone-theoreti
 termhaving no non-shadow variables. For any variable fni , pi
k a monoid-theoreti
variable fn;i. Clone-theoreti
 terms are translated a

ording to the followingrules:� if t � �nj , take tM
 � 1 and i(t) = j;� if t � fni;j , take tM
 � fn;i and i(t) = j;� if t � Snm(� ; t0; : : : ; tn�1), take tM
 � tM
i(�) Æ �M
 and i(t) = i(ti(�)).The translation of formulas ' with no non-shadow variables in terms is 
on-stru
ted as follows:� if ' is the elementary formula t = � with i(t) = i(�), we take 'M
 �tM
 = �M
;� if ' is the elementary formula t = � with i(t) 6= i(�), we take 'M
 � 1 6= 1;� if ' �  & �, we take 'M
 �  M
 & �M
;� if ' � : , we take 'M
 � : M
;� if ' � 8 fni ( ), take 'M
 � 8 fn;i( M
).The 
omposition ' 7! '0 7! ('0)M
 a
hieves the sought translation of �rstorder properties of 
o
lones to those of monoids for 
onne
ted spa
es. We willhen
eforth write 'M
 instead of ('0)M
.Theorem 2. Let X be a 
onne
ted non-indis
rete spa
e and let ' be an arbitrary
losed 
lone-theoreti
 formula. Then Co
lo(X) j= ' if and only if Mon(X) j='M
.Proof: The proof 
losely follows the 
onstru
tion of the mapping ' 7! 'M
.
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es 413Suppose X is a 
onne
ted non-indis
rete spa
e. Let'(fn1i1 ; : : : ; fnkik )be a 
lone-theoreti
 formula with free variables among fn1i1 ; : : : ; fnkik and let F1 :X ! n1X , : : : , Fk : X ! nkX be any 
ontinuous maps. Suppose Fs is givenby the index js and the 
ontinuous map fs : X ! X , i.e. Fs(x) = (js; fs(x)) forx 2 X , s = 1; : : : ; k. The formula'I � '(fn1i1;j1 ; : : : ; fnkik;j1)only 
ontains bound non-shadow variables. This implies that '0I only 
ontainsindexed variables in terms and hen
e ('0I)M
 
an be 
onstru
ted. Again, we willwrite 'M
I instead of ('0I )M
. We will prove that Co
lo(X) j= '(F1; : : : ; Fk) ifand only if Mon(X) j= 'M
I (f1; : : : ; fk).The proof of the latter 
laim is 
onstru
ted by indu
tion on the 
omplexityof '.If ' is the elementary formula t = � , then Co
lo(X) j= '(F1; : : : ; Fk) if andonly if t(F1; : : : ; Fk) and �(F1; : : : ; Fk) are represented by the same index and
ontinuous map X ! X . Due to the way the translation of terms is done, thisis true if and only if tM
I and �M
I evaluate to the same index and map on thek-tuple (f1; : : : ; fk), that is Mon(X) j= 'M
I (f1; : : : ; fk).If ' �  & � or ' � : , and the 
laim is true for  and �, then it is also
learly true for '.If ' � 8 fni ( (fni ; fn1i1 ; : : : ; fnkik )), then Co
lo(X) j= '(F1; : : : ; Fk) if and onlyif for every 
ontinuous F : X ! nX Co
lo(X) j=  (F; F1; : : : ; Fk). A

ordingto the indu
tion hypothesis, the latter means that Mon(X) j=  M
I (f; f1; : : : ; fk)for ea
h index j 
hosen for fni and for every 
ontinuous f : X ! X , or, equiva-lently, Mon(X) j= ( (fni ))M
I (f; f1; : : : ; fk). The latter is equivalent to Mon(X) j='M
I (f1; : : : ; fk). This 
ompletes the proof of the 
laim.Now, if ' is a 
losed formula, then 'I is identi
al with ', hen
e 'M
I is identi
alwith 'M
 and the above 
laim redu
es to Co
lo(X) j= ' if and only if Mon(X) j='M
. �We will now do a similar 
onstru
tion for dis
onne
ted spa
es. Dis
onne
tedspa
es ne
essarily have 
ontinuous self-maps with no �xed points, whi
h will havethe task of representing empty sets in 
lopen partitions.In Se
tion 3, for every 
ontinuous map f : X ! nX we 
onstru
ted a 
lopenpartition X0, : : : , Xn�1 of the spa
e X and a 
ontinuous self-map fX . We havea monoid-theoreti
 formula (7) whi
h des
ribes 
lopen partitions. Hen
e, fordis
onne
ted spa
es, we 
an represent a 
ontinuous map f : X ! nX by a
olle
tion of n maps whi
h satisfy ClopenPart, and another map whi
h representsthe se
ond 
omponent of f .



