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A multidimensional distribution sampling theorem

FrANCISCO JAVIER GONZALEZ VIELI

Abstract. Using Bochner-Riesz means we get a multidimensional sampling the-
orem for band-limited functions with polynomial growth, that is, for functions
which are the Fourier transform of compactly supported distributions.
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1. Introduction

Let S € L*(R) have support in [-1/2,1/2] and let FS(y) := [, S(z) e™>™2¥ dg
be its Fourier transform. The classical sampling theorem states that

sm7r(y m)
Z FS(m 7@, )

m=—00
uniformly on R (see [2] for the history of this result). When S is a distribution
with support in ]—1/2,1/2[, its Fourier transform, which is still a function, is
also determined by its values at the points m € Z; but the series above does not
converge. However, it is possible to generalize the sampling formula in this case:
Walter showed in 1988 that the series is summable in Cesaro and Abel means to
FS(y) uniformly on bounded sets in R [5, Corollary 4.4, p.1203], [6, Theorem,
p.353] ([5] was improved by Liu in 1996 [3, Theorem 5, p. 1155]).

Although extensions of the classical sampling theorem to several real variables
are well known [2, pp. 76-82], the case of distributions in several variables does not
seem to have been much studied, perhaps because of the mainly one-dimensional
tools in the proofs of Walter and Liu.

Using Bochner-Riesz means we prove here the following multidimensional ge-
neralization.

Theorem. Let V be a convex bounded open set in R” such that —V =V and
2V Nn7zZ™ = {0}. Let S be a distribution on R" of order p with support in V.
Then, for k>p+ (n—1)/2,

FS()= Jim > (1= |ml*/N*)FFS(m) Fxv(y - m),
mez”, |m||<N

uniformly on every compact set in R* (with yy the indicator function of V).
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If V is the cube |—1/2,1/2[" this gives

n

— 1 1 _ N2 . y] B m]) .
FSW = Jim, 3 (-l st [ 25

and if V is the ball B(0,1/2) it gives

Inj2(mlly —mi])

FS(y)= lim Z (1—||m||2/N2) FS(m )W’

N—=+o00
meZ™, ||m||<N
where J, is the Bessel function of the first kind and order v.
The proof of the theorem is given in Section 3. In Section 2 we introduce useful
notations and study in some detail the Bochner-Riesz kernel.

2. Preliminaries

If f is a function on R® and a € R?, we write, for all z € R*, fV(z) := f(—=x),
of(x) = f(z — a) and e,(x) := €>™%%; moreover, if f is real valued we put
fi(z) := max(f(z),0). We write w, := 27"/2/T(n/2), so that w,r"/n is the
Lebesgue measure (volume) of any ball B(a,r) in R* with radius r > 0.

Let now k& > 0 and N > 0. According to [4, Theorem IV.4.15],

[(k 4 1) N—kt+n/2

FIO = ll=)*/N*)5](y) = TEE Tisn/2 (27 N|ly])

ok
for any y € R". We now put

[(k+ 1) N—kt+n/2
PECE Jtn/2 (20N [|yl]);

kKJT\Lf (y) = ok
this defines , K% not only on R” but in fact on every R?, ¢ € N. Clearly , K7 is
analytic. If we differentiate it in R, we find, because (z ”J (2)) = —27"Jyy1(2),
that (0/0;)k KR (y) = —2my; -kK]’(,“(y). Hence, for every multiindex o € Njj and
all y € R”,

la|

Dy KR(y) =Y (=2m) PP (y) - kK57 (y),

r=0

where the P® are polynomials. We immediately have Py = 1. Put P® := 0 if

r

r < 0 or r > |al; the P® can be defined by the recurrence formula

P (y) = y; - P2y (y) + (0P /0y;) (1)

From this we get P (y) = y* and, by induction, 2(Ja| — r)P(y) = AP, (y)
if r=0,...,]a| = 1. We then find P% _,(y) = Aly® /2!, In particular, P2 is
a polynomlal of degree < r which only depends on a and r. Hence there exists

¢ > 0 such that |P*(y)| < (1 + ||y||") for all y € R™.
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Given any v € 1Z>q, there exists £, > 0 such that |J,(z)| < £,//z for all
> 0[7, p.199]. Put Ly := max{{, : v € 1Z>o, v < 2 4+ k + p}. Then, if
0<r<p,

[(k+ 1)Ly Nr—k+t(=1)/2
V2rkt1/2 ly||rth (/2

KR (y)] <

for all y € R™ \ {0}. Hence, for any multiindex a with |a] < p and for all
y € R \ {0}, we have:
N\oz\fk+(n71)/2

|D“hK%@0\SC$-ﬂmF:a:ﬁﬁ—=

where the constant C} > 0 also depends on p. It follows that the function Ky
is integrable on R™ if k& > ”T_l, in which case all its derivatives are also integrable
and moreover (1 — ||z|>/N?)% = Fy K% (z) for any z € R".

