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The regular topology on C(X)Wolf Iberkleid, RamiroLafuente-Rodriguez, Warren Wm. M
Govern�Abstra
t. Hewitt [Rings of real-valued 
ontinuous fun
tions. I., Trans. Amer.Math. So
. 64 (1948), 45{99℄ de�ned the m-topology on C(X), denoted Cm(X),and demonstrated that 
ertain topologi
al properties ofX 
ould be 
hara
terizedby 
ertain topologi
al properties of Cm(X). For example, he showed that X ispseudo
ompa
t if and only if Cm(X) is a metrizable spa
e; in this 
ase the m-topology is pre
isely the topology of uniform 
onvergen
e. What is interestingwith regards to the m-topology is that it is possible, with the right kind ofspa
e X, for Cm(X) to be highly non-metrizable. E. van Douwen [Nonnormalityof spa
es of real fun
tions, Topology Appl. 39 (1991), 3{32℄ de�ned the 
lass ofDRS-spa
es and showed that if X was su
h a spa
e, then Cm(X) satis�ed theproperty that all 
ountable subsets of Cm(X) are 
losed. In J. Gomez-Perez andW.Wm. M
Govern, The m-topology on Cm(X) revisited , Topology Appl. 153,(2006), no. 11, 1838{1848, the authors demonstrated the 
onverse, 
ompletingthe 
hara
terization. In this arti
le we de�ne a �ner topology on C(X) basedon positive regular elements. It is the authors' opinion that the new topology isa more well-behaved topology with regards to passing from C(X) to C�(X). Inthe �rst se
tion we 
ompute some 
ommon 
ardinal invariants of the pre
edingspa
e Cr(X). In Se
tion 2, we 
hara
terize when Cr(X) satis�es the propertythat all 
ountable subsets are 
losed. We 
all su
h a spa
e for whi
h this happensa weak DRS-spa
e and demonstrate that X is a weak DRS-spa
e if and only if�X is a weak DRS-spa
e. This is somewhat surprising as a DRS-spa
e 
annot be
ompa
t. In the third se
tion we give an internal 
hara
terization of separableweak DRS-spa
es and use this to show that a metrizable spa
e is a weak DRS-spa
e pre
isely when it is nowhere separable.Keywords: DRS-spa
e, Stone-�Ce
h 
ompa
ti�
ation, rings of 
ontinuous fun
-tions, C(X)Classi�
ation: Primary 54C35; Se
ondary 54G991. Introdu
tionGiven a topologi
al spa
e X we let C(X) denote the set of real-valued 
ontin-uous fun
tions de�ned on X . It is well-known that C(X) is an R-algebra underpointwise operations of addition, multipli
ation, and s
alar multipli
ation andthat there are several topologies on C(X) that one may 
onsider. The topology ofpointwise 
onvergen
e, the topology of uniform 
onvergen
e, and the m-topologyare but three examples. In this arti
le we are interested in a ring topology whi
h� Corresponding author.



446 W. Iberkleid, R. Lafuente-Rodriguez, W.Wm. M
Governis in the same vein as the m-topology but �ner. Our goal will be to show thatthe two topologies are not only di�erent in general but also have di�erent alge-brai
 properties. We 
all this topology the r-topology sin
e it is based on regularelements (i.e. non zero-divisors). Re
all that ea
h of the uniform topology andm-topology takes as a base the 
olle
tion of sets of the formB(f; e) = fg 2 C(X) : jf(x)� g(x)j < e(x);8x 2 Xgwhere f 2 C(X) and e is from a pre-de�ned set. In parti
ular to obtain thetopology of uniform 
onvergen
e we allow e to be any stri
tly positive 
onstantfun
tion. To get the m-topology, e is allowed to be any positive multipli
ativeunit. Furthermore, the r-topology is obtained by allowing e to be any positiveregular element of C(X). For more information on the m-topology the reader isurged to read [10℄ and problems 2N and 7Q of [6℄.For the ease of the reader we re
all some basi
 de�nition from the theory ofC(X). Our standard referen
es for rings of 
ontinuous fun
tions and topologi
alspa
es are [6℄ and [3℄.De�nition 1.1. Let f 2 C(X). Set Z(f) = fx 2 X : f(x) = 0g and let 
oz(f)be its set-theoreti
 
omplement. We 
all Z(f) the zeroset of f and 
oz(f) the
ozeroset of f , respe
tively. By a zeroset (
ozeroset) of X we mean a set of theform Z(f) (
oz(f)) for some f 2 C(X).Units and regular elements of C(X) are 
hara
terized topologi
ally in the fol-lowing way.(1) For f 2 C(X), f is a unit of C(X) if and only if Z(f) = ; if and only if
oz(f) = X .(2) For f 2 C(X), f is a regular element of C(X) if and only if RX Z(f) = ;if and only if 
oz(f) is a dense subset of X .We let C(X)+ = ff 2 C(X) : f(x) � 0 for all x 2 Xg and 
all this the set ofpositive elements of C(X). When f(x) > 0 for all x 2 X , we will say f is stri
tlypositive or is a positive unit . Set U(X)+ = ff 2 C(X) : f(x) > 0 for all x 2 Xg,the set of positive multipli
ative units of C(X). De�ner(X)+ = ff 2 C(X)+ : f is a regular element of C(X)g;the set of positive regular elements of C(X). It is straightforward to 
he
k thatif r; s 2 r+(X), then so is r ^ s.All topologi
al spa
es 
onsidered in this arti
le shall be assumed tobe Ty
hono�, that is, Hausdor� and 
ompletely regular. For su
h a spa
e X ,we shall denote its Stone-�Ce
h 
