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Further remarks on KC and related spa
esAngelo Bella, Camillo CostantiniAbstra
t. A topologi
al spa
e is KC when every 
ompa
t set is 
losed and SCwhen every 
onvergent sequen
e together with its limit is 
losed. We present a
omplete des
ription of KC-
losed, SC-
losed and SC minimal spa
es. We alsodis
uss the behaviour of the �nite derived set property in these 
lasses.Keywords: 
ompa
t spa
e, KC spa
e, SC spa
e, minimal KC spa
e, minimalSC spa
e, KC-
losed spa
e, SC-
losed spa
e, sequentially 
ompa
t spa
e, �nitederived set property, wD propertyClassi�
ation: Primary 54D25, 54D10, 54A25; Se
ondary 54A350. Introdu
tionKC spa
es are those in whi
h 
ompa
t sets are 
losed. SC spa
es are those inwhi
h 
onvergent sequen
es together with their limits are 
losedT2 ! KC ! SC ! T1:In the last years, SC and mu
h more KC spa
es have been investigated in quitea few papers (see for instan
e [1℄, [3℄, [4℄). The 
lass of KC spa
es is in a sense ani
e enlargement of the 
lass of T2 spa
es and in some 
ases it allows us to obtainbetter results. For instan
e, in [9℄ it is shown that the smallest 
ardinality of a
ountably 
ompa
t KC spa
e whi
h is not sequentially 
ompa
t is exa
tly h, whilethe same question for T2 spa
es is still rather undetermined. If we let � to be thesmallest 
ardinality of a 
ountably 
ompa
t T2 spa
e whi
h is not sequentially
ompa
t, then we only know that s � � � 
.Various problems posed in [4℄ have re
ently been solved in [7℄. Among them,there is the 
onstru
tion of a 
ompa
t KC spa
e in whi
h ea
h non-empty openset is dense and the 
onstru
tion of a T2 spa
e whi
h 
annot be embedded in any
ompa
t KC spa
e. Another non-trivial 
ontribution is the �nal solution of an oldproblem attributed to Larson on the nature of a minimal KC spa
e [8℄. The resultin [8℄ asserts that a spa
e is minimal KC if and only if it is 
ompa
t KC. Parallelto this, in [7℄ it was also established that a minimal SC spa
e is sequentially
ompa
t, but this is not a 
hara
terization. On the other hand, nothing is knownin the literature about KC- or SC-
losed spa
es.



418 A. Bella, C. CostantiniThe main goal of this short paper is just to �ll this gap, by giving pre
ise
hara
terizations of KC-
losed, SC-
losed and minimal SC spa
es. We 
ompletethe paper with some remarks about the �nite derived set property in the 
lass ofKC and SC spa
es.1. KC-
losed, SC-
losed and minimal SCA spa
e is KC-
losed (resp. SC-
losed) if it is 
losed in every KC spa
e (resp.SC spa
e) in whi
h it is embedded.A spa
e is minimal SC if it does not have any proper 
oarser SC topology.Theorem 1.1. If X is a non-
ompa
t KC spa
e, then there exists a simple KCestension Y = X [ fpg.Proof: We distinguish between two 
ases.Case 1. X is lo
ally 
ompa
t. Let Y = X[fpg be the one-point 
ompa
ti�
ationof X , i.e. X is an open subspa
e of Y and a lo
al base at p in Y 
onsists of the setsfY nK : K is a 
ompa
t subset ofXg. It is evident thatX is dense in Y . It remainsto 
he
k that Y is a KC spa
e. To this end, let C be a 
ompa
t subset of Y . Ifp =2 C, then C is a 
ompa
t subset of X and so, a

