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A multidimensional distribution sampling theoremFraniso Javier Gonz�alez VieliAbstrat. Using Bohner-Riesz means we get a multidimensional sampling the-orem for band-limited funtions with polynomial growth, that is, for funtionswhih are the Fourier transform of ompatly supported distributions.Keywords: sampling theorem, distributions, Fourier transformClassi�ation: Primary 42B10; Seondary 46F121. IntrodutionLet S 2 L2(R) have support in [�1=2; 1=2℄ and let FS(y) := RRS(x) e�2�ixy dxbe its Fourier transform. The lassial sampling theorem states thatFS(y) = +1Xm=�1FS(m) sin�(y �m)�(y �m)uniformly on R (see [2℄ for the history of this result). When S is a distributionwith support in ℄�1=2; 1=2[, its Fourier transform, whih is still a funtion, isalso determined by its values at the points m 2 Z; but the series above does notonverge. However, it is possible to generalize the sampling formula in this ase:Walter showed in 1988 that the series is summable in Ces�aro and Abel means toFS(y) uniformly on bounded sets in R [5, Corollary 4.4, p. 1203℄, [6, Theorem,p. 353℄ ([5℄ was improved by Liu in 1996 [3, Theorem 5, p. 1155℄).Although extensions of the lassial sampling theorem to several real variablesare well known [2, pp. 76{82℄, the ase of distributions in several variables does notseem to have been muh studied, perhaps beause of the mainly one-dimensionaltools in the proofs of Walter and Liu.Using Bohner-Riesz means we prove here the following multidimensional ge-neralization.Theorem. Let V be a onvex bounded open set in Rn suh that �V = V and2V \ Zn = f0g. Let S be a distribution on Rn of order p with support in V .Then, for k > p+ (n� 1)=2,FS(y) = limN!+1 Xm2Zn; kmk�N(1� kmk2=N2)k FS(m)F�V (y �m);uniformly on every ompat set in Rn (with �V the indiator funtion of V ).



342 F.J. Gonz�alez VieliIf V is the ube ℄�1=2; 1=2[n this givesFS(y) = limN!+1 Xm2Zn; kmk�N(1� kmk2=N2)k FS(m) nYj=1 sin�(yj �mj)�(yj �mj) ;and if V is the ball B(0; 1=2) it givesFS(y) = limN!+1 Xm2Zn; kmk�N(1� kmk2=N2)k FS(m) Jn=2(�ky �mk)(2ky �mk)n=2 ;where J� is the Bessel funtion of the �rst kind and order �.The proof of the theorem is given in Setion 3. In Setion 2 we introdue usefulnotations and study in some detail the Bohner-Riesz kernel.2. PreliminariesIf f is a funtion on Rn and a 2 Rn , we write, for all x 2 Rn , f_(x) := f(�x),�af(x) := f(x � a) and ea(x) := e2�ia�x; moreover, if f is real valued we putf+(x) := max(f(x); 0). We write !n := 2�n=2=�(n=2), so that !nrn=n is theLebesgue measure (volume) of any ball B(a; r) in Rn with radius r > 0.Let now k � 0 and N > 0. Aording to [4, Theorem IV.4.15℄,F [(1� kxk2=N2)k+℄(y) = �(k + 1)�k N�k+n=2kykk+n=2 Jk+n=2(2�Nkyk)for any y 2 Rn . We now putkKnN (y) := �(k + 1)�k N�k+n=2kykk+n=2 Jk+n=2(2�Nkyk);this de�nes kKnN not only on Rn but in fat on every Rq , q 2 N. Clearly kKnN isanalyti. If we di�erentiate it in Rn , we �nd, beause (z��J�(z))0 = �z��J�+1(z),that (�=�j)kKnN (y) = �2�yj � kKn+2N (y). Hene, for every multiindex � 2 Nn0 andall y 2 Rn , D�kKnN(y) = j�jXr=0(�2�)rP�r (y) � kKn+2rN (y);where the P�r are polynomials. We immediately have P 00 = 1. Put P�r := 0 ifr < 0 or r > j�j; the P�r an be de�ned by the reurrene formulaP�+ejl (y) = yj � P�l�1(y) + (�P�l =�yj)(y):From this we get P�j�j(y) = y� and, by indution, 2(j�j � r)P�r (y) = �P�r+1(y)if r = 0; : : : ; j�j � 1. We then �nd P�j�j�l(y) = �ly�=2ll!. In partiular, P�r isa polynomial of degree � r whih only depends on � and r. Hene there exists�r > 0 suh that jP�r (y)j � �r (1 + kykr) for all y 2 Rn .