ompa
ti�
ation by �X .Formally, the r-topology on C(X) is the one obtained by taking sets of theform R(f; r) = fg 2 C(X) : jf(x) � g(x)j < r(x);8x 2 
oz(r)g



The regular topology on C(X) 447for f 2 C(X) and r 2 r+(X) as a base for the topology. (Note that if g 2 R(f; r),then by the 
ontinuity of r and density of 
oz(r) we have g(x) = f(x) for allx 2 Z(r).)Proposition 1.2. For any spa
e X , the 
olle
tion fR(f; r) : f 2 C(X); r 2r(X)+g is a neighborhood system. Consequently, the rule R(f; r) de�nes a basefor a topology on C(X).Proof: We supply a sket
h. For f 2 C(X), let R(f) = fR(f; r)gr2r(X)+ . Ob-serve the following. 1) for ea
h f 2 C(X), R(f) 6= ;. 2) If r; s 2 r(X)+, then sois r ^ s 2 r(X)+ and that R(f; r ^ s) � R(f; r) \R(f; s). 3) Suppose g 2 R(f; r).Set s = r� jf � gj and observe that 
oz(r) = 
oz(s), when
e s 2 r(X)+. Next, itis straightforward to 
he
k that R(g; s) � R(f; r).We have demonstrated that the 
olle
tion fR(f; r) : f 2 C(X); r 2 r(X)+gsatis�es the 
onditions (BP1){(BP3) of [3, Se
tion 1.1℄. Consequently, said 
ol-le
tion is a neighborhood system. �Sin
e U(X)+ � r+(X) we 
on
lude that the r-topology is �ner than the m-topology. We leave it to the interested reader to 
he
k that the r-topology makesC(X) into a topologi
al ring, i.e., +; � are 
ontinuous operations, though, in gen-eral and not unlike the m-topology, the r-topology does not make C(X) into atopologi
al algebra. (For more information on this fa
t the reader is en
ouragedto read [11℄.)We will use the notation Cr(X) to denote C(X) equipped with ther-topology.We 
on
lude this se
tion with a few theorems answering the questions of 
o-in
iden
e of the three topologies de�ned above. First we give a few topologi
alde�nitions.De�nition 1.3. Re
all that a spa
e X is 
alled pseudo
ompa
t if every elementof C(X) is bounded, that is, for ea
h f 2 C(X) there is a natural number M forwhi
h jf(x)j < M for all x 2 X . The 
olle
tion of bounded 
ontinuous fun
tionson X will be denoted by C�(X). (Pseudo
ompa
tness is the same as sayingC�(X) = C(X).) Obviously 
ompa
t spa
es are pseudo
ompa
t. The standardexample of a non
ompa
t pseudo
ompa
t spa
e is the 
olle
tion of 
ountableordinals under the order topology. (See Chapter 5 of [6℄.)De�nition 1.4. Re
all that the spa
e X is 
alled a Fre
h�et-Urysohn spa
e ifwhenever p 2 
lX A then there exists a sequen
e fangn2N � A su
h that limn!1 an =p. A more general 
on
ept is that of a 
ountably tight spa
e. For a point p 2 X ,the tightness of p is de�ned to be the least 
ardinal � su
h that whenever p 2
lX ArA there is an S � A of 
ardinality � for whi
h p 2 
lX S. The spa
e X is
alled 
ountably tight if the tightness at ea
h point is �0.The spa
e � from [6℄ is an example of a 
ountable spa
e, and hen
e 
ountablytight, that is not a Fre
h�et-Urysohn spa
e.
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GovernTheorem 1.5 ([2, Corollary 2.5℄). For a spa
e X the following are equivalent:(1) X is pseudo
ompa
t;(2) Cm(X) = Cu(X);(3) Cm(X) is metrizable;(4) Cm(X) is �rst 
ountable;(5) Cm(X) is a Fre
h�et-Urysohn spa
e;(6) Cm(X) is a 
ountably tight spa
e.De�nition 1.6. In [12℄ the author de�ned a spa
e X to be an almost P -spa
eif every nonempty GÆ-set of X has nonempty interior. We presently re
all someequivalent 
onditions for a spa
e X to be an almost P -spa
e.Proposition 1.7 ([12, Proposition 1.1℄). For a Ty
hono� spa
e X , the followingstatements are equivalent.(1) X is an almost P -spa
e.(2) Ea
h non-empty zeroset of X has non-empty interior.(3) Ea
h zeroset of X is a regular 
losed subset of X .Moving from global to lo
al we say p 2 X is an almost P -point if every GÆ-setof X 
ontaining p has nonempty interior. We shall have 
ause to use the set ofalmost P -points of X ; denote the set of almost P -points of X by a(X).As for examples of P -spa
es it is the 
ase that if X is a (non-
ompa
t) lo
ally
ompa
t and real
ompa
t spa
e, then �X rX is a 
ompa
t almost P -spa
e (seeLemma 3.1 of [4℄).In terms of the elements of C(X), X is an almost P -spa
e if and only if everyregular element of C(X) is a unit. This yields one dire
tion of our next theorem.Theorem 1.8. Let X be a Ty
hono� spa
e. The following are equivalent.(i) Cr(X) = Cm(X).(ii) X is an almost P -spa
e.(iii) r(X)+ = U(X)+.Proof: The proof that (ii) and (iii) are equivalent is straightforward. Sin
er(X)+ and U(X)+ are the sets used to 
reate the r-topology and m-topology,respe
tively, we have that (iii) implies (i).Next, if X is not an almost P -spa
e then there is a nonempty zeroset, say Z(f),whose interior is empty. Now, Z(f) = Z(jf j) and so without loss of generalitywe assume that f � 0 and hen
e f 2 r(X)+. Consider R(0; f). If (i) holds thenthere is some g 2 U(X)+ su
h that R(0; g) � R(0; f). Let p 2 Z(f). Then0 < g(p)2 < f(p) = 0;a 
ontradi
tion. Therefore, (i) implies (ii). �We are now able to prove our main result of this se
tion.