ording to the hypothesis, itis 
losed in X . Therefore, every point x 2 X n C has a neighbourhood missingC and the same holds for p by 
onstru
tion. So, C is 
losed in Y . Now, assumep 2 C and �x x =2 C. Let U be a 
ompa
t neighbourhood of x in X . U is 
losedin X and p is not in the 
losure of U . Hen
e, U is 
losed in Y and 
onsequentlyU \ C is a 
ompa
t subset of X . As U \ C is a
tually 
losed in X , we see thatU n C turns out to be a neighbourhood of x missing C. Thus, C is 
losed in Y .Case 2. There is a point q 2 X without 
ompa
t neighbourhoods. Fix a pointp =2 X and de�ne a topology on Y = X [ fpg by de
laring X an open subspa
eof Y and by giving to p, as a lo
al base in Y , the family ffpg [ U nK : U is aneighbourhood of q and K is a 
ompa
t subset of Xg. It is evident that X isdense in Y . To 
he
k that Y is KC, �x a 
ompa
t set C � Y . If p =2 C, thenC is a
tually a 
ompa
t subset of X and hen
e a 
losed subset of X . As, by
onstru
tion the set fpg [X n C is a neighbourhood of p missing C, we see thatC is a
tually 
losed in Y . Now, we assume p 2 C. We are going to show that theset C n fpg is 
ompa
t in X . Then, by the forgoing 
ase, C n fpg will be 
losedin X and C in turn will be 
losed in Y . Let V be an open 
over of C n fpg in Xand let V 0 be the subset of V 
onsisting of those elements 
ontaining q. As thefamily fV n V 0 [ ffpg [ V : V 2 V 0gg is an open 
over of C in Y , it 
ontains a�nite sub
over W . It is 
lear that the family W n V 0 [ fV : fpg [ V 2 W g is a�nite sub
olle
tion of V whi
h 
overs C n fpg. This veri�es the 
ompa
tness ofC n fpg and we are done. �Corollary 1.2. A spa
e is KC-
losed if and only if it is 
ompa
t KC.Proof: It is 
lear that a 
ompa
t spa
e embeds as a 
losed subspa
e in a KCspa
e. The 
onverse follows from Theorem 1.1. �



Further remarks on KC and related spa
es 419Theorem 1.3. A spa
e is SC-
losed if and only if it is the union of �nitely many
onvergent sequen
es together with their limit points.Proof: SuÆ
ien
y follows dire
tly from the de�nition of SC spa
e. To provene
essity, let X be an SC-
losed spa
e. For every a 2 X , we will denote by �(a)the 
olle
tion of all open neighbourhoods of a.Step 1. X is sequentially 
ompa
t. By 
ontradi
tion, assume that there is a
ountable in�nite set A � X with no non-trivial 
onvergent subsequen
es and letU be a free ultra�lter on A. Take a point p =2 X and topologize Y = X [ fpg insu
h a way that X is an open subspa
e of Y and a lo
al base at p in Y 
onsistsof the sets ffpg [ V : V open in X and V \ A 2 U g.We 
laim that Y is SC. To 
he
k this, it is enough to verify that if S � X is asequen
e 
onverging to x in Y then S [ fxg is 
losed in Y . If x 6= p, then S [ fxgis 
losed in X . Moreover, as A does not 
ontain 
onvergent subsequen
es, the setS \ A must be �nite and so A n S 2 U . This implies that fpg [ X n (S [ fxg)is a neighbourhood of p missing S [ fxg and thus S [ fxg is 
losed in Y aswell. The proof of the 
laim will be 
ompleted by showing that x = p 
annoto

ur. This is 
lear if some in�nite S0 � S 
onverges to some a 2 A, as in this
ase fpg [ X n (S0 [ fag) will be a neighbourhood of p missing in�nitely manypoints of S. To deal with the remaining 
ase, put A = fan : n < !g and letV0 2 �(a0) be su
h that the set S0 = S n V0 is in�nite. Continuing by indu
tion,let Vn+1 2 �(an+1) be su
h that the set Sn+1 = Sn n Vn+1 is in�nite. Next, letS0 � S be an in�nite set satisfying S0 �� Sn for ea
h n. No matter if S \ Ais �nite or not, as U is an ultra�lter on A, there exists some U 2 U su
h thatS00 = S0 nU is in�nite. By 
onstru
tion, Vn \ S0 is �nite for ea
h n and thereforethe set fpg[SfVn nS00 : an 2 Ug is a neighbourhood of p missing the in�nite setS00. The 
laim is now veri�ed. As X is dense in Y , the SC-
losedness of X givesStep 1.Step 2. X is the union of �nitely many 
onvergent sequen
es. Assume the 
ontraryand topologize the set Y = X [ fpg in su
h a way that X is an open subspa
e ofY and a lo
al base at p 
onsists of the sets fpg [ X nSF , where F is a �niteset of 
onvergent sequen
es in X together with their limit points. We 
laim thatY is an SC spa
e. Let S � X be a sequen
e 
onverging to x in Y . If x 6= p, thenS [ fxg is 
losed in X and the set Y n (S [ fxg) is a neighbourhood of p missingS [ fxg. So S [ fxg is 
losed in Y . The proof of the 
laim will be 
ompleted byshowing that x = p 
annot o

