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On a paraboli integrodi�erentialequation of Barbashin typeB.G. PahpatteAbstrat. In the present paper we study some basi qualitative properties ofsolutions of a nonlinear paraboli integrodi�erential equation of Barbashin typewhih ours frequently in appliations. The fundamental integral inequalitywith expliit estimate is used to establish the results.Keywords: paraboli integrodi�erential equation, Barbashin type, integral in-equality, expliit estimate, approximate solutions, ontinuous dependene on pa-rametersClassi�ation: 34K10, 35R101. IntrodutionIn [2℄, E.A. Barbashin �rst initiated the study of the integrodi�erential equationof the form(1.0) ��tu(t; x) = (t; x)u(t; x) + Z ba k(t; x; y)u(t; y) dy + f(t; x);whih arises in mathematial modelling of many applied problems (see [1, Se-tion 19℄). The equation (1.0) has been studied by many authors and is nowknown in the literature as integrodi�erential equation of Barbashin type or sim-ply Barbashin equation (see [1, p. 1℄). In this paper we onsider the nonlinearintegrodi�erential equation of Barbashin type(1.1) ��tu(t; x) = f(t; x; u(t; x)) + Z ba g(t; x; y; u(t; y)) dy + h(t; x);whih satis�es the initial ondition(1.2) u (0; x) = u0 (x) ;for (t; x) 2 �, where f 2 C(� � R;R), g 2 C(� � I � R;R), h 2 C(�;R),u0 2 C(I;R) are given funtions and u is the unknown funtion to be found.Here I = [a; b℄ (a < b), R+ = [0;1) are the given subsets of R, the set of realnumbers, � = R+ � I and C(D1; D2) denotes the lass of ontinuous funtionsfrom the set D1 to the set D2. The problem of existene of solutions of (1.1){(1.2) an be dealt with the method employed in [4℄{[6℄ (see also [3, p. 273℄). For



392 B.G. Pagpattedetailed aount on the study of suh equations, see [1℄ and the referenes itedtherein.In the general ase, solving (1.1){(1.2) is a highly nontrivial problem. In dealingwith the equations like (1.1){(1.2), the basi questions to be answered are:(i) if solutions do exist, what are their nature ?(ii) how an we �nd them or losely approximate them ?The study of suh questions is interesting and needs a fresh outlook for handlingthe qualitative properties of solutions of (1.1){(1.2). In the present work, westudy some fundamental qualitative properties of solutions of (1.1){(1.2) by usinga ertain variant of the integral inequality with expliit estimate established bythe present author in [8℄. A partiular feature of our approah here is that it iselementary and provide some basi results for future advaned studies in the �eld.2. A basi integral inequalityWe require the following variant of the integral inequality given in [8℄.Lemma. Let w; p 2 C(�;R+ ), q 2 C(�� I;R+ ) and let  � 0 be a onstant. If(2.1) w(t; x) � + Z t0 "p(s; x)w(s; x) + Z ba q(s; x; y)w(s; y) dy# dsfor (t; x) 2 �, then(2.2) w(t; x) � P (t; x) exp Z t0 Z ba q (s; x; y)P (s; y) dy ds!for (t; x) 2 �, where(2.3) P (t; x) = exp�Z t0 p(s; x) ds� :Proof: De�ne a funtion m(t; x) by(2.4) m(t; x) = + Z t0 Z ba q(s; x; y)w(s; y) dy ds:Then (2.1) an be restated as(2.5) w(t; x) � m(t; x) + Z t0 p (s; x)w(s; x) ds:It is easy to observe that m(t; x) is nonnegative for (t; x) 2 � and nondereasingin t 2 R+ for every x 2 I . Treating (2.5) as one-dimensional integral inequality