The regular topology on C(X) 449Theorem 1.9. For any Ty
hono� spa
e X , the following are equivalent.(i) Cr(X) is �rst 
ountable.(ii) Cr(X) is a Fre
h�et-Urysohn spa
e.(iii) Cr(X) is 
ountably tight.(iv) Cr(X) = Cu(X).(v) X is a pseudo
ompa
t, almost P -spa
e.(vi) �X is an almost P -spa
e.(vii) Cr(�X) = Cu(�X).Proof: We start by showing that (i), (ii), and (iii) are all equivalent. It suÆ
esto show that (iii) ) (i). Noti
e that 0 2 
l r(X)+ so that by (iii) we 
an �nd a
ountable sequen
e, say frngn2N for whi
h 0 2 
lfrngn2N. With not too mu
he�ort we 
an suppose that rn � rn+1 for all natural n. We 
laim that the 
olle
tionfR(0; rn)gn2N is a base of neighborhoods for 0. To see this let r 2 r(X)+,then there is some rn 2 R(0; r). By design it follows that R(0; rn) � R(0; r).Therefore, the 
laim is true and so by translation Cr(X) is �rst 
ountable.From Theorems 1.5 and 1.8 we gather that (iv) and (v) are equivalent. That(iv) ) (i) is patent.Next we prove that (i) implies (iv). So suppose that Cr(X) is �rst 
ountable.Now, if we 
an show that X is an almost P -spa
e, then it will follow from thefa
ts that Cr(X) = Cm(X), and then by Theorem 1.5 X is pseudo
ompa
t. Bymeans of 
ontradi
tion suppose that p 2 X is not an almost P -point and letr 2 r(X)+ for whi
h r(p) = 0. Next, let frng � r(X)+ be a sequen
e whi
hgenerates a 
ountable base of neighborhoods for 0. We might as well assume thatfor all natural n, 0 � rn+1 � rn � r � 1:Noti
e that p 2 Z(r) � Z(rn) for ea
h n. For ea
h n let On = r�1((0; 1n ))and observe that ea
h of these sets is nonempty. Otherwise, it would follow thatZ(r) is 
lopen 
ontradi
ting that r is regular. Furthermore, the regularity of rnimplies that 
oz(rn) is a dense open set. Therefore, we may 
hoose a sequen
efxngn2N so that xn 2 
oz(rn)\On. Moreover, we 
an sele
t the sequen
e so thatr(xn) > r(xn+1). Thus (i) implies (v) and so (i) through (v) are equivalent.Next, 
hoose a sequen
e of positive real numbers fÆngn2N su
h that Æn+1 < Ænand that Æn < rn(xn)2 :Let h 2 C([0; 1℄) su
h that 0 � h � 1, h(r(xn)) = Æn, and Z(h) = f0g. Setf = h Æ r and observe that f 2 C(X)+ and Z(f) = Z(r), hen
e f 2 r(X)+.Finally, for ea
h n we have that0 < f(xn) = (h Æ r)(xn) = Æn < rn(xn)when
e R(0; rn) * R(0; f) for all n, 
ontradi
ting that the 
olle
tion of R(0; rn)is a base around 0.
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GovernFinally, from what we have just proved it follows that (vi) and (vii) are equiv-alent. Proposition 2.2 of [12℄ states that (v) and (vi) are equivalent. �De�nition 1.10. For a topologi
al spa
e X and a point p 2 X re
all that the
hara
ter of the point p is�(p;X) = �0 +minfjUj : U is a base of neighborhoods for pg:The 
hara
ter of X is de�ned as�(X) = supf�(p;X) : p 2 Xg:In [2℄ the authors determined the 
hara
ter of the spa
e Cm(X). There theyutilized the dominating number of a spa
e, whi
h is de�ned as follows. A subsetF of C(X) is 
alled dominating if for every g 2 C(X) there exists an f 2 F su
hthat g � f . Then the dominating number of X isdn(X) = �0 +minfjFj : F is a dominating subset of C(X)g:When X = N, then we write d = dn(N). It is known that �1 � d � 
.Theorem 1.11 ([2, Theorem 2.3℄). Let X be any spa
e. Then �(Cm(X)) =dn(X).Corollary 1.12. Suppose X is an almost P -spa
e. Then �(Cr(X)) = dn(X). Inparti
ular, �(Cr(N)) = d.To determine the 
hara
ter of Cr(X) we need to re
all the de�nition of the
olle
tion of almost real-valued 
ontinuous fun
tions de�ned on the spa
e X . Thespa
e R = R [ f�1g is the two-point 
ompa
ti�
ation of the real numbers. The
olle
tion of almost real-valued 
ontinuous fun
tions on X is de�ned asD(X) = ff : X ! R : f�1(R) is a dense subset of Xg:In general, D(X) is not 
losed under sums or produ
ts but it is always a latti
e.(For a more detailed dis
ussion of D(X) see [1℄.) We 
all a subset F of D(X)D-dominating if for every g 2 D(X) there exists an f 2 F su
h that g � f . Wede�ne the D-dominating number of X as follows:dnD(X) = �0 +minfjFj : F is a D-dominating subset of D(X)g:Proposition 1.13. Let X be a any Ty
hono� spa
e. Then�(Cr(X)) = dnD(X):Proof: The proof is similar to that of [2, Theorem 2.3℄. The only thing oneneeds to 
he
k is that r 2 r(X)+ if and only if 1r 2 D(X)+. �We would like a more internal 
hara
terization (relative to X) of the 
hara
terof Cr(X). We will not be able to do this exa
tly but we shall be able to give



The regular topology on C(X) 451an appropriate upper and lower bound for the 
hara
ter. Denote the 
olle
tionof nowhere dense zerosets of X by Znd[X ℄, that is, let Znd[X ℄ = fZ(f) : f 2r(X)+g. Observe that Znd[X ℄ is an ideal of the latti
e of all zerosets of X andthat SfZ 2 Znd[X ℄g is pre
isely the set of non-almost P -points. Letz(X) = minf� : � is the 