ur. Sin
e by Step 1, X is sequentially 
ompa
t,there exists a sequen
e S0 � S 
onverging to some x 2 X . As Y n (S0 [ fxg) is aneighbourhood of p missing in�nitely many points of S, we are done.Again the SC-
losedness of X gives Step 2 and the proof of the theorem is
omplete. �Theorem 1.4. A spa
e is minimal SC if and only if it is an SC spa
e in whi
hea
h proper 
losed set is the union of �nitely many 
onvergent sequen
es togetherwith their limit points.



420 A. Bella, C. CostantiniProof: If X is minimal SC then, by [7, Theorem 3.8℄, it is sequentially 
ompa
t.On the other hand, [1, Theorem 2.2℄ asserts that a sequentially 
ompa
t SC spa
eremains SC by throwing away all proper 
losed sets whi
h are not a �nite unionof 
onvergent sequen
es. Thus, a 
ombination of the previous two fa
ts gives the�rst part of the theorem.For the 
onverse, let (X; �) be an SC spa
e in whi
h ea
h proper 
losed set isthe union of �nitely many 
onvergent sequen
es together with their limit points.If � is an SC topology weaker than � , then any 
onvergent sequen
e in � is also
onvergent in � and therefore su
h a sequen
e together with the limit point is
losed in � (take into a

ount that (X; �) is SC). This means that ea
h 
losed setin � is 
losed as well in � and we are done. �Lemma 1.5. A spa
e in whi
h ea
h proper 
losed set is the union of �nitely many
onvergent sequen
es together with their limit points is 
ompa
t and sequentially
ompa
t.Proof: Sin
e every non-empty open set has 
ompa
t 
omplement, the 
ompa
t-ness of the spa
e is 
lear. To 
he
k the sequential 
ompa
tness, let S be an in�nitesequen
e and �x some point x in the spa
e. If S 
onverges to x we stop, otherwisethere is a open neighbourhood of x missing an in�nite set S0 � S. As S0 is theunion of 
onvergent sequen
es, the requirement for the sequential 
ompa
tness isfully satis�ed. �Adding the previous results to what we already know, we get the following
omplete and (perhaps surprising) antisymmetri
 pi
ture:(1) Compa
t T2 ! minimal T2 ! T2-
losed;(2) 
ompa
t KC = minimal KC = KC-
losed;(3) 
ompa
t SC  minimal SC  SC-
losed.None of the previous arrows is reversible.2. The FDS property in the 
lass of SC spa
esThe small un
ountable 
ardinals h; s; and t play a major role below. The
ardinal t is the least 
ardinality of a 
omplete tower on !. By a 
omplete tower wemean a 
olle
tion of sets well-ordered with respe
t to reverse almost 
ontainment(A � B i� B n A is �nite, written A �� B) su
h that no in�nite set is almost
ontained in every member of the 
olle
tion. The 
ardinals s and h are de�nedwith the help of the following 
on
epts. A set S is said to split a set A if bothA \ S and A n S are in�nite. A splitting family on ! is a family of subsets of !su
h that every in�nite subset of ! is split by some member of the family. Wewill 
all a splitting family a splitting tree if any two members are either almostdisjoint, or one is almost 
ontained in the other; thus it is a tree by reverse almostin
lusion.The least 
ardinality of a splitting family is denoted s, while least height of asplitting tree is denoted h. It is easy to show that !1 � t � h � s � 
 (= 2!). Formore about the relationships of these 
ardinals see [13℄ and (ex
ept for h) [10℄.



