
Comment.Math.Univ.Carolin. 52,3 (2011) 445{461 445
The regular topology on C(X)Wolf Iberkleid, RamiroLafuente-Rodriguez, Warren Wm. MGovern�Abstrat. Hewitt [Rings of real-valued ontinuous funtions. I., Trans. Amer.Math. So. 64 (1948), 45{99℄ de�ned the m-topology on C(X), denoted Cm(X),and demonstrated that ertain topologial properties ofX ould be haraterizedby ertain topologial properties of Cm(X). For example, he showed that X ispseudoompat if and only if Cm(X) is a metrizable spae; in this ase the m-topology is preisely the topology of uniform onvergene. What is interestingwith regards to the m-topology is that it is possible, with the right kind ofspae X, for Cm(X) to be highly non-metrizable. E. van Douwen [Nonnormalityof spaes of real funtions, Topology Appl. 39 (1991), 3{32℄ de�ned the lass ofDRS-spaes and showed that if X was suh a spae, then Cm(X) satis�ed theproperty that all ountable subsets of Cm(X) are losed. In J. Gomez-Perez andW.Wm. MGovern, The m-topology on Cm(X) revisited , Topology Appl. 153,(2006), no. 11, 1838{1848, the authors demonstrated the onverse, ompletingthe haraterization. In this artile we de�ne a �ner topology on C(X) basedon positive regular elements. It is the authors' opinion that the new topology isa more well-behaved topology with regards to passing from C(X) to C�(X). Inthe �rst setion we ompute some ommon ardinal invariants of the preedingspae Cr(X). In Setion 2, we haraterize when Cr(X) satis�es the propertythat all ountable subsets are losed. We all suh a spae for whih this happensa weak DRS-spae and demonstrate that X is a weak DRS-spae if and only if�X is a weak DRS-spae. This is somewhat surprising as a DRS-spae annot beompat. In the third setion we give an internal haraterization of separableweak DRS-spaes and use this to show that a metrizable spae is a weak DRS-spae preisely when it is nowhere separable.Keywords: DRS-spae, Stone-�Ceh ompati�ation, rings of ontinuous fun-tions, C(X)Classi�ation: Primary 54C35; Seondary 54G991. IntrodutionGiven a topologial spae X we let C(X) denote the set of real-valued ontin-uous funtions de�ned on X . It is well-known that C(X) is an R-algebra underpointwise operations of addition, multipliation, and salar multipliation andthat there are several topologies on C(X) that one may onsider. The topology ofpointwise onvergene, the topology of uniform onvergene, and the m-topologyare but three examples. In this artile we are interested in a ring topology whih� Corresponding author.



446 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernis in the same vein as the m-topology but �ner. Our goal will be to show thatthe two topologies are not only di�erent in general but also have di�erent alge-brai properties. We all this topology the r-topology sine it is based on regularelements (i.e. non zero-divisors). Reall that eah of the uniform topology andm-topology takes as a base the olletion of sets of the formB(f; e) = fg 2 C(X) : jf(x)� g(x)j < e(x);8x 2 Xgwhere f 2 C(X) and e is from a pre-de�ned set. In partiular to obtain thetopology of uniform onvergene we allow e to be any stritly positive onstantfuntion. To get the m-topology, e is allowed to be any positive multipliativeunit. Furthermore, the r-topology is obtained by allowing e to be any positiveregular element of C(X). For more information on the m-topology the reader isurged to read [10℄ and problems 2N and 7Q of [6℄.For the ease of the reader we reall some basi de�nition from the theory ofC(X). Our standard referenes for rings of ontinuous funtions and topologialspaes are [6℄ and [3℄.De�nition 1.1. Let f 2 C(X). Set Z(f) = fx 2 X : f(x) = 0g and let oz(f)be its set-theoreti omplement. We all Z(f) the zeroset of f and oz(f) theozeroset of f , respetively. By a zeroset (ozeroset) of X we mean a set of theform Z(f) (oz(f)) for some f 2 C(X).Units and regular elements of C(X) are haraterized topologially in the fol-lowing way.(1) For f 2 C(X), f is a unit of C(X) if and only if Z(f) = ; if and only ifoz(f) = X .(2) For f 2 C(X), f is a regular element of C(X) if and only if RX Z(f) = ;if and only if oz(f) is a dense subset of X .We let C(X)+ = ff 2 C(X) : f(x) � 0 for all x 2 Xg and all this the set ofpositive elements of C(X). When f(x) > 0 for all x 2 X , we will say f is stritlypositive or is a positive unit . Set U(X)+ = ff 2 C(X) : f(x) > 0 for all x 2 Xg,the set of positive multipliative units of C(X). De�ner(X)+ = ff 2 C(X)+ : f is a regular element of C(X)g;the set of positive regular elements of C(X). It is straightforward to hek thatif r; s 2 r+(X), then so is r ^ s.All topologial spaes onsidered in this artile shall be assumed tobe Tyhono�, that is, Hausdor� and ompletely regular. For suh a spae X ,we shall denote its Stone-�Ceh ompati�ation by �X .Formally, the r-topology on C(X) is the one obtained by taking sets of theform R(f; r) = fg 2 C(X) : jf(x) � g(x)j < r(x);8x 2 oz(r)g