ardinality of a generating set for Znd[X ℄g:A sub
olle
tion Z is a generating set for Znd[X ℄ if for every Z 2 Znd[X ℄ thereis some Z 0 2 Z su
h that Z � Z 0. A generating set of minimal 
ardinality will be
alled a minimal generating set . It is straightforward to 
he
k that all minimalgenerating sets have the same 
ardinality. Next, let F be any 
olle
tion of dense
ozerosets of X and de�nednX(F) = �0 + supfdn(C) : C 2 Fg:When Z � Znd[X ℄ we de�ne FZ = fX r Z : Z 2 Zg. A generalization ofCorollary 1.12 is given by the following proposition.Proposition 1.14. Suppose X has the property that Znd[X ℄ has a maximumelement, say Z. Then Z = X r a(X) is the 
olle
tion of non almost P -pointsof X . Furthermore, �(Cr(X)) = dn(a(X)):Proof: By hypothesis, there is a ' 2 r(X)+ (with 0 � ' � 1) su
h that Z(')su
h that Z(') is the largest element of Znd[X ℄. Sin
e Z(') is nowhere denseand by the de�nition of almost P -point it follows that Z(') � X r a(X). If x isnot an almost P -point, then there is some Z 2 Znd[X ℄ su
h that x 2 Z. Now,Z [ Z(') 2 Znd[X ℄ and therefore Z � Z('). Therefore, Z(') = X r a(X) whi
hdemonstrates the �rst statement.Let C = fR(0; ri)gi2I be a base of neighborhoods around 0. Set T = fr 2r(X)+ : R(0; r) 2 Cg and then T 0 = fr^' : r 2 Tg. Observe that the 
ardinalityof T 0 is no greater than that of T . Next, let C0 = fR(0; r)gr2T 0 . C0 is also a baseof neighborhoods of 0 and its 
ardinality is no greater than that of the originalbase. Also, for every r 2 T 0 we have Z(r) = Z(').It is obvious that the 
olle
tion F = f 1r : r 2 T 0g is a subset of C(a(X)) of
ardinality equal to that of T 0. We 
laim that F is in fa
t a dominating set forC(a(X)). Let g 2 C(a(X)) and without loss of generality we assume that g � 1' .It follows then that the element 1g 2 C(a(X)) 
an be extended to all of X ; namelyde�ne 1g (x) = 0 for all x 2 X r a(X). Moreover, 1g 2 r(X)+ and so there is somer 2 T 0 su
h that r � 1g . Hen
e g � 1r and so F is a dominating set for C(a(X)).We 
on
lude that �(Cr(X)) � dn(a(X)).The reverse inequality is obtained in the reverse manner used above. Beginwith a dominating set F for C(a(X)) and assume that ea
h member of F is greaterthan or equal to 1' . We leave it to the interested reader to show that the 
olle
tionfR(0; 1f )gf2F is a base of neighborhoods around 0. �
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GovernExample 1.15. Let X be an almost dis
rete spa
e, that is, X has exa
tly onenon-isolated point, say X = D [ f�g. If � is not an almost P -point of X , thenZnd[X ℄ = f;; f�gg. By the previous proposition it follows that �(Cr(X)) =dn(D). In parti
ular, �(Cr(�N)) = dn(N) = d = �(Cr(N)):We are now in position to give an upper and lower bound for the 
hara
ter ofCr(X) using our new 
ardinal fun
tion.Theorem 1.16. Let Z be any minimal generating set for Znd[X ℄. Thenz(X) � �(Cr(X)) � z(X) � dnX (FZ):Proof: Let C be a base around 0 and suppose that � = jCj = �(Cr(X). Withoutloss of generality, we 
an assume that every element of C has the form R(0; r)for some r 2 R(X)+. Furthermore, we 
an enumerate C as a �-sequen
e, sayC = fR(0; r�)g�<�. Let Z = fZ(r�) : � < �gand note that Z � Znd[X ℄. Let Z(r) 2 Znd[X ℄. Then there exists a � < �su
h that R(0; r�) � R(0; r) and so therefore Z(r) � Z(r�). It follows that the
olle
tion Z is a generating set for Znd[X ℄ and so z(X) � � = �(Cr(X)).Next, let Z be as in the hypothesis of the theorem. If we 
lose up Z under�nite unions then the 
ardinality will not 
hange. Therefore, we assume that Z is
losed under �nite unions. For ea
h Z 2 Z let Z = Z(�Z) where �Z 2 r(X)+ and0 � �Z � 1. Let FZ be a minimal dominating set for C(
oz(�Z)). Without lossof generality we assume that every f 2 F satis�es f � 1�Z . It is straightforwardto 
he
k that 1f 2 C(X) and that Z( 1f ) = Z(�Z), hen
e 1f 2 r(X)+. Next, de�neBZ = fR(0; 1f )gf2FZ .We 
laim that B = [Z2Z BZis a base of neighborhoods of 0 in Cr(X). To see this let r 2 r(X)+ and 
onsiderR(0; r). Now sin
e Z is a generating set for Znd[X ℄ it follows that there areZ1; � � � ; Zn 2 Z su
h that Z(r) � Z1 [ � � � [Zn. Sin
e Z is 
losed under unions itfollows that Z1 [ � � � [ Zn = Z 2 Z . At this point we know that R(0; r ^ �Z) �R(0; r) and so without loss of generality we suppose that Z(r) = Z. Therefore,sin
e 1r 2 C(
oz(�z)) we 
an �nd an element f 2 FZ su
h that 1r � f and thus,1f � r with Z( 1f ) = Z(�Z) = Z(r). It follows then that R(0; 1f ) � R(0; r).Therefore, B is a base of neighborhoods of 0 in Cr(X), when
e �(Cr(X)) �z(X) � dnX(FZ). �In Example 1.15 we 
omputed �(Cr(X)) for some spe
i�
 spa
es. We would
onsider more examples. In order to 
al
ulate �(Cr([0; 1℄) we �nd it useful toremind the reader of Martin's Axiom.