3. Proof
We divide the proof of the theorem in seven steps.

Step 1. We have just seen that (1 — [|m||?/N?)% = FyKy%(m). Moreover
Fxv(m —y) = F(xvey)(m). Since xv e, is integrable with compact support
and ;K is integrable and C'*°, their convolution, , K5 x xv €y, is integrable and
C* with, for any multiindex a, D*( KN * xvey,) = (D*,KR) * xv e,. Hence
S* (kKR *xv ey) € C®(R") and, for all a € R,

[S % (kKN * xv ey)](a) = S(Ta[k K * xv €]").
From

FIS*(kKy*xvey))=FS -FKy*xvey) =FS - FrKy-F(xvey)

we deduce
> (= |Im|*/N*)E FS(m) Fxv(y —m) = Y FIS* (K f *xv e,)](m).
mezZn mezn

Step 2. There exists 0 < A < 1 such that supp S C AV. We define U := AV;
hence supp S C U C U C V. By assumption there exists C > 0 such that, for all
¢ € C*(R"),

(1) 1S(¢)| < C sup sup [D%p(z)|.
la|<p 2z€U

We also define 6§ := d(U + V,Z"\ {0}) and 5 := d(U + V¢,{0}); remark that &,
n > 0. Finally, we choose r > 0 such that U +V C B(0,r).
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Step 3. We have, for a € R",

S* KR+ xvey)l(a) = [S(TalsKR +xvey,]Y)l
C sup sup |[D* 7, [k K} x xvey]Y ()]
lal<p zeU
= C sup sup [[(D*KR) * xv &y](a — z)].
lal<p zeU

AN

Take now [lal| > 2r, so that in particular a — U —V C B(0,|[al| — r)¢ and
llal]| — 7 > ||a||/2. We get, for z € U,

(kR exvele-a)| = [ (DUKR)O (v e)e -2 -t ds

IA

[ e a

U-v
< sup |D¥ KR (t) - war"/n
ltl=llall—r
N\a\7k+(nfl)/2 wnr"

a  ok+(n+1)/2
< Ci-2 ||lal[k+(n+1)/2  p

Hence, for all a € R® with [|a|| > 2r,

~  Np—k+(n-1)/2

I[S * (KR * xv ey)](a)] < CF a7z

where the constant 6,’: > 0 also depends on C, r and n. Since k > p + ”T_l, k+
”T“ > n and we may apply the Poisson summation formula [4, Corollary VII.2.6]:

Y FIS*(eERy xxve,)l(m) = > [S* (kKR * xve,)](m).

meEZ™ meZ™

Step 4. Because k > p + ”T_l, we get

. NPp—k+(n—1)/2

lim > 18 (KX *xv ey)](m)] < Tim > ckW:o.

ezn menn

[fm | >2r [fm | >2r

Take now m € Z" with 0 < ||m|| < 2r. From Step 3 we know that

[S* (kKN * xv ey)](m)| < C sup  sup  [(D*rKR)(1)] - wnr™/n.

a|<p tem-U-V

From Section 2 we deduce that

N . N N\a\7k+(nfl)/2
sup _ [(D*eKR) ()| < OF —mane—
tem-U-V
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Therefore

Jim S (SR o e)m) =0,
meZ™\{0}
uniformly (in y) on the whole R™.

Step 5. We must now study the limit

li K3} = 1l K3} V).

N [S* (KR xv e)](0) = (lim  S([RKN *xv ey]")

We use an auxiliary function ¢ € C°*°(R") with compact support such that ¢y =1
onV and 0 < ¢ < 1. Let W = B(0,p) D supptp. We have 0 < ¢ — xyv <1 and
(¢ —xv)(u) =0ifu € VUWE. Then, for all z € U,

- D KR (1) -{(¥ —xv)ey}(—z —t)dt

D[k KRy (v — xv) ey]” ()]

| D K7 (t)] dt;

IA
Gl
E
—
=

and we get
S(kEx* (@ —xv)e,]Y)] < C sup sup D[R KR * (¥ — xv) ey (2)]
a|lSp xzeU
o Nlal=k+(n-1)/2
< C-vollU+ (W\V)): sup CF

o< phraD2

Hence

m S(KR (¢ = xv)e]¥) =0

uniformly (in y) on all R™.

Step 6. We will now show that

Jim SRR xte,]¥) = S e,])

uniformly (in y) on every compact set L in R™. In view of (1) it will suffice to
prove that, for every multiindex a with |a| < p,

N1_1>n+100 ms;ﬂg)" [D*(rKx xpey) — D*(Pey)](x)| = 0,

uniformly in y € L. But since D*(, K3 * ¢ e,) = K « D*(¢e,), we only have
to show that, given any ¢ € C*°(R") with compact support,

lim su K3 xpe,) —pe,|(z)] =0,
Jim_ s (K7 > 0e,) = 06, (@)
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uniformly in y € L. Now

sup |[(x K% *pey) — pey](@)|
zER™

= sup [F{(1= /N2 - Floe,) - Fpe,)Ha)
< [ Q= 1PN = 1] [Ftt+ )

which tends to 0 uniformly in y € L when N' — +oc by the dominated convergence
theorem, since F(p) vanishes at infinity.

Step 7. We deduce from the last two steps that

Jlim (8% KR+ xv e,))(0) = S(ie,]Y)

uniformly (in y) on every compact set in R". Now

Y

S(e,]") = 8(  v(=2) 2T = §(z s 02 = F5(y)
since ) =1onV = -V DU D suppS. Finally we calculate:

yim %n(l — [lm|[*/N?)§ FS(m) Fxv(y —m)

= NLHEOO %n FISx (kK x xv €y)](m)

= i 3 (8 (R e e, im)
ASYAL

= NLHEOO [S* (1 K *xv ey)](o)

= FS(y),
uniformly on every compact set in R", and the proof is complete.

Remarks. 1. The theorem is also true if we use (1 — ||m||/N)% instead of (1 —
lm||>/N?)% ; however, the asymptotic estimate of D*F[(1 — ||z||/N)%] is more
difficult to obtain (see [1]).

2. The theorem is false if we only assume supp S C V. For example, when
n=1andV =]-1/2,1/2[, S = 6_1/5 — 61/ (where J, is the Dirac measure at q)
gives FS(y) = 2isinmy, which is null on every m € Z.

3. The theorem is false if we only assume & = p + (n — 1)/2: consider the
counter-example on R of S = 6(()” (I € Z>o).
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