Further remarks on KC and related spa
es 421The seminal paper on h is [5℄, where it is also shown that h is the smallest 
ardinal� su
h that there exists a splitting family S = SfM� : � < �g, where ea
hM�is a MAD family.The Novak (or Baire) number n of !�(= �! n !) is the smallest 
ardinality ofa 
over of !� by nowhere dense sets. A good referen
e for this 
ardinal is again[5℄. Re
all that maxft+; hg � n � 2
 and the equality h = n holds if and only ifthere is a splitting tree of height h without long 
hains. A 
hain in a tree is longif its 
ardinality equals the height of the tree.A spa
e has the Finite Derived Set (FDS) property if every in�nite set hasan in�nite subset with at most �nitely many a

umulation points.After the introdu
tion of this notion in [12℄, 2004, some work has been done to�nd 
onditions for its validity. It turned out that the FDS property is in
uen
edby the sort of separation axioms we are assuming. Some non-trivial results are:Theorem A ([6℄). The smallest 
ardinality of a Urysohn spa
e without the FDSproperty is 
.Theorem A' ([6℄). The smallest weight of an SC spa
e without the FDS propertyis s.Theorem B ([6℄). A Hausdor� spa
e of 
ardinality less than s has the FDSproperty.Theorem C ([4℄). A KC spa
e X satisfying hL(X) < t has the FDS property.Theorem D ([2℄). A 
ompa
t KC spa
e of 
ardinality less than 2t has the FDSproperty.Theorem E ([6℄). A Lindel�of SC spa
e of 
ardinality not ex
eeding t has theFDS property.A very easy, but useful, fa
t is in the following:Proposition 2.1. A sequentially 
ompa
t SC spa
e has the FDS property.Theorems A and A' are obviously de�nitive, but we 
annot say the same aboutTheorem B. Indeed, if we denote by � the smallest 
ardinality of a Hausdor�spa
e without the FDS property, then we may only assert that s � � � 
 andthat it is 
onsistent to have � < 
.Problem 2.1. Is � = s true in ZFC?Be
ause of Proposition 1, it turns out that any 
ondition whi
h for
es a 
ount-ably 
ompa
t spa
e to be sequentially 
ompa
t 
an be in general adapted to havea theorem ensuring the validity of the FDS property. For instan
e, using some re-sults in [9℄, we may formulate a de�nitive 
on
lusion for KC or SC spa
e analogousto Theorem A.Theorem 2.2. A SC spa
e X satisfying jX j < h has the FDS property.



422 A. Bella, C. CostantiniProof: Fix an in�nite set A � X and let S = fxn : n < !g � A. Sin
e X isan SC spa
e, if S has a 
onvergent subsequen
e then we are done. So, we assumethat S has no 
onvergent subsequen
e. For any x 2 X let Ax be the 
olle
tionof all A 2 [!℄! su
h that there exists an open neighbourhood U of x satisfyingxn =2 U for ea
h n 2 A. Fix a maximal almost disjoint sub
olle
tion Bx � Ax.As we are assuming that S does not have any subsequen
e 
onverging to x, itfollows that Bx is a
tually a MAD family on !. Sin
e jX j < h, the 
olle
tionfBx : x 2 Xg is not splitting and so there exists a set C 2 [!℄! su
h that C isalmost 
ontained in same member of Bx for ea
h x 2 X . A

ording to the waywe have 
hosen Bx, this means that x is not an a

umulation point of the setfxn : n 2 Cg. Thus, the set fxn : n 2 Cg � A does not have a

umulation pointsand we are done. �The next example is a really minor modi�
ation of a 
onstru
tion presentedin [9℄. We repeat it in detail for the reader's 
onvenien
e.Example 2.3. A KC spa
e of 
ardinality h whi
h does not have the FDS property.Proof: Let N be the set of positive integers, de�ned in su
h a way as to bedisjoint from the 
lass of ordinals. Let X have N[h as an underlying set. We willde�ne the topology on X with the help of a splitting tree T = SfM� : � < hg,where ea
h M� is an in�nite MAD family on N and M� re�nes Mt whenevert < �. Points of N are isolated. If �; t 2 h [ f�1g let (t; a℄ = f� : t < � � �g.Let a base for the neighborhoods of � be all sets of the formN(�; t;F ; F ) = (t; �℄ [ N n �[F [ F�su
h that t < �, and F is a �nite sub
olle
tion of M� and F is a �nite subsetof N.Claim 1. This de�nes a topology .Claim 2. X is a KC spa
e.Proof: We show that every 
ompa
t subset of X meets N in a �nite set. Sin
ethe relative topology on h is the usual (Hausdor�) order topology and h is 
losed,Claim 2 will then follow.Let K be a 
ompa
t subset of X . Then K \ h is 
ompa
t in h, hen
e hasa greatest element �. Suppose K \ N is in�nite. Let M 2 M� hit K; thenfN(�;�1; fMg; ;)g [ ffng : n 2 Ng is an open 
over of K without a �nitesub
over, 
ontradi
ting the 
ompa
tness of K. �We 
on
lude the proof of the example by showing that every in�nite subset ofN has in�nitely many a