The regular topology on C(X) 453De�nition 1.17. A spa
e X is said to satisfy the 
ountable 
hain 
ondition(or 


) if there is no un
ountable family of pairwise disjoint non-empty opensubsets of X .Re
all that Martin's Axiom states that if X is a 
ompa
t Hausdor� whi
hsatis�es the 


, then X is not the union of � or fewer nowhere dense subsets forany � < 
.The proof of the next lemma is straightforward and left to the interested reader.Lemma 1.18. X has no almost P -points if and only if Znd[X ℄ 
overs X .Proposition 1.19 (MA). Let X be a 
ompa
t Hausdor� spa
e with no almostP -points and satisfying 


. Then z(X) = �(Cr(X)). In parti
ular, if X is eitherthe Cantor set or the unit interval, then �(Cr(X)) = 
.Proof: By assumption X has no almost P -points and so by Lemma 1.18 the
olle
tion of nowhere dense zerosets 
overs X . Let Z be a minimal generating setfor Znd[X ℄ and noti
e that Z is a 
over of X . Combining together X satisfying


 and Martin's Axiom we 
on
lude that Z has 
ardinality no smaller than 
,when
e z(X) � 
.Now any 
ozeroset of any spa
e is an F�-set and so in this 
ase, sin
e X is
ompa
t, every 
ozeroset of X is lo
ally 
ompa
t and �-
ompa
t. By [2, Propo-sition 2.2℄ we have that dn(C) = d for every proper dense 
ozeroset C. Thus,dnX (FZ) = d for any nontrivial 
olle
tion of nowhere dense zero sets Z . Sin
ed � 
 it follows from Theorem 1.16 that z(X) = �(Cr(X)). �2. When Cr(X) is a weak P -spa
eWe now turn our attention to determining when Cr(X) is a weak P -spa
e.Re
all that a weak P -spa
e is a spa
e for whi
h every 
ountable subset is 
losed.It follows that a metrizable weak P -spa
e is dis
rete.Re
all from [15℄ that a spa
e X is 
alled a dis
rete re�ning sequen
e spa
e orDRS-spa
e for short, if for every sequen
e of nonempty open sets, say fOngn2N,there is a dis
rete sequen
e of nonempty open sets, say fVngn2N, su
h that Vn �On for ea
h n 2 N. (Note that we do not require that On 6= Om for n 6= m. Bya dis
rete sequen
e fVngn2N we mean that ea
h point of x has a neighborhoodwhi
h interse
ts at most one of the Vn.)Van Douwen was interested in 
onstru
ting spa
esX for whi
h Cm(X) is a weakP -spa
e. This notion led him to the de�nition of a DRS-spa
e. Van Douwen wasable to prove that if X is a DRS-spa
e, then Cm(X) is a weak P -spa
e. In [7℄ theauthors prove the 
onverse. Our aim is to modify the de�nition of DRS-spa
e toobtain a similar 
hara
terization of when Cr(X) is a weak P -spa
e.Some fa
ts about DRS-spa
es (Proposition 5.5 of [15℄) in
lude that they arenever pseudo
ompa
t, they do not 
ontain isolated points, a dense subspa
e of aDRS-spa
e is a DRS-spa
e, and if X is a DRS-spa
e, then so is X � Y for anyspa
e Y .
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GovernDe�nition 2.1. We 
all X a weak DRS-spa
e if for every sequen
e of nonemptyopen sets, say fOngn2N, there is a sequen
e fVngn2N of nonempty open sets su
hthat for ea
h n 2 N Vn � On, and fVngn2N is a dis
rete family of non-emptysubsets when restri
ted to the 
omplement of some nowhere dense zeroset of X .Note that a weak DRS-spa
e 
ontains no isolated points.Remark 2.2. Clearly a DRS-spa
e is a weak DRS-spa
e. We will show later thatthere exist 
ompa
t weak DRS-spa
es. Sin
e a DRS-spa
e is never pseudo
ompa
tit follows that there are weak DRS-spa
es that are not DRS-spa
es. It will followfrom our main theorem that an almost P -spa
e is a DRS-spa
e if and only if it isa weak DRS-spa
e.Lemma 2.3. X is a weak DRS-spa
e if and only if for every sequen
e of nonemptyopen sets fOngn2N there exists a sequen
e of distin
t points fxng with xn 2 Onfor ea
h n 2 N, and an r 2 r(X)+, su
h that r(xn) = 1n for all n 2 N.Proof: If X is a weak DRS-spa
e, then given a sequen
e of nonempty setsfOngn2N there is a re�nement fVng whi
h is dis
rete in 
oz(v) for some v 2 r(X)+.We further assume that 0 � v � 1. Choose a distin
t sequen
e of points, sayfxngn2N, su
h that xn 2 Vn \ 
oz(v) for ea
h natural number n. Sin
e X is Ty-
hono�, for ea
h n 2 N, there exists an fn 2 C(
oz(v)) su
h that fn(xn) = nv(xn)and f(y) = 0 for all y 2 (X r Vn) \ 
oz(v). Sin
e the sequen
e fVn \ 
oz(v)g isa dis
rete sequen
e of open subsets of 
oz(v), it is straightforward to 
he
k thatthe fun
tion f =P fn belongs to C(
oz(v)). Next, let r = v(f W1)�1. Observethat r 2 C(X)+ and 
oz(r) = 
oz(v) so that r 2 r(X)+. Moreover, r(xn) = 1n forea
h n 2 N.The 
onverse is 
lear. �De�nition 2.4. Re
all that a �-base for X is a 
olle
tion of nonempty open sets,say U , su
h that for any open subset O of X there is some U 2 U su
h thatU � O. The �-weight of a spa
e is de�ned as�!(X) = �0 +minfjUj : U is a �-base for Xg:Sin
e every base for X is a �-base for X it follows that the weight of X ex
eedsits �-weight.Proposition 2.5. If X is a weak DRS-spa
e, then �!(X) > �0. In parti
ular,X is not se
ond 
ountable.Proof: Let X be a weak DRS-spa
e. Suppose, on the 
ontrary that fBng is a
ountable �-base of nonempty open sets. By Lemma 2.3 there is an r 2 r(X)+ anda sequen
e of distin
t points, say S = fxngn2N, su
h that xn 2 Bn and r(xn) = 1nfor ea
h natural number n. Sin
e fBngn2N is a �-base it is straightforward to
he
k that S is a 
ountable dense subset of X . Sin