A multidimensional distribution sampling theorem 343Given any � 2 12Z�0, there exists `� > 0 suh that jJ�(x)j < `�=px for allx > 0 [7, p. 199℄. Put Lk := maxf`� : � 2 12Z�0; � � n2 + k + pg. Then, if0 � r � p, jkKn+2rN (y)j � �(k + 1)Lkp2�k+1=2 Nr�k+(n�1)=2kykr+k+(n+1)=2for all y 2 Rn n f0g. Hene, for any multiindex � with j�j � p and for ally 2 Rn n f0g, we have: jD�kKnN(y)j � C�k N j�j�k+(n�1)=2kykk+(n+1)=2 ;where the onstant C�k > 0 also depends on p. It follows that the funtion kKnNis integrable on Rn if k > n�12 , in whih ase all its derivatives are also integrableand moreover (1� kxk2=N2)k+ = FkKnN (x) for any x 2 Rn .3. ProofWe divide the proof of the theorem in seven steps.Step 1. We have just seen that (1 � kmk2=N2)k+ = FkKnN(m). MoreoverF�V (m � y) = F(�V ey)(m). Sine �V ey is integrable with ompat supportand kKnN is integrable and C1, their onvolution, kKnN ?�V ey, is integrable andC1 with, for any multiindex �, D�(kKnN ? �V ey) = (D�kKnN) ? �V ey. HeneS ? (kKnN ? �V ey) 2 C1(Rn ) and, for all a 2 Rn ,[S ? (kKnN ? �V ey)℄(a) = S(�a[kKnN ? �V ey℄_):FromF [S ? (kKnN ? �V ey)℄ = FS � F(kKnN ? �V ey) = FS � FkKnN � F(�V ey)we dedueXm2Zn(1� kmk2=N2)k+ FS(m)F�V (y �m) = Xm2ZnF [S ? (kKnN ? �V ey)℄(m):Step 2. There exists 0 � � < 1 suh that suppS � �V . We de�ne U := �V ;hene suppS � U � U � V . By assumption there exists C > 0 suh that, for all' 2 C1(Rn ),(1) jS(')j � C supj�j�p supx2U jD�'(x)j:We also de�ne Æ := d(U + V ;Zn n f0g) and � := d(U + V ; f0g); remark that Æ,� > 0. Finally, we hoose r > 0 suh that U + V � B(0; r).



344 F.J. Gonz�alez VieliStep 3. We have, for a 2 Rn ,j[S ? (kKnN ? �V ey)℄(a)j = jS(�a[kKnN ? �V ey℄_)j� C supj�j�p supx2U jD� �a[kKnN ? �V ey℄_(x)j= C supj�j�p supx2U j[(D�kKnN) ? �V ey℄(a� x)j:Take now kak � 2r, so that in partiular a � U � V � B(0; kak � r) andkak � r � kak=2. We get, for x 2 U ,j[(D�kKnN) ? �V ey℄(a� x)j = ���� ZRn(D�kKnN)(t)(�V ey)(a� x� t) dt����� Za�U�V j(D�kKnN)(t)j dt� supktk�kak�r jD�kKnN (t)j � !nrn=n� C�k � 2k+(n+1)=2 N j�j�k+(n�1)=2kakk+(n+1)=2 !nrnn :Hene, for all a 2 Rn with kak � 2r,j[S ? (kKnN ? �V ey)℄(a)j � eCpk Np�k+(n�1)=2kakk+(n+1)=2 ;where the onstant eCpk > 0 also depends on C, r and n. Sine k > p+ n�12 , k +n+12 > n and we may apply the Poisson summation formula [4, Corollary VII.2.6℄:Xm2ZnF [S ? (kKnN ? �V ey)℄(m) = Xm2Zn[S ? (kKnN ? �V ey)℄(m):Step 4. Beause k > p+ n�12 , we getlimN!+1 Xm2Znkmk�2r j[S ? (kKnN ? �V ey)℄(m)j � limN!+1 Xm2Znkmk�2r eCpk Np�k+(n�1)=2kmkk+(n+1)=2 = 0:Take now m 2 Zn with 0 < kmk < 2r. From Step 3 we know thatj[S ? (kKnN ? �V ey)℄(m)j � C supj�j�p supt2m�U�V j(D�kKnN )(t)j � !nrn=n:From Setion 2 we dedue thatsupt2m�U�V j(D�kKnN )(t)j � C�k N j�j�k+(n�1)=2Æk+(n+1)=2 :