414 A. BarkhudaryanEvery 
lone-theoreti
 formula is equivalent to one with simple elementary for-mulas, where a simple elementary formula is one of the form�1 = �2or t0 = Snm(t; t0; : : : ; tn�1)with �1; �2 being variables or 
onstants and t0; t; t0; : : : ; tn�1 being variables. Wewill 
onstru
t a translation of 
lone-theoreti
al formulas whi
h only 
ontain simpleelementary subformulas to the language of the theory of monoids.For ea
h variable fni take n+ 1 distin
t monoid-theoreti
 variables pn;i;0, : : : ,pn;i;n�1, fn;i.First, we 
onstru
t a monoid-theoreti
 formula 'Md for every simple elemen-tary formula '.Let ' denote the formula �ni = �nj . If i = j, put 'Md � 1 = 1; if i 6= j, put'Md � 1 6= 1. Let ' be the formula �ni = fnj or fnj = �ni . In this 
ase, put'Md � pn;j;i = 1 & fn;j = 1. For ' � fni = fnj , put(13) 'Md �8x 2 Const � &l=0;:::;n�1[pn;i;l(x) = x! pn;j;l(x) = x℄� &fn;i = fn;j :Now, let ' � fmj = Snm(fni ; fmj0 ; : : : ; fmjn�1). In this 
ase, put(14) 'Md � 8x 2 Const � &k=0;:::;m�1l=0;:::;n�1 [pm;j;k(x) = x & pn;i;l(x) = x!pm;jl;k(fn;i(x)) = fn;i(x) &fm;jl(fn;i(x)) = fm;j(x)℄�:By re
ursion on the 
omplexity of ', we extend the above 
onstru
tion toarbitrary 
lone-theoreti
 formulas with only simple elementary subformulas. If' �  & �, put 'Md �  Md & �Md. If ' � : , put 'Md � : Md. If' � 8 fni ( ), put(15) 'Md � 8 pn;i;0 : : :8 pn;i;n�1fClopenPart(pn;i;0; : : : ; pn;i;n�1)!8 fn;i( Md)g:The following theorem holds for the mapping ' 7! 'Md:Theorem 3. Let X be a dis
onne
ted spa
e and let'(fn1i1 ; : : : ; fnkik )
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lone-theoreti
 formula 
ontaining only simple elementary subformulas, withfree variables among fn1i1 ; : : : ; fnkik . Evidently, the free variables of 'Md are thenamong pn1;i1;i; : : : ; pnk;ik;i, fn1;i1 ; : : : ; fnk;ik .Suppose F1 : X ! n1X , : : : , Fk : X ! nkX are 
ontinuous maps with their�rst 
omponents given by proje
tions Pn1;i1;i; : : : ; Pnk;ik;i and se
ond 
omponentsFn1;i1 ; : : : ; Fnk ;ik . Then Co
lo(X) j= '(F1; : : : ; Fk)if and only if Mon(X) satis�es the formula 'Md, with maps Pnj ;ij ;i and Fnj ;ijsubstituted for ea
h of the variables pnj ;ij ;i and fnj ;ij , respe
tively.Proof: Again, we prove this theorem by indu
tion on the 
omplexity of theformula '.It is easy to see that the 
laim of the theorem holds for simple elementaryformulas. The same is true for formulas of type  & � and : when the 
laimof the theorem is known to be true for  and �.Let now ' be the formula 8 fni ( ) and suppose the 
laim of the theorem is truefor  (fni ; fn1i1 ; : : : ; fnkik ). Thus, for every 
ontinuous fun
tion F : X ! nX givenby proje
tions Pn;i;0; : : : ; Pn;i;n�1 and a map Fn;i,(16) Co
lo(X) j=  (F; F1; : : : ; Fk)if and only if(17) Mon(X) j=  Md(Pn;i;0; : : : ; Pn;i;n�1; Fn;i; : : : ):Now, Co
lo(X) j= '(F1; : : : ; Fk) if and only if (16) holds for any 
ontinuousF : X ! nX , whi
h is the 
ase if and only if (17) holds for any 
ontinuousPn;i;0; : : : ; Pn;i;n�1 and Fn;i su
h that ClopenPart(Pn;i;0; : : : ; Pn;i;n�1) is satis�ed.The latter is equivalent to Mon(X) j= 'Md(: : : ). �We 
an easily extend the mapping ' 7! 'Md to arbitrary formulas. For any
lone-theoreti
 formula ' we 
an 
hoose a 
lone-theoreti
ally equivalent formula'0 with only simple equivalent subformulas and then take 'Md � ('0)Md. We getan easy 
onsequen
e of Theorem 3 for this extension:Consequen
e. If X is a dis
onne
ted spa
e and if ' is a 
losed formula, thenCo
lo(X) j= ' if and only if Mon(X) j= 'Md.We 
an now prove the main theorem of this paper:Theorem 4. There is a mapping ' 7! 'M of �rst order formulas of 
lones tothose of monoids whi
h satis�es the following 
ondition: for any non-indis
retetopologi
al spa
e X and any 
losed formula ' of the theory of 
lones,Co
lo(X) j= '



416 A. Barkhudaryanif and only if Mon(X) j= 'M :Proof: Simply take'M � (Conne
ted! 'M
) & (:Conne
ted! 'Md):Theorems 2 and 3 
omplete the proof. �A
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