e we know that X has noisolated points it follows that there exists a y 2 X r S su
h that r(y) > 0. Butby the density of S and 
ontinuity of r, r(y) = 0, a 
ontradi
tion. �



The regular topology on C(X) 455The proofs of the following two lemmas are similar to the proofs for a DRS-spa
e.Lemma 2.6. A nonempty open subset of a weak DRS-spa
e is a weak DRS-spa
e.Lemma 2.7. A nonempty dense subset of a weak DRS-spa
e is a weak DRS-spa
e.Lemma 2.8. Suppose X is a weak DRS-spa
e and Y is any spa
e. Then X � Yis a weak DRS-spa
e.Lemma 2.9. Suppose X is a spa
e 
ontaining a dense 
ozeroset, say U , for whi
hU is a weak DRS-spa
e. Then X is a weak DRS-spa
e.Proof: Let fOngn2N be a sequen
e of nonempty open subsets of X . The se-quen
e fOn \Ugn2N is a sequen
e of nonempty open subsets of U . Therefore, byhypothesis, there is a sequen
e fVngn2N of 
ozerosets of U with Vn � On \ U forea
h n and fVngn2N is dis
rete when restri
ted to a dense 
ozeroset of U . Sin
ea 
ozeroset of a 
ozeroset is a 
ozeroset (and a dense subspa
e of a dense subspa
eis dense) we have that in X , the sequen
e fVngn2 is dis
rete when restri
ted to adense 
ozeroset of X . �Corollary 2.10. A spa
e X is a weak DRS-spa
e if and only if ea
h dense
ozeroset of X is a weak DRS-spa
e.Proof: If X is a weak DRS-spa
e, then by Lemma 2.7 every dense 
ozeroset ofX is a weak DRS-spa
e. Conversely, let U be a dense 
ozeroset of X and so byLemma 2.9 X is as well. �Proposition 2.11. If fX�g is an un
ountable 
olle
tion of nontrivial spa
es,then QX� is a weak DRS-spa
e.Proof: Let fOng be a sequen
e of nonempty open sets in QX�. We may as-sume, without loss of generality, that the On's are basi
 open sets in the 
artesianprodu
t topology. Altogether, there are at most a 
ountable number of 
oordi-nates where the full spa
e does not o

ur in the produ
t expression of the On's.Sin
e � is an un
ountable index we 
an �nd a 
ountably in�nite subset fX�igof fX�g su
h that �(On) = QX�i for all n. Here � is the proje
tion of QX�onto QX�i . Now, sin
e these are all nontrivial Ty
hono� spa
es, there exist
ontinuous real-valued fun
tions si on X�i with minimum and maximum val-ues 0 and 1=i respe
tively. De�ne s on QX�i by s((x�i )) = supfsi(x�i )g. Tosee that s is 
ontinuous note that if a and b are real numbers, b > 0, and �kthe proje
tion of QX�i onto X�k , then s�1((a; 1℄) = S��1i (s�1i ((a; 1=i℄)) ands�1([0; b)) = Q s�1i ([0; b)) are open sets, so s�1((a; b)) is open. Moreover, s isa regular element in C(QX�i) whose image 
ontains 1=n for all n 2 N. Thusr = s� is also a regular element and one 
an �nd a sequen
e of points xn 2 Onwith r(xn) = 1=n. This proves the proposition. �The previous proposition provides examples of weak DRS-spa
es where nopoint is �rst 
ountable; also examples of 
ompa
t weak DRS-spa
es. Here is anexample with a point that satis�es �rst 
ountability.
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GovernExample 2.12. Let fXngn2N be a denumerable 
olle
tion of DRS-spa
es andlet Y be the topologi
al sum of these spa
es together with an extra point, say p.De�ne a neighborhood of p as any open subset O su
h that O \ Xn = Xn forall but a �nite number of n. Then p has a 
ountable base of neighborhoods andhen
e Y is not a DRS-spa
e. But by Lemma 2.9 Y is a weak DRS-spa
e.We now 
hara
terize when Cr(X) is a weak P -spa
e.Theorem 2.13. X is a weak DRS-spa
e if and only if Cr(X) is a weak P -spa
e.Proof: We �rst prove the ne
essity. Sin
e Cr(X) is a homogeneous spa
e it isenough to show that 0 is not in the 
losure of any sequen
e of non-zero elementsin Cr(X). Moreover, it is enough to show that 0 is not in the 
losure of anynonzero nonnegative sequen
e, say ffngn2N. Given the sequen
e of nonemptyopen sets f
oz(fn)gn2N, by Lemma 2.3, there is a distin
t sequen
e fxngn2N, anda positive regular element r 2 r(X)+, su
h that for every n 2 N, xn 2 
oz(fn)and r(xn) = 1n . Next, 
hoose a de
reasing sequen
e of positive real numbers,say fsngn2N, su
h that sn < minf 1n ; fn(xn)g for ea
h natural number n. Leth 2 C(R)+ su
h that h( 1n ) = sn and Z(h) = f0g. Then Z(r) = Z(h Æ r) and(h Æ r)(xn) < fn(xn) for ea
h n 2 N. The former implies that h Æ r 2 r(X)+ andthe latter for
es fn =2 R(0; h Æ r). Therefore, 0 =2 
lffng.Conversely, �rst observe that X has no isolated points. Next, let fOngn2N bea sequen
e of nonempty open sets. We assume, without loss of generality, thatOn = 
oz(fn) with 0 � fn � 1n . Sin
e Cr(X) is a weak P -spa
e there is anr 2 r(X)+ with fn =2 R(0; r) for all n. Thus one 
an �nd an xn 2 On with0 < r(xn) < fn(xn) � 1n . Moreover, sin
e X has no isolated points we 
an 
hoosethe sequen
e fxngn2N to be distin
t. It follows by Lemma 2.3 that X is a weakDRS-spa
e. �Remark 2.14. Re
all that there is a natural (ring) isomorphism between C�(X)and C(�X). Namely, for any f 2 C�(X), the unique extension of f to all of �Xis denoted by f�. A natural question is whether the subspa
e topology on C�(X)inherited from Cr(X) 
oin
ides with the r-topology on C(�X). It is known thatfor the m-topology, the analogous question is answered in the negative. Thisis be
ause it is possible for u 2 U(X)+ \ C�(X) but u� =2 U(�X)+. We nowanswer the question for the r-topology. It is be