The regular topology on C(X) 447for f 2 C(X) and r 2 r+(X) as a base for the topology. (Note that if g 2 R(f; r),then by the ontinuity of r and density of oz(r) we have g(x) = f(x) for allx 2 Z(r).)Proposition 1.2. For any spae X , the olletion fR(f; r) : f 2 C(X); r 2r(X)+g is a neighborhood system. Consequently, the rule R(f; r) de�nes a basefor a topology on C(X).Proof: We supply a sketh. For f 2 C(X), let R(f) = fR(f; r)gr2r(X)+ . Ob-serve the following. 1) for eah f 2 C(X), R(f) 6= ;. 2) If r; s 2 r(X)+, then sois r ^ s 2 r(X)+ and that R(f; r ^ s) � R(f; r) \R(f; s). 3) Suppose g 2 R(f; r).Set s = r� jf � gj and observe that oz(r) = oz(s), whene s 2 r(X)+. Next, itis straightforward to hek that R(g; s) � R(f; r).We have demonstrated that the olletion fR(f; r) : f 2 C(X); r 2 r(X)+gsatis�es the onditions (BP1){(BP3) of [3, Setion 1.1℄. Consequently, said ol-letion is a neighborhood system. �Sine U(X)+ � r+(X) we onlude that the r-topology is �ner than the m-topology. We leave it to the interested reader to hek that the r-topology makesC(X) into a topologial ring, i.e., +; � are ontinuous operations, though, in gen-eral and not unlike the m-topology, the r-topology does not make C(X) into atopologial algebra. (For more information on this fat the reader is enouragedto read [11℄.)We will use the notation Cr(X) to denote C(X) equipped with ther-topology.We onlude this setion with a few theorems answering the questions of o-inidene of the three topologies de�ned above. First we give a few topologialde�nitions.De�nition 1.3. Reall that a spae X is alled pseudoompat if every elementof C(X) is bounded, that is, for eah f 2 C(X) there is a natural number M forwhih jf(x)j < M for all x 2 X . The olletion of bounded ontinuous funtionson X will be denoted by C�(X). (Pseudoompatness is the same as sayingC�(X) = C(X).) Obviously ompat spaes are pseudoompat. The standardexample of a nonompat pseudoompat spae is the olletion of ountableordinals under the order topology. (See Chapter 5 of [6℄.)De�nition 1.4. Reall that the spae X is alled a Freh�et-Urysohn spae ifwhenever p 2 lX A then there exists a sequene fangn2N � A suh that limn!1 an =p. A more general onept is that of a ountably tight spae. For a point p 2 X ,the tightness of p is de�ned to be the least ardinal � suh that whenever p 2lX ArA there is an S � A of ardinality � for whih p 2 lX S. The spae X isalled ountably tight if the tightness at eah point is �0.The spae � from [6℄ is an example of a ountable spae, and hene ountablytight, that is not a Freh�et-Urysohn spae.



448 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernTheorem 1.5 ([2, Corollary 2.5℄). For a spae X the following are equivalent:(1) X is pseudoompat;(2) Cm(X) = Cu(X);(3) Cm(X) is metrizable;(4) Cm(X) is �rst ountable;(5) Cm(X) is a Freh�et-Urysohn spae;(6) Cm(X) is a ountably tight spae.De�nition 1.6. In [12℄ the author de�ned a spae X to be an almost P -spaeif every nonempty GÆ-set of X has nonempty interior. We presently reall someequivalent onditions for a spae X to be an almost P -spae.Proposition 1.7 ([12, Proposition 1.1℄). For a Tyhono� spae X , the followingstatements are equivalent.(1) X is an almost P -spae.(2) Eah non-empty zeroset of X has non-empty interior.(3) Eah zeroset of X is a regular losed subset of X .Moving from global to loal we say p 2 X is an almost P -point if every GÆ-setof X ontaining p has nonempty interior. We shall have ause to use the set ofalmost P -points of X ; denote the set of almost P -points of X by a(X).As for examples of P -spaes it is the ase that if X is a (non-ompat) loallyompat and realompat spae, then �X rX is a ompat almost P -spae (seeLemma 3.1 of [4℄).In terms of the elements of C(X), X is an almost P -spae if and only if everyregular element of C(X) is a unit. This yields one diretion of our next theorem.Theorem 1.8. Let X be a Tyhono� spae. The following are equivalent.(i) Cr(X) = Cm(X).(ii) X is an almost P -spae.(iii) r(X)+ = U(X)+.Proof: The proof that (ii) and (iii) are equivalent is straightforward. Siner(X)+ and U(X)+ are the sets used to reate the r-topology and m-topology,respetively, we have that (iii) implies (i).Next, if X is not an almost P -spae then there is a nonempty zeroset, say Z(f),whose interior is empty. Now, Z(f) = Z(jf j) and so without loss of generalitywe assume that f � 0 and hene f 2 r(X)+. Consider R(0; f). If (i) holds thenthere is some g 2 U(X)+ suh that R(0; g) � R(0; f). Let p 2 Z(f). Then0 < g(p)2 < f(p) = 0;a ontradition. Therefore, (i) implies (ii). �We are now able to prove our main result of this setion.