A multidimensional distribution sampling theorem 345Therefore limN!+1 Xm2Znnf0g[S ? (kKnN ? �V ey)℄(m) = 0;uniformly (in y) on the whole Rn .Step 5. We must now study the limitlimN!+1[S ? (kKnN ? �V ey)℄(0) = limN!+1S([kKnN ? �V ey℄_):We use an auxiliary funtion  2 C1(Rn ) with ompat support suh that  = 1on V and 0 �  � 1. Let W = B(0; �) � supp . We have 0 �  � �V � 1 and( � �V )(u) = 0 if u 2 V [W . Then, for all x 2 U ,jD�[kKnN ? ( � �V ) ey℄_(x)j = ���� ZRnD�kKnN (t) � f( � �V ) eyg(�x� t) dt����� Zt2�U�(WnV ) jD�kKnN(t)j dt;and we getS([kKnN ? ( � �V ) ey℄_)j � C supj�j�p supx2U jD�[kKnN ? ( � �V ) ey℄_(x)j� C � vol(U + (W n V )) � supj�j�p C�k N j�j�k+(n�1)=2�k+(n+1)=2 :Hene limN!+1S([kKnN ? ( � �V ) ey℄_) = 0uniformly (in y) on all Rn .Step 6. We will now show thatlimN!+1S([kKnN ?  ey℄_) = S([ ey℄_)uniformly (in y) on every ompat set L in Rn . In view of (1) it will suÆe toprove that, for every multiindex � with j�j � p,limN!+1 supx2Rn j[D�(kKnN ?  ey)�D�( ey)℄(x)j = 0;uniformly in y 2 L. But sine D�(kKnN ?  ey) = kKnN ? D�( ey), we only haveto show that, given any ' 2 C1(Rn ) with ompat support,limN!+1 supx2Rn j[(kKnN ? ' ey)� ' ey℄(x)j = 0;



346 F.J. Gonz�alez Vieliuniformly in y 2 L. Nowsupx2Rn j[(kKnN ? ' ey)� ' ey℄(x)j= supx2Rn jFf(1� ktk2=N2)k+ � F(' ey)�F(' ey)g(x)j� ZRn j(1� ktk2=N2)k+ � 1j � jF'(t+ y)j dt;whih tends to 0 uniformly in y 2 L whenN ! +1 by the dominated onvergenetheorem, sine F(') vanishes at in�nity.Step 7. We dedue from the last two steps thatlimN!+1[S ? (kKnN ? �V ey)℄(0) = S([ ey℄_)uniformly (in y) on every ompat set in Rn . NowS([ ey℄_) = S(x 7!  (�x) e2�i(�xjy)) = S(x 7! e�2�i(xjy)) = FS(y);sine  = 1 on V = �V � U � suppS. Finally we alulate:limN!+1 Xm2Zn(1� kmk2=N2)k+ FS(m)F�V (y �m)= limN!+1 Xm2ZnF [S ? (kKnN ? �V ey)℄(m)= limN!+1 Xm2Zn[S ? (kKnN ? �V ey)℄(m)= limN!+1 [S ? (kKnN ? �V ey)℄(0)= FS(y);uniformly on every ompat set in Rn , and the proof is omplete.Remarks. 1. The theorem is also true if we use (1� kmk=N)k+ instead of (1 �kmk2=N2)k+ ; however, the asymptoti estimate of D�F [(1 � kxk=N)k+℄ is morediÆult to obtain (see [1℄).2. The theorem is false if we only assume suppS � V . For example, whenn = 1 and V =℄�1=2; 1=2[, S = Æ�1=2 � Æ1=2 (where Æq is the Dira measure at q)gives FS(y) = 2i sin�y, whih is null on every m 2 Z.3. The theorem is false if we only assume k = p + (n � 1)=2: onsider theounter-example on R of S = Æ(l)0 (l 2 Z�0).Aknowledgments. We would like to thank the referee for the suggested im-provements.
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