ause of the next result that it isour opinion that the r-topology is a mu
h more well-behaved topology than them-topology.Proposition 2.15. The subspa
e topology on C�(X) inherited from Cr(X) ishomeomorphi
 to the r-topology on C(�X). Moreover, the two topologies onC�(X) inherited from Cm(X) and Cr(X) are equal.Proof: Observe that r 2 r(X)+ \ C�(X) if and only if r� 2 r(�X)+. Sin
ethe 
olle
tion fR(0; r ^ 1)gr2r(X)+ forms a base around 0 2 C�(X) with respe
tto the subspa
e topology inherited from Cr(X) and this 
olle
tion 
orrespondsexa
tly to the base around 0 2 C(�X), the result follows. �



The regular topology on C(X) 457Proposition 2.16. Cr(X) is a weak P -spa
e if and only if Cr(�X) is a weakP -spa
e.Proof: Sin
e a subspa
e of a weak P -spa
e is again a weak P -spa
e it followsthen that if Cr(X) is weak P -spa
e, then so is C�(X) with respe
t to the subspa
etopology. But by Proposition 2.15 we 
on
lude that Cr(�X) is a weak P -spa
e.Next, suppose that Cr(X) is not a weak P -spa
e. This implies that there is asequen
e of 
ontinuous fun
tions, say ffng, whi
h is not 
losed. By translation,we 
an assume that 0 2 
lffngn2Nr ffngn2N. It is straightforward to 
he
k that0 2 
lffn ^ 1gn2N r ffn ^ 1gn2N. But this implies that C�(X) is not a weakP -spa
e, i.e., Cr(�X) is not a weak P -spa
e. �Corollary 2.17. X is a weak DRS-spa
e if and only if �X is a weak DRS-spa
e. In parti
ular, the Stone- �Ce
h 
ompa
ti�
ation of a DRS-spa
e is a weakDRS-spa
e.3. A topologi
al 
hara
terization of separable weak DRS-spa
esThe motivating example for this se
tion is the following:Example 3.1. R is not a weak DRS-spa
e.In fa
t we shall prove more.De�nition 3.2. For a given x 2 X , a �-base of neighborhoods of x is a 
olle
tionof nonempty open subsets of X , say U , su
h that for any neighborhood O of xthere is a U 2 U su
h that U � O. We de�ne the �-
hara
ter of x as��(x;X) = �0 +minfjUj : U is a �-base of neighborhoods of xg;and the �-
hara
ter of X as��(X) = supf��(x;X) : x 2 Xg:As with the weight we always have �(X) � ��(X).In [15℄ the author showed that a DRS-spa
e 
annot have any points of 
ount-able �-
hara
ter. He then showed that for a 
ountable spa
e that this was alsosuÆ
ient. Formally, we have:Theorem 3.3 ([15℄). Let X be a 
ountable spa
e. X is a DRS-spa
e if and onlyif ��(x;X) > �0 for all x 2 X .In a weak DRS-spa
e you 
an have points of 
ountable �-
hara
ter. However,a weak DRS-spa
e 
annot have a 
ountable �-base, as we presently show. Later,we will generalize Theorem 3.3 to separable spa
es.Lemma 3.4. Let X be a separable spa
e with a dense sequen
e of distin
t points,say fxngn2N, su
h that ��(xn; X) > �0 for all n. Given a sequen
e of nonemptyopen sets fU2igi2N, there is a 
over of fxngn2N 
onsisting of a sequen
e of disjointnonempty open sets fVngn2N su
h that V2i � U2i for all i 2 N. Moreover, SVi isa dense 
ozeroset of X .
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GovernProof: First of all we note that by hypothesis none of the xn are isolated points.Let U2i�1 = X for all i 2 N and let v1 = x1. Sin
e ��(v1; X) > �0 there is a
ozeroset O1 with v1 2 O1 � U1 su
h that Ui 6� O1 for all i > 1. Choosef1 2 C(X)+ su
h that f(v1) = 1 and f(y) = 0 for all y 2 X rO1. Sin
e fxngn2Nis a 
ountable set, there is an r1 2 (0; 1) su
h that f�11 (r1) \ fxngn2N = ;. LetW1 = f�11 [0; r1) V1 = f�11 (r1;1℄and observe that W1 and V1 are disjoint 
ozerosets of X with V1 � O1 � U1.Note that Ui \W1 6= ; for all i > 1. We use re
ursion now.Suppose we have a pair of 
olle
tions of 
ozerosets, say fWigni=1 and fVigni=1,and a sequen
e fvigni=1 � fxigi2N su
h that 1) Wi \ Vi = ; for ea
h i = 1; � � � ; n,2) vi 2 Vi and vi 6= vj for ea
h 1 � i < j � n, 3) Ui \ (Tnj=1Wj) 6= ; for ea
hi > n, 4) for ea
h i = 1; � � � ; n, Vi � Ui, and 5) fVigni=1 is pairwise disjoint. Nowlet in+1 = min�i 2 N : xi 2 Un+1 \ � n\j=1Wj��and set vn+1 = xin+1 . Sin
e for ea
h i = 1; � � � ; n we have vi 2 Vi and hen
evi =2 Wi it follows that vi 6= vn+1. Choose a 
ozeroset neighborhood of vn+1, sayOn+1 su
h that vn+1 2 On+1 � Un+1 \ (Tnj=1Wj) and Uk \ (Tnj=1Wj) * On+1for all k > n. We 
an do this be
ause ��(vn+1; X) > �0. Next, 
hoose a fun
tionf 2 C(X)+ su
h that f(vn+1) = 1 and f(y) = 0 for all y 2 X r On+1. There isan 0 < rn+1 < 1 su
h that f(xk) 6= r for all k 2 N. Let Wn+1 = f�1([0; rn+1))and Vn+1 = f�1((rn+1;1)). Sin
e Vn+1 � On+1 � Un+1 \ (Tnj=1Wj) it followsthat Vn+1 � Un+1 and that Vn+1 \ Vi = ; for all i = 1; � � � ; n. Thus, our newpair of 
olle
tions of 
ozerosets fWign+1i=1 and fVign+1i=1 satis�es the properties 1)through 5) from above.By indu
tion there is a sequen
e, fVngn2N, of pairwise disjoint 
ozeroset withVi � Ui for all i 2 N. Letting V = Si2N Vn we get that sin
e V is a 
ountableunion of 
ozerosets it is a 
ozeroset. Furthermore, it is straightforward to 
he
kthat fxigi2N � Si2N Vi so that V is a dense subset of X . This 
on
ludes the proofof the lemma. �We prove the main result of this se
tion:Theorem 3.5. Let X be a separable spa
e. X is a weak DRS-spa
e if and only ifthere exists a 
ountable dense subset of X , say fxjgj2N, su
h that ��(xj ; X) > �0for all j 2 N.Proof: Suppose X is a weak DRS-spa
e. Note that there 