The regular topology on C(X) 449Theorem 1.9. For any Tyhono� spae X , the following are equivalent.(i) Cr(X) is �rst ountable.(ii) Cr(X) is a Freh�et-Urysohn spae.(iii) Cr(X) is ountably tight.(iv) Cr(X) = Cu(X).(v) X is a pseudoompat, almost P -spae.(vi) �X is an almost P -spae.(vii) Cr(�X) = Cu(�X).Proof: We start by showing that (i), (ii), and (iii) are all equivalent. It suÆesto show that (iii) ) (i). Notie that 0 2 l r(X)+ so that by (iii) we an �nd aountable sequene, say frngn2N for whih 0 2 lfrngn2N. With not too muhe�ort we an suppose that rn � rn+1 for all natural n. We laim that the olletionfR(0; rn)gn2N is a base of neighborhoods for 0. To see this let r 2 r(X)+,then there is some rn 2 R(0; r). By design it follows that R(0; rn) � R(0; r).Therefore, the laim is true and so by translation Cr(X) is �rst ountable.From Theorems 1.5 and 1.8 we gather that (iv) and (v) are equivalent. That(iv) ) (i) is patent.Next we prove that (i) implies (iv). So suppose that Cr(X) is �rst ountable.Now, if we an show that X is an almost P -spae, then it will follow from thefats that Cr(X) = Cm(X), and then by Theorem 1.5 X is pseudoompat. Bymeans of ontradition suppose that p 2 X is not an almost P -point and letr 2 r(X)+ for whih r(p) = 0. Next, let frng � r(X)+ be a sequene whihgenerates a ountable base of neighborhoods for 0. We might as well assume thatfor all natural n, 0 � rn+1 � rn � r � 1:Notie that p 2 Z(r) � Z(rn) for eah n. For eah n let On = r�1((0; 1n ))and observe that eah of these sets is nonempty. Otherwise, it would follow thatZ(r) is lopen ontraditing that r is regular. Furthermore, the regularity of rnimplies that oz(rn) is a dense open set. Therefore, we may hoose a sequenefxngn2N so that xn 2 oz(rn)\On. Moreover, we an selet the sequene so thatr(xn) > r(xn+1). Thus (i) implies (v) and so (i) through (v) are equivalent.Next, hoose a sequene of positive real numbers fÆngn2N suh that Æn+1 < Ænand that Æn < rn(xn)2 :Let h 2 C([0; 1℄) suh that 0 � h � 1, h(r(xn)) = Æn, and Z(h) = f0g. Setf = h Æ r and observe that f 2 C(X)+ and Z(f) = Z(r), hene f 2 r(X)+.Finally, for eah n we have that0 < f(xn) = (h Æ r)(xn) = Æn < rn(xn)whene R(0; rn) * R(0; f) for all n, ontraditing that the olletion of R(0; rn)is a base around 0.



450 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernFinally, from what we have just proved it follows that (vi) and (vii) are equiv-alent. Proposition 2.2 of [12℄ states that (v) and (vi) are equivalent. �De�nition 1.10. For a topologial spae X and a point p 2 X reall that theharater of the point p is�(p;X) = �0 +minfjUj : U is a base of neighborhoods for pg:The harater of X is de�ned as�(X) = supf�(p;X) : p 2 Xg:In [2℄ the authors determined the harater of the spae Cm(X). There theyutilized the dominating number of a spae, whih is de�ned as follows. A subsetF of C(X) is alled dominating if for every g 2 C(X) there exists an f 2 F suhthat g � f . Then the dominating number of X isdn(X) = �0 +minfjFj : F is a dominating subset of C(X)g:When X = N, then we write d = dn(N). It is known that �1 � d � .Theorem 1.11 ([2, Theorem 2.3℄). Let X be any spae. Then �(Cm(X)) =dn(X).Corollary 1.12. Suppose X is an almost P -spae. Then �(Cr(X)) = dn(X). Inpartiular, �(Cr(N)) = d.To determine the harater of Cr(X) we need to reall the de�nition of theolletion of almost real-valued ontinuous funtions de�ned on the spae X . Thespae R = R [ f�1g is the two-point ompati�ation of the real numbers. Theolletion of almost real-valued ontinuous funtions on X is de�ned asD(X) = ff : X ! R : f�1(R) is a dense subset of Xg:In general, D(X) is not losed under sums or produts but it is always a lattie.(For a more detailed disussion of D(X) see [1℄.) We all a subset F of D(X)D-dominating if for every g 2 D(X) there exists an f 2 F suh that g � f . Wede�ne the D-dominating number of X as follows:dnD(X) = �0 +minfjFj : F is a D-dominating subset of D(X)g:Proposition 1.13. Let X be a any Tyhono� spae. Then�(Cr(X)) = dnD(X):Proof: The proof is similar to that of [2, Theorem 2.3℄. The only thing oneneeds to hek is that r 2 r(X)+ if and only if 1r 2 D(X)+. �We would like a more internal haraterization (relative to X) of the haraterof Cr(X). We will not be able to do this exatly but we shall be able to give



The regular topology on C(X) 451an appropriate upper and lower bound for the harater. Denote the olletionof nowhere dense zerosets of X by Znd[X ℄, that is, let Znd[X ℄ = fZ(f) : f 2r(X)+g. Observe that Znd[X ℄ is an ideal of the lattie of all zerosets of X andthat SfZ 2 Znd[X ℄g is preisely the set of non-almost P -points. Letz(X) = minf� : � is the ardinality of a generating set for Znd[X ℄g:A subolletion Z is a generating set for Znd[X ℄ if for every Z 2 Znd[X ℄ thereis some Z 0 2 Z suh that Z � Z 0. A generating set of minimal ardinality will bealled a minimal generating set . It is straightforward to hek that all minimalgenerating sets have the same ardinality. Next, let F be any olletion of denseozerosets of X and de�nednX(F) = �0 + supfdn(C) : C 2 Fg:When Z � Znd[X ℄ we de�ne FZ = fX r Z : Z 2 Zg. A generalization ofCorollary 1.12 is given by the following proposition.Proposition 1.14. Suppose X has the property that Znd[X ℄ has a maximumelement, say Z. Then Z = X r a(X) is the olletion of non almost P -pointsof X . Furthermore, �(Cr(X)) = dn(a(X)):Proof: By hypothesis, there is a ' 2 r(X)+ (with 0 � ' � 1) suh that Z(')suh that Z(') is the largest element of Znd[X ℄. Sine Z(') is nowhere denseand by the de�nition of almost P -point it follows that Z(') � X r a(X). If x isnot an almost P -point, then there is some Z 2 Znd[X ℄ suh that x 2 Z. Now,Z [ Z(') 2 Znd[X ℄ and therefore Z � Z('). Therefore, Z(') = X r a(X) whihdemonstrates the �rst statement.Let C = fR(0; ri)gi2I be a base of neighborhoods around 0. Set T = fr 2r(X)+ : R(0; r) 2 Cg and then T 0 = fr^' : r 2 Tg. Observe that the ardinalityof T 0 is no greater than that of T . Next, let C0 = fR(0; r)gr2T 0 . C0 is also a baseof neighborhoods of 0 and its ardinality is no greater than that of the originalbase. Also, for every r 2 T 0 we have Z(r) = Z(').It is obvious that the olletion F = f 1r : r 2 T 0g is a subset of C(a(X)) ofardinality equal to that of T 0. We laim that F is in fat a dominating set forC(a(X)). Let g 2 C(a(X)) and without loss of generality we assume that g � 1' .It follows then that the element 1g 2 C(a(X)) an be extended to all of X ; namelyde�ne 1g (x) = 0 for all x 2 X r a(X). Moreover, 1g 2 r(X)+ and so there is somer 2 T 0 suh that r � 1g . Hene g � 1r and so F is a dominating set for C(a(X)).We onlude that �(Cr(X)) � dn(a(X)).The reverse inequality is obtained in the reverse manner used above. Beginwith a dominating set F for C(a(X)) and assume that eah member of F is greaterthan or equal to 1' . We leave it to the interested reader to show that the olletionfR(0; 1f )gf2F is a base of neighborhoods around 0. �



452 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernExample 1.15. Let X be an almost disrete spae, that is, X has exatly onenon-isolated point, say X = D [ f�g. If � is not an almost P -point of X , thenZnd[X ℄ = f;; f�gg. By the previous proposition it follows that �(Cr(X)) =dn(D). In partiular, �(Cr(�N)) = dn(N) = d = �(Cr(N)):We are now in position to give an upper and lower bound for the harater ofCr(X) using our new ardinal funtion.Theorem 1.16. Let Z be any minimal generating set for Znd[X ℄. Thenz(X) � �(Cr(X)) � z(X) � dnX (FZ):Proof: Let C be a base around 0 and suppose that � = jCj = �(Cr(X). Withoutloss of generality, we an assume that every element of C has the form R(0; r)for some r 2 R(X)+. Furthermore, we an enumerate C as a �-sequene, sayC = fR(0; r�)g�<�. Let Z = fZ(r�) : � < �gand note that Z � Znd[X ℄. Let Z(r) 2 Znd[X ℄. Then there exists a � < �suh that R(0; r�) � R(0; r) and so therefore Z(r) � Z(r�). It follows that theolletion Z is a generating set for Znd[X ℄ and so z(X) � � = �(Cr(X)).Next, let Z be as in the hypothesis of the theorem. If we lose up Z under�nite unions then the ardinality will not hange. Therefore, we assume that Z islosed under �nite unions. For eah Z 2 Z let Z = Z(�Z) where �Z 2 r(X)+ and0 � �Z � 1. Let FZ be a minimal dominating set for C(oz(�Z)). Without lossof generality we assume that every f 2 F satis�es f � 1�Z . It is straightforwardto hek that 1f 2 C(X) and that Z( 1f ) = Z(�Z), hene 1f 2 r(X)+. Next, de�neBZ = fR(0; 1f )gf2FZ .We laim that B = [Z2Z BZis a base of neighborhoods of 0 in Cr(X). To see this let r 2 r(X)+ and onsiderR(0; r). Now sine Z is a generating set for Znd[X ℄ it follows that there areZ1; � � � ; Zn 2 Z suh that Z(r) � Z1 [ � � � [Zn. Sine Z is losed under unions itfollows that Z1 [ � � � [ Zn = Z 2 Z . At this point we know that R(0; r ^ �Z) �R(0; r) and so without loss of generality we suppose that Z(r) = Z. Therefore,sine 1r 2 C(oz(�z)) we an �nd an element f 2 FZ suh that 1r � f and thus,1f � r with Z( 1f ) = Z(�Z) = Z(r). It follows then that R(0; 1f ) � R(0; r).Therefore, B is a base of neighborhoods of 0 in Cr(X), whene �(Cr(X)) �z(X) � dnX(FZ). �In Example 1.15 we omputed �(Cr(X)) for some spei� spaes. We wouldonsider more examples. In order to alulate �(Cr([0; 1℄) we �nd it useful toremind the reader of Martin's Axiom.



The regular topology on C(X) 453De�nition 1.17. A spae X is said to satisfy the ountable hain ondition(or ) if there is no unountable family of pairwise disjoint non-empty opensubsets of X .Reall that Martin's Axiom states that if X is a ompat Hausdor� whihsatis�es the , then X is not the union of � or fewer nowhere dense subsets forany � < .The proof of the next lemma is straightforward and left to the interested reader.Lemma 1.18. X has no almost P -points if and only if Znd[X ℄ overs X .Proposition 1.19 (MA). Let X be a ompat Hausdor� spae with no almostP -points and satisfying . Then z(X) = �(Cr(X)). In partiular, if X is eitherthe Cantor set or the unit interval, then �(Cr(X)) = .Proof: By assumption X has no almost P -points and so by Lemma 1.18 theolletion of nowhere dense zerosets overs X . Let Z be a minimal generating setfor Znd[X ℄ and notie that Z is a over of X . Combining together X satisfying and Martin's Axiom we onlude that Z has ardinality no smaller than ,whene z(X) � .Now any ozeroset of any spae is an F�-set and so in this ase, sine X isompat, every ozeroset of X is loally ompat and �-ompat. By [2, Propo-sition 2.2℄ we have that dn(C) = d for every proper dense ozeroset C. Thus,dnX (FZ) = d for any nontrivial olletion of nowhere dense zero sets Z . Sined �  it follows from Theorem 1.16 that z(X) = �(Cr(X)). �2. When Cr(X) is a weak P -spaeWe now turn our attention to determining when Cr(X) is a weak P -spae.Reall that a weak P -spae is a spae for whih every ountable subset is losed.It follows that a metrizable weak P -spae is disrete.Reall from [15℄ that a spae X is alled a disrete re�ning sequene spae orDRS-spae for short, if for every sequene of nonempty open sets, say fOngn2N,there is a disrete sequene of nonempty open sets, say fVngn2N, suh that Vn �On for eah n 2 N. (Note that we do not require that On 6= Om for n 6= m. Bya disrete sequene fVngn2N we mean that eah point of x has a neighborhoodwhih intersets at most one of the Vn.)Van Douwen was interested in onstruting spaesX for whih Cm(X) is a weakP -spae. This notion led him to the de�nition of a DRS-spae. Van Douwen wasable to prove that if X is a DRS-spae, then Cm(X) is a weak P -spae. In [7℄ theauthors prove the onverse. Our aim is to modify the de�nition of DRS-spae toobtain a similar haraterization of when Cr(X) is a weak P -spae.Some fats about DRS-spaes (Proposition 5.5 of [15℄) inlude that they arenever pseudoompat, they do not ontain isolated points, a dense subspae of aDRS-spae is a DRS-spae, and if X is a DRS-spae, then so is X � Y for anyspae Y .