umulation points in X .Let A be an in�nite subset of N. Sin
e T is splitting, there is �0 < h su
hthat at least two elements of M�0 , say M and M 0, hit A. Next, we may �nd�1 > �0 su
h that M�1 splits both M \ A and M 0 \ A. Continuing in this way,at stage n we �nd �n < h su
h that 2n+1 elements of M�n hit A. Now, letting
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es 423� = supf�n : n < !g, we see that in�nitely many members of M� hit A. If� < � < h, then in�nitely many members of � hit A, thus the 
losure of Ain
ludes a terminal segment of h. �Theorem 2.4. The smallest 
ardinality of a KC (or SC) spa
e without the FDSproperty is h.Proof: The result follows from Theorem 2.2 and the previous example. �Mimi
king another result in [9℄, we 
an strengthen Theorem C as follows:Theorem 2.5. Let X be an SC spa
e. If every splitting tree has a 
hain of
ardinality hL(X)+, then X has the FDS property.Proof: In what follows, S� denotes the set of all a

umulation points of S. Notethat S� is 
losed in X and that S� � R� whenever S is almost 
ontained in R.Let us assume by 
ontradi
tion that there exists a set A 2 [X ℄! su
h that ea
hin�nite subset of it has in�nitely many a

umulation points. As we are assumingthat X is an SC spa
e, the set A has no non-trivial 
onvergent subsequen
e. Thismeans that for any B 2 [A℄! and any x 2 B there exists some open set Ux su
hthat x 2 Ux and C = B n Ux is in�nite. Clearly, C is a proper subset of B, andC� is a proper subset of B�.For � < h let us suppose to have already de�ned a 
olle
tion fA
 : 
 < �g ofMAD families 
ontained in [A℄! satisfying:if � < 
 < � then A
 \strongly re�nes" A� , i.e., ea
h member C 2 A
 isalmost 
ontained in some B 2 A� and C� is a proper subset of B�.If � = t + 1 and At has been de�ned, then for ea
h B 2 At we let E (B) � [B℄!be an almost disjoint family maximal with respe
t to the property that C� is aproper subset of B� for any C 2 E (B). Put A� = SfE (B) : B 2 At. Taking intoa

ount the properties of A, it is easy to 
he
k that A� is a MAD family on A.If � is a limit ordinal then, in order to de�ne A�, observe �rst that, as j�j < h,there exists an in�nite subset S of A whi
h is almost 
ontained in some (unique)member of A
 for ea
h 
 < �. Let S be the 
olle
tion of all su
h S and let A� bea maximal almost disjoint family of members of S . By the indu
tion hypothesis,A� strongly re�nes all At, t < �. It is also a MAD family on A: for any B 2 [A℄!the tra
e of the tree fA
 : 
 < �g on B 
annot be splitting and so there existin�nite subsets of B in S .The treeSfA� : � < hg has a 
hain C of 
ardinality hL(X)+. As hL(X)+ � h,this is obvious if the tree is not splitting and follows from our hypothesis in theother 
ase. Then the family fC� : C 2 C g is a stri
tly de
reasing 
olle
tion of
losed sets, in 
ontrast with the de�nition of hL(X). �Sin
e a splitting tree has always a 
hain of length t, Theorem C is 
learly a
orollary of Theorem 2.5.Corollary 2.6 (h < n).h = minfhL(X) : X is an SC (or KC) spa
e without the FDS propertyg:



424 A. Bella, C. CostantiniProof: The previous example provides a KC spa
e X without the FDS propertysatisfying hL(X) = jX j = h. On the other hand, the assumption [h < n℄ isequivalent to say that every splitting tree has a 
hain of length h and therefore wemay apply Theorem 2.5 to 
on
lude that every SC spa
e X satisfying hL(X) < hhas the FDS property. �Problem 2.2. Does an SC (or KC) spa
e X satisfying hL(X) < h have the FDSproperty?In 
ontrast with Theorem C, it seems diÆ
ult to weaken KC to SC in Theo-rem D. However, another result in [9℄ enables us to say something non-trivial for
ompa
t SC spa
e. In fa
t, a simple appli
ation of Proposition 1 to Theorem 5in [9℄ leads to:Theorem 2.7. A 
ompa
t SC spa
e X satisfying jX j < n has the FDS property.As there are models of ZFC where 2t � n, the above theorem provides a
onsistent positive answer to the following:Problem 2.3. Does a 
ompa
t SC spa
e X su
h that jX j < 2t have the FDSproperty?By remaining in the 
lass of KC spa
es, Theorem D may be strengthened inanother dire
tion.Re
all that a spa
e X has property wD if for every in�nite 
losed dis
reteset A � X there exists an in�nite dis
rete family W of open sets su
h thatjW \ Aj = 1 for ea
h W 2 W . A 
ountably 
ompa
t spa
e has trivially propertywD. Consequently, 
ompa
t implies Lindel�of wD.Theorem 2.8. A KC Lindel�of wD spa
e of 
ardinality less than 2t has the FDSproperty.Proof: Let X be a Lindel�of KC and wD spa
e and assume that X does not havethe FDS property. So, we may �x a 
ountable in�nite set A � X su
h that everyin�nite subset of A has in�nitely many a

umulation points. For any � 2 t andany f 2 �2 we de�ne an in�nite set Af � A in su
h a way that:(1) if � < � and f 2 �2 then Af �� Af�� ;(2) if f; g 2 �2 and f 6= g then A�f \ A�g = ;.Put A; = A and assume to have de�ned everything for ea
h � < �. If � is alimit ordinal and f 2 �2, then take as Af any in�nite pseudointerse
tion of thefamily fAf�� : � < �g. If � = 
 +1, �x some g 2 
2 and 
hoose an a

umulationpoint x of the set Ag . As Ag 
annot be a sequen
e 
onverging to x, there existsan open neighbourhood U of x su
h that Ag nU is in�nite. We 
laim that the setC = Ag n U is 
ountably 
ompa
t. Assume the 
ontrary and let D be an in�nite
losed dis
rete subset of C. The set D is also 
losed in X and therefore propertywD ensures the existen
e of an in�nite dis
rete family W of open sets satisfyingjW \Dj = 1 for ea
h W 2 W . Now, the set SW \ Ag is an in�nite set with noa

umulation point. This 
ontradi
ts the 
hoi
e of A and the 
laim is proved. As
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es 425X is Lindel�of, the set C [A, whi
h is a
tually the union of a 
ompa
t set with a
ountable set, is Lindel�of. Sin
e C [ A is not 
losed in X , it 
annot be 
ompa
tand, being Lindel�of, it is indeed not 
ountably 
ompa
t. Let B be an in�nite
losed dis
rete subset of C [ A and observe that the 
ountable 
ompa
tness ofC implies B \ C �nite and moreover all the a

umulation points of B in X areoutside C [A. Now, to 
omplete the indu
tion it suÆ
es to de�ne Ag_0 = Ag nUand Ag_1 = B n C. By the Lindel�ofness of X , for any f 2 t2 we may pi
k apoint xf 2 TfA�f�� : � 2 tg. As the mapping f 7! xf is inje
tive, we see thatjX j � 2t. �Gryzlov's theorem that every 
ompa
t T1 spa
e of 
ountable pseudo
hara
teris of 
ardinality � 
 [11℄ leads to a rather interesting 
onsequen
e.Corollary 2.9 (
 < 2t). A Lindel�of KC and wD spa
e of 
ountable pseudo
har-a
ter has the FDS property.Proof: It suÆ
es to observe that the set A in the proof of Theorem 2.8 has
ardinality � 
 and by 
onstru
tion ea
h xf belongs to A. �The above 
orollary 
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