annot exist a 
ount-able dense subset of X , say fxjgj2N, su
h that ��(xj ; X) = �0 for every j 2 N. Ifso then it would follow that X has 
ountable �-weight, 
ontradi
ting Theorem 2.5.Thus, let S be a 
ountable dense subset of X and split S into two disjoint sets,S0 and S r S0, where x 2 S belongs to S0 if and only ��(x;X) = �0. If S r S0is a dense subset of X , we are done. Otherwise let O = X r 
lX(S r S0) and



The regular topology on C(X) 459T = S0 \ O. Then T is a dense subset of the nonempty set O. But sin
e O is anopen subset of X it follows that ��(x;O) = �0 for ea
h x 2 T and so O 
annotbe a weak DRS-spa
e, 
ontradi
ting Lemma 2.6.As for the suÆ
ien
y suppose fxjgj2N is a 
ountable dense subset (of distin
tpoints) of X with ��(xj ; X) > �0 for ea
h j 2 N. Let fUngn2N be a sequen
eof nonempty open sets of X . By Lemma 3.4 we 
an �nd a sequen
e of pairwisedisjoint 
ozerosets, say fVngn2N, whose union is a dense 
ozeroset. It follows thatwhen restri
ted to the dense 
ozeroset the 
olle
tion is dis
rete. Therefore, X isa weak DRS-spa
e. �Theorem 3.6. Suppose X satis�es the property that every dense open set 
on-tains a dense 
ozeroset, e.g. a perfe
tly normal spa
e. Furthermore, suppose that��(x;X) = �0 for all x 2 X . Then X is a weak DRS-spa
e if and only if X isnowhere separable.Proof: To prove the ne
essity observe that any weak DRS-spa
e satisfying��(x;X) = �0 for all x 2 X will be nowhere separable. This follows from 2.6 thatif O is any open subset of X , then O is a weak DRS-spa
e. It is straightforwardto 
he
k that ��(x;O) = �0 for all x 2 O. But this 
ontradi
ts Theorem 3.5.Conversely, suppose X is nowhere separable and let ffigi2N be a sequen
e of
ontinuous fun
tions all of whi
h are di�erent than 0. Without loss of generalitywe assume that fi > 0. Choose a sequen
e fxigi2N of distin
t points with xi 2
oz(fi). Let T = 
lfxigi2N. We 
laim that T is a nowhere dense subset of X . If itis not, then intT 6= ; is an open subset of a separable set, hen
e separable. This
ontradi
ts that X is nowhere separable. Next, sin
e XrT is a dense open subsetof X we 
an apply the hypothesis and 
on
lude that X r T densely 
ontains a
ozeroset, say 
oz(r). Observe that 
oz(r) is a dense subset of X . Therefore,r 2 r(X)+. Finally, 0 = r(xi) < fi(xi) so that 0 =2 
lffigi2N; when
e X is a weakDRS-spa
e. �Corollary 3.7. Suppose X is a metri
 spa
e. X is a weak DRS-spa
e if and onlyif X is nowhere separable.Example 3.8. Let E be the (Iliadis) absolute of the spa
e [0; 1℄. It is known thatE has 
ountable �-weight (see [14℄). In Example 4.6 of [7℄ it is shown that E isnot a DRS-spa
e. Sin
e E has 
ountable �-weight it follows that ��(x;E) = �0for all x 2 E and so, by Theorem 3.5, E is not a weak DRS-spa
e.For the purpose of this example (and throughout the rest of the arti
le) by a
rowded spa
e we mean a spa
e without isolated points.Not every 
rowded basi
ally dis
onne
ted spa
e is a weak DRS-spa
e eventhough every 
rowded P -spa
e is a DRS-spa
e, and so every basi
ally dis
onne
tedspa
e without isolated points whi
h is of the form �X for X a P -spa
e is a weakDRS-spa
e.We �nish this arti
le by showing that even though Cr(X) might not be a weakP -spa
e for a 
rowded basi
ally dis
onne
ted spa
e, it does share a property with
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Governweak P -spa
es. Re
all from [9℄ that a spa
e X is 
alled a 
ozero 
omplementedspa
e if for every 
ozeroset C � X there is a 
ozeroset C 0 su
h that C \ C 0 = ;and C [ C 0 is a dense subset of X . Basi
ally dis
onne
ted spa
es and perfe
tlynormal spa
es are 
ozero 
omplemented.Remark 3.9. Observe that if x 2 X is an isolated point and we let f = �fxgdenote the 
hara
teristi
 fun
tion on fxg, then the sequen
e f 1nfgn2N 
onvergesto 0 in Cr(X).Proposition 3.10. Suppose X is a 
rowded 
ozero 
omplemented spa
e. Thenthere are no nontrivial 
onvergent sequen
es in Cr(X).Proof: Note that if su
h a sequen
e exists then there is one 
onverging to 0.Let f
oz(fj)gj2N be a sequen
e of nonempty 
ozerosets of X with fj 2 C(X)+.Sin
e X has no isolated points we 
an �nd a subsequen
e S � N and a dis
retesequen
e of distin
t points, say fxngj2S , su
h that xn 2 
oz(fn). This meansthat there is a dis
rete sequen
e of 
ozerosets, say fVngn2S , whi
h is pairwisedisjoint and so that xn 2 Vn � 
oz(fn) for ea
h n 2 S. Now, the union C of these
ozerosets is again a 
ozero set, say C = 
oz(f). Furthermore, we 
an assumethat 0 < f(xn) < fn(xn) for ea
h n 2 S. By hypothesis, there is a 
ozeroset C 0so that C \ C 0 = ; and C [ C 0 is a dense subset of X . Let g 2 C(X)+ satisfyC 0 = 
oz(g). Consider the fun
tion f + g 2 C(X). Sin
e 
oz(f + g) = C [ C 0 itfollows that f + g 2 r(X)+. Therefore, 0 =2 
lf fngn2S , when
e 0 is not the limitof the sequen
e ffjgj2N. �Remark 3.11. It follows from Corollary 3.7 and Proposition 3.10 that Cr(R) isnot a weak P -spa
e yet 0 is not a limit of a non-trivial 
onvergent sequen
e offun
tions. We 
on
lude with the following question. Does there exist a basi
allydis
onne
ted spa
e X for whi
h ��(x;X) = �0 for all x 2 X whi
h is nowhereseparable yet X is not a weak DRS-spa
e?A
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