454 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernDe�nition 2.1. We all X a weak DRS-spae if for every sequene of nonemptyopen sets, say fOngn2N, there is a sequene fVngn2N of nonempty open sets suhthat for eah n 2 N Vn � On, and fVngn2N is a disrete family of non-emptysubsets when restrited to the omplement of some nowhere dense zeroset of X .Note that a weak DRS-spae ontains no isolated points.Remark 2.2. Clearly a DRS-spae is a weak DRS-spae. We will show later thatthere exist ompat weak DRS-spaes. Sine a DRS-spae is never pseudoompatit follows that there are weak DRS-spaes that are not DRS-spaes. It will followfrom our main theorem that an almost P -spae is a DRS-spae if and only if it isa weak DRS-spae.Lemma 2.3. X is a weak DRS-spae if and only if for every sequene of nonemptyopen sets fOngn2N there exists a sequene of distint points fxng with xn 2 Onfor eah n 2 N, and an r 2 r(X)+, suh that r(xn) = 1n for all n 2 N.Proof: If X is a weak DRS-spae, then given a sequene of nonempty setsfOngn2N there is a re�nement fVng whih is disrete in oz(v) for some v 2 r(X)+.We further assume that 0 � v � 1. Choose a distint sequene of points, sayfxngn2N, suh that xn 2 Vn \ oz(v) for eah natural number n. Sine X is Ty-hono�, for eah n 2 N, there exists an fn 2 C(oz(v)) suh that fn(xn) = nv(xn)and f(y) = 0 for all y 2 (X r Vn) \ oz(v). Sine the sequene fVn \ oz(v)g isa disrete sequene of open subsets of oz(v), it is straightforward to hek thatthe funtion f =P fn belongs to C(oz(v)). Next, let r = v(f W1)�1. Observethat r 2 C(X)+ and oz(r) = oz(v) so that r 2 r(X)+. Moreover, r(xn) = 1n foreah n 2 N.The onverse is lear. �De�nition 2.4. Reall that a �-base for X is a olletion of nonempty open sets,say U , suh that for any open subset O of X there is some U 2 U suh thatU � O. The �-weight of a spae is de�ned as�!(X) = �0 +minfjUj : U is a �-base for Xg:Sine every base for X is a �-base for X it follows that the weight of X exeedsits �-weight.Proposition 2.5. If X is a weak DRS-spae, then �!(X) > �0. In partiular,X is not seond ountable.Proof: Let X be a weak DRS-spae. Suppose, on the ontrary that fBng is aountable �-base of nonempty open sets. By Lemma 2.3 there is an r 2 r(X)+ anda sequene of distint points, say S = fxngn2N, suh that xn 2 Bn and r(xn) = 1nfor eah natural number n. Sine fBngn2N is a �-base it is straightforward tohek that S is a ountable dense subset of X . Sine we know that X has noisolated points it follows that there exists a y 2 X r S suh that r(y) > 0. Butby the density of S and ontinuity of r, r(y) = 0, a ontradition. �



The regular topology on C(X) 455The proofs of the following two lemmas are similar to the proofs for a DRS-spae.Lemma 2.6. A nonempty open subset of a weak DRS-spae is a weak DRS-spae.Lemma 2.7. A nonempty dense subset of a weak DRS-spae is a weak DRS-spae.Lemma 2.8. Suppose X is a weak DRS-spae and Y is any spae. Then X � Yis a weak DRS-spae.Lemma 2.9. Suppose X is a spae ontaining a dense ozeroset, say U , for whihU is a weak DRS-spae. Then X is a weak DRS-spae.Proof: Let fOngn2N be a sequene of nonempty open subsets of X . The se-quene fOn \Ugn2N is a sequene of nonempty open subsets of U . Therefore, byhypothesis, there is a sequene fVngn2N of ozerosets of U with Vn � On \ U foreah n and fVngn2N is disrete when restrited to a dense ozeroset of U . Sinea ozeroset of a ozeroset is a ozeroset (and a dense subspae of a dense subspaeis dense) we have that in X , the sequene fVngn2 is disrete when restrited to adense ozeroset of X . �Corollary 2.10. A spae X is a weak DRS-spae if and only if eah denseozeroset of X is a weak DRS-spae.Proof: If X is a weak DRS-spae, then by Lemma 2.7 every dense ozeroset ofX is a weak DRS-spae. Conversely, let U be a dense ozeroset of X and so byLemma 2.9 X is as well. �Proposition 2.11. If fX�g is an unountable olletion of nontrivial spaes,then QX� is a weak DRS-spae.Proof: Let fOng be a sequene of nonempty open sets in QX�. We may as-sume, without loss of generality, that the On's are basi open sets in the artesianprodut topology. Altogether, there are at most a ountable number of oordi-nates where the full spae does not our in the produt expression of the On's.Sine � is an unountable index we an �nd a ountably in�nite subset fX�igof fX�g suh that �(On) = QX�i for all n. Here � is the projetion of QX�onto QX�i . Now, sine these are all nontrivial Tyhono� spaes, there existontinuous real-valued funtions si on X�i with minimum and maximum val-ues 0 and 1=i respetively. De�ne s on QX�i by s((x�i )) = supfsi(x�i )g. Tosee that s is ontinuous note that if a and b are real numbers, b > 0, and �kthe projetion of QX�i onto X�k , then s�1((a; 1℄) = S��1i (s�1i ((a; 1=i℄)) ands�1([0; b)) = Q s�1i ([0; b)) are open sets, so s�1((a; b)) is open. Moreover, s isa regular element in C(QX�i) whose image ontains 1=n for all n 2 N. Thusr = s� is also a regular element and one an �nd a sequene of points xn 2 Onwith r(xn) = 1=n. This proves the proposition. �The previous proposition provides examples of weak DRS-spaes where nopoint is �rst ountable; also examples of ompat weak DRS-spaes. Here is anexample with a point that satis�es �rst ountability.



456 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernExample 2.12. Let fXngn2N be a denumerable olletion of DRS-spaes andlet Y be the topologial sum of these spaes together with an extra point, say p.De�ne a neighborhood of p as any open subset O suh that O \ Xn = Xn forall but a �nite number of n. Then p has a ountable base of neighborhoods andhene Y is not a DRS-spae. But by Lemma 2.9 Y is a weak DRS-spae.We now haraterize when Cr(X) is a weak P -spae.Theorem 2.13. X is a weak DRS-spae if and only if Cr(X) is a weak P -spae.Proof: We �rst prove the neessity. Sine Cr(X) is a homogeneous spae it isenough to show that 0 is not in the losure of any sequene of non-zero elementsin Cr(X). Moreover, it is enough to show that 0 is not in the losure of anynonzero nonnegative sequene, say ffngn2N. Given the sequene of nonemptyopen sets foz(fn)gn2N, by Lemma 2.3, there is a distint sequene fxngn2N, anda positive regular element r 2 r(X)+, suh that for every n 2 N, xn 2 oz(fn)and r(xn) = 1n . Next, hoose a dereasing sequene of positive real numbers,say fsngn2N, suh that sn < minf 1n ; fn(xn)g for eah natural number n. Leth 2 C(R)+ suh that h( 1n ) = sn and Z(h) = f0g. Then Z(r) = Z(h Æ r) and(h Æ r)(xn) < fn(xn) for eah n 2 N. The former implies that h Æ r 2 r(X)+ andthe latter fores fn =2 R(0; h Æ r). Therefore, 0 =2 lffng.Conversely, �rst observe that X has no isolated points. Next, let fOngn2N bea sequene of nonempty open sets. We assume, without loss of generality, thatOn = oz(fn) with 0 � fn � 1n . Sine Cr(X) is a weak P -spae there is anr 2 r(X)+ with fn =2 R(0; r) for all n. Thus one an �nd an xn 2 On with0 < r(xn) < fn(xn) � 1n . Moreover, sine X has no isolated points we an hoosethe sequene fxngn2N to be distint. It follows by Lemma 2.3 that X is a weakDRS-spae. �Remark 2.14. Reall that there is a natural (ring) isomorphism between C�(X)and C(�X). Namely, for any f 2 C�(X), the unique extension of f to all of �Xis denoted by f�. A natural question is whether the subspae topology on C�(X)inherited from Cr(X) oinides with the r-topology on C(�X). It is known thatfor the m-topology, the analogous question is answered in the negative. Thisis beause it is possible for u 2 U(X)+ \ C�(X) but u� =2 U(�X)+. We nowanswer the question for the r-topology. It is beause of the next result that it isour opinion that the r-topology is a muh more well-behaved topology than them-topology.Proposition 2.15. The subspae topology on C�(X) inherited from Cr(X) ishomeomorphi to the r-topology on C(�X). Moreover, the two topologies onC�(X) inherited from Cm(X) and Cr(X) are equal.Proof: Observe that r 2 r(X)+ \ C�(X) if and only if r� 2 r(�X)+. Sinethe olletion fR(0; r ^ 1)gr2r(X)+ forms a base around 0 2 C�(X) with respetto the subspae topology inherited from Cr(X) and this olletion orrespondsexatly to the base around 0 2 C(�X), the result follows. �



The regular topology on C(X) 457Proposition 2.16. Cr(X) is a weak P -spae if and only if Cr(�X) is a weakP -spae.Proof: Sine a subspae of a weak P -spae is again a weak P -spae it followsthen that if Cr(X) is weak P -spae, then so is C�(X) with respet to the subspaetopology. But by Proposition 2.15 we onlude that Cr(�X) is a weak P -spae.Next, suppose that Cr(X) is not a weak P -spae. This implies that there is asequene of ontinuous funtions, say ffng, whih is not losed. By translation,we an assume that 0 2 lffngn2Nr ffngn2N. It is straightforward to hek that0 2 lffn ^ 1gn2N r ffn ^ 1gn2N. But this implies that C�(X) is not a weakP -spae, i.e., Cr(�X) is not a weak P -spae. �Corollary 2.17. X is a weak DRS-spae if and only if �X is a weak DRS-spae. In partiular, the Stone- �Ceh ompati�ation of a DRS-spae is a weakDRS-spae.3. A topologial haraterization of separable weak DRS-spaesThe motivating example for this setion is the following:Example 3.1. R is not a weak DRS-spae.In fat we shall prove more.De�nition 3.2. For a given x 2 X , a �-base of neighborhoods of x is a olletionof nonempty open subsets of X , say U , suh that for any neighborhood O of xthere is a U 2 U suh that U � O. We de�ne the �-harater of x as��(x;X) = �0 +minfjUj : U is a �-base of neighborhoods of xg;and the �-harater of X as��(X) = supf��(x;X) : x 2 Xg:As with the weight we always have �(X) � ��(X).In [15℄ the author showed that a DRS-spae annot have any points of ount-able �-harater. He then showed that for a ountable spae that this was alsosuÆient. Formally, we have:Theorem 3.3 ([15℄). Let X be a ountable spae. X is a DRS-spae if and onlyif ��(x;X) > �0 for all x 2 X .In a weak DRS-spae you an have points of ountable �-harater. However,a weak DRS-spae annot have a ountable �-base, as we presently show. Later,we will generalize Theorem 3.3 to separable spaes.Lemma 3.4. Let X be a separable spae with a dense sequene of distint points,say fxngn2N, suh that ��(xn; X) > �0 for all n. Given a sequene of nonemptyopen sets fU2igi2N, there is a over of fxngn2N onsisting of a sequene of disjointnonempty open sets fVngn2N suh that V2i � U2i for all i 2 N. Moreover, SVi isa dense ozeroset of X .



458 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernProof: First of all we note that by hypothesis none of the xn are isolated points.Let U2i�1 = X for all i 2 N and let v1 = x1. Sine ��(v1; X) > �0 there is aozeroset O1 with v1 2 O1 � U1 suh that Ui 6� O1 for all i > 1. Choosef1 2 C(X)+ suh that f(v1) = 1 and f(y) = 0 for all y 2 X rO1. Sine fxngn2Nis a ountable set, there is an r1 2 (0; 1) suh that f�11 (r1) \ fxngn2N = ;. LetW1 = f�11 [0; r1) V1 = f�11 (r1;1℄and observe that W1 and V1 are disjoint ozerosets of X with V1 � O1 � U1.Note that Ui \W1 6= ; for all i > 1. We use reursion now.Suppose we have a pair of olletions of ozerosets, say fWigni=1 and fVigni=1,and a sequene fvigni=1 � fxigi2N suh that 1) Wi \ Vi = ; for eah i = 1; � � � ; n,2) vi 2 Vi and vi 6= vj for eah 1 � i < j � n, 3) Ui \ (Tnj=1Wj) 6= ; for eahi > n, 4) for eah i = 1; � � � ; n, Vi � Ui, and 5) fVigni=1 is pairwise disjoint. Nowlet in+1 = min�i 2 N : xi 2 Un+1 \ � n\j=1Wj��and set vn+1 = xin+1 . Sine for eah i = 1; � � � ; n we have vi 2 Vi and henevi =2 Wi it follows that vi 6= vn+1. Choose a ozeroset neighborhood of vn+1, sayOn+1 suh that vn+1 2 On+1 � Un+1 \ (Tnj=1Wj) and Uk \ (Tnj=1Wj) * On+1for all k > n. We an do this beause ��(vn+1; X) > �0. Next, hoose a funtionf 2 C(X)+ suh that f(vn+1) = 1 and f(y) = 0 for all y 2 X r On+1. There isan 0 < rn+1 < 1 suh that f(xk) 6= r for all k 2 N. Let Wn+1 = f�1([0; rn+1))and Vn+1 = f�1((rn+1;1)). Sine Vn+1 � On+1 � Un+1 \ (Tnj=1Wj) it followsthat Vn+1 � Un+1 and that Vn+1 \ Vi = ; for all i = 1; � � � ; n. Thus, our newpair of olletions of ozerosets fWign+1i=1 and fVign+1i=1 satis�es the properties 1)through 5) from above.By indution there is a sequene, fVngn2N, of pairwise disjoint ozeroset withVi � Ui for all i 2 N. Letting V = Si2N Vn we get that sine V is a ountableunion of ozerosets it is a ozeroset. Furthermore, it is straightforward to hekthat fxigi2N � Si2N Vi so that V is a dense subset of X . This onludes the proofof the lemma. �We prove the main result of this setion:Theorem 3.5. Let X be a separable spae. X is a weak DRS-spae if and only ifthere exists a ountable dense subset of X , say fxjgj2N, suh that ��(xj ; X) > �0for all j 2 N.Proof: Suppose X is a weak DRS-spae. Note that there annot exist a ount-able dense subset of X , say fxjgj2N, suh that ��(xj ; X) = �0 for every j 2 N. Ifso then it would follow that X has ountable �-weight, ontraditing Theorem 2.5.Thus, let S be a ountable dense subset of X and split S into two disjoint sets,S0 and S r S0, where x 2 S belongs to S0 if and only ��(x;X) = �0. If S r S0is a dense subset of X , we are done. Otherwise let O = X r lX(S r S0) and



The regular topology on C(X) 459T = S0 \ O. Then T is a dense subset of the nonempty set O. But sine O is anopen subset of X it follows that ��(x;O) = �0 for eah x 2 T and so O annotbe a weak DRS-spae, ontraditing Lemma 2.6.As for the suÆieny suppose fxjgj2N is a ountable dense subset (of distintpoints) of X with ��(xj ; X) > �0 for eah j 2 N. Let fUngn2N be a sequeneof nonempty open sets of X . By Lemma 3.4 we an �nd a sequene of pairwisedisjoint ozerosets, say fVngn2N, whose union is a dense ozeroset. It follows thatwhen restrited to the dense ozeroset the olletion is disrete. Therefore, X isa weak DRS-spae. �Theorem 3.6. Suppose X satis�es the property that every dense open set on-tains a dense ozeroset, e.g. a perfetly normal spae. Furthermore, suppose that��(x;X) = �0 for all x 2 X . Then X is a weak DRS-spae if and only if X isnowhere separable.Proof: To prove the neessity observe that any weak DRS-spae satisfying��(x;X) = �0 for all x 2 X will be nowhere separable. This follows from 2.6 thatif O is any open subset of X , then O is a weak DRS-spae. It is straightforwardto hek that ��(x;O) = �0 for all x 2 O. But this ontradits Theorem 3.5.Conversely, suppose X is nowhere separable and let ffigi2N be a sequene ofontinuous funtions all of whih are di�erent than 0. Without loss of generalitywe assume that fi > 0. Choose a sequene fxigi2N of distint points with xi 2oz(fi). Let T = lfxigi2N. We laim that T is a nowhere dense subset of X . If itis not, then intT 6= ; is an open subset of a separable set, hene separable. Thisontradits that X is nowhere separable. Next, sine XrT is a dense open subsetof X we an apply the hypothesis and onlude that X r T densely ontains aozeroset, say oz(r). Observe that oz(r) is a dense subset of X . Therefore,r 2 r(X)+. Finally, 0 = r(xi) < fi(xi) so that 0 =2 lffigi2N; whene X is a weakDRS-spae. �Corollary 3.7. Suppose X is a metri spae. X is a weak DRS-spae if and onlyif X is nowhere separable.Example 3.8. Let E be the (Iliadis) absolute of the spae [0; 1℄. It is known thatE has ountable �-weight (see [14℄). In Example 4.6 of [7℄ it is shown that E isnot a DRS-spae. Sine E has ountable �-weight it follows that ��(x;E) = �0for all x 2 E and so, by Theorem 3.5, E is not a weak DRS-spae.For the purpose of this example (and throughout the rest of the artile) by arowded spae we mean a spae without isolated points.Not every rowded basially disonneted spae is a weak DRS-spae eventhough every rowded P -spae is a DRS-spae, and so every basially disonnetedspae without isolated points whih is of the form �X for X a P -spae is a weakDRS-spae.We �nish this artile by showing that even though Cr(X) might not be a weakP -spae for a rowded basially disonneted spae, it does share a property with



460 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. MGovernweak P -spaes. Reall from [9℄ that a spae X is alled a ozero omplementedspae if for every ozeroset C � X there is a ozeroset C 0 suh that C \ C 0 = ;and C [ C 0 is a dense subset of X . Basially disonneted spaes and perfetlynormal spaes are ozero omplemented.Remark 3.9. Observe that if x 2 X is an isolated point and we let f = �fxgdenote the harateristi funtion on fxg, then the sequene f 1nfgn2N onvergesto 0 in Cr(X).Proposition 3.10. Suppose X is a rowded ozero omplemented spae. Thenthere are no nontrivial onvergent sequenes in Cr(X).Proof: Note that if suh a sequene exists then there is one onverging to 0.Let foz(fj)gj2N be a sequene of nonempty ozerosets of X with fj 2 C(X)+.Sine X has no isolated points we an �nd a subsequene S � N and a disretesequene of distint points, say fxngj2S , suh that xn 2 oz(fn). This meansthat there is a disrete sequene of ozerosets, say fVngn2S , whih is pairwisedisjoint and so that xn 2 Vn � oz(fn) for eah n 2 S. Now, the union C of theseozerosets is again a ozero set, say C = oz(f). Furthermore, we an assumethat 0 < f(xn) < fn(xn) for eah n 2 S. By hypothesis, there is a ozeroset C 0so that C \ C 0 = ; and C [ C 0 is a dense subset of X . Let g 2 C(X)+ satisfyC 0 = oz(g). Consider the funtion f + g 2 C(X). Sine oz(f + g) = C [ C 0 itfollows that f + g 2 r(X)+. Therefore, 0 =2 lf fngn2S , whene 0 is not the limitof the sequene ffjgj2N. �Remark 3.11. It follows from Corollary 3.7 and Proposition 3.10 that Cr(R) isnot a weak P -spae yet 0 is not a limit of a non-trivial onvergent sequene offuntions. We onlude with the following question. Does there exist a basiallydisonneted spae X for whih ��(x;X) = �0 for all x 2 X whih is nowhereseparable yet X is not a weak DRS-spae?Aknowledgments. We would like to thank the referee. His/her areful readingof the manusript ombined with some very useful suggestions and questions havehopefully improved the quality of the paper.Referenes[1℄ Darnel M., Theory of Lattie-Ordered Groups, Monographs and Textbooks in Pure andApplied Mathematis, 187, Marel Dekker, In., New York, 1995.[2℄ Di Maio G., Hol�a L., Hol�y D., MCoy R.A., Topologies on the spae of ontinuous funtions,Topology Appl. 86 (1998), no. 2, 105{122.[3℄ Engelking R., General Topology, Polish Si. Publishers, Berlin, 1977.[4℄ Fine N.J., Gillman L., Extension of ontinuous funtions in �N, Bull. Amer. Math. So.66 (1960), 376-381.[5℄ Fine N.J., Gillman L., Lambek J., Rings of Quotients of Rings of Funtions, Leture NoteSeries, MGill University Press, Montreal, 1966.[6℄ Gillman L., Jerison M., Rings of Continuous Funtions, The University Series in HigherMathematis, D. Van Nostrand, Prineton, 1960.[7℄ Gomez-Perez J., MGovern W.Wm., The m-topology on Cm(X) revisited , Topology Appl.153 (2006), no. 11, 1838{1848.
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