On a paraboli integrodi�erential equation of Barbashin type 393in t 2 R+ for every x 2 I and a suitable appliation of the inequality given in [4,p. 12 and also pp. 325{326℄ yields(2.6) w (t; x) � m (t; x)P (t; x) :From (2.4) and (2.6), we observe that(2.7) m(t; x) � + Z t0 Z ba q(s; x; y)P (s; y)m(s; y) dy ds:Setting(2.8) e(s) = Z ba q(s; x; y)P (s; y)m(s; y) dy;for every x 2 I , the inequality (2.7) an be restated as(2.9) m (t; x) � + Z t0 e (s) ds:Let(2.10) z (t) = + Z t0 e(s) ds:Then z(0) =  and(2.11) m (t; x) � z (t)for t 2 R+ and for every x 2 I . From (2.10), (2.8), (2.11), we observe that(2.12) z0(t) = e(t) = Z ba q(t; x; y)P (t; y)m(t; y) dy� z(t) Z ba q(t; x; y)P (t; y) dy:The inequality (2.12) implies(2.13) z(t) �  exp Z t0 Z ba q(s; x; y)P (s; y) dy ds! :The required inequality in (2.2) follows from (2.13), (2.10) and (2.6). �3. Estimates of the solutionsFirst we shall give the following theorem onerning the estimate of the solutionof (1.1){(1.2).



394 B.G. PagpatteTheorem 1. Suppose that the funtions f; g; h; u0 in (1.1){(1.2) satisfy the on-ditions jf(t; x; u)� f(t; x; �u)j � (t; x) ju� �uj ;(3.1) jg(t; x; y; u)� g(t; x; y; �u)j � k(t; x; y) ju� �uj ;(3.2)and(3.3) d = sup(t;x)2� ������(t; x) + Z t0 "f(s; x; 0) + Z ba g(s; x; y; 0) dy# ds����� <1;where  2 C(�;R+ ), k 2 C(�� I;R+ ) and(3.4) �(t; x) = u0(x) + Z t0 h(s; x) ds:If u(t; x) is any solution of (1.1){(1.2) on �, then(3.5) ju(t; x)j � dC(t; x) exp Z t0 Z ba k(s; x; y)C(s; y) dy ds!for (t; x) 2 �, where(3.6) C(t; x) = exp�Z t0 (s; x) ds� :Proof: Using the fat that u(t; x) is a solution of (1.1){(1.2) on � and thehypotheses, we observe that
(3.7)

ju(t; x)j = ������(t; x) + Z t0 " ff(s; x; u(s; x))� f(s; x; 0) + f(s; x; 0)g+ Z ba fg(s; x; y; u(s; y))� g(s; x; y; 0) + g(s; x; y; 0)g dy# ds������ ������(t; x) + Z t0 "f(s; x; 0) + Z ba g(s; x; y; 0) dy# ds�����+ Z t0 " jf(s; x; u(s; x))� f(s; x; 0)j+ Z ba jg(s; x; y; u(s; y))� g(s; x; y; 0)j dy# ds� d+ Z t0 "(s; x) ju(s; x)j+ Z ba k(s; x; y) ju(s; y)j dy# ds:



On a paraboli integrodi�erential equation of Barbashin type 395Now an appliation of Lemma to (3.7) yields (3.5). �Remark 1. We note that the estimate obtained in (3.5) provides a bound on thesolution u(t; x) of (1.1){(1.2) on �. In Theorem 1, if we assume thatZ 10 (s; x) ds <1; Z 10 Z ba k(s; x; y)C(s; y) dy ds <1;then the solution u(t; x) of (1.1){(1.2) is bounded on �.A slight variant of Theorem 1 is embodied in the following theorem.Theorem 2. Suppose that the funtions f; g; h; u0 in (1.1){(1.2) satisfy the on-ditions (3:1), (3:2) and(3.8) �d = Z 10 "jf(s; x; �(s; x))j + Z ba jg(s; x; y; �(s; y))j dy# ds <1;where �(t; x) is de�ned by (3:4). If u(t; x) is any solution of (1.1){(1.2) on �,then(3.9) ju(t; x)� �(t; x)j � �dC(t; x) exp Z t0 Z ba k(s; x; y)C(s; y) dy ds! ;for (t; x) 2 �, where C(t; x) is given by (3:6).The proof follows by the similar arguments as in the proof of Theorem 1 withsuitable modi�ations. We omit the details.4. Approximate solutionsIn this setion we fous on the approximation of solutions to (1.1){(1.2). Weobtain onditions under whih we an estimate errors between true solutions andapproximate solutions.Let u(t; x) 2 C(�;R), let ��tu(t; x) exist on � and satisfy the inequality����� ��tu(t; x)� f(t; x; u(t; x))� Z ba g(t; x; y; u(t; y)) dy � h(t; x)����� � ";for a given onstant " � 0, where it is supposed that (1.2) holds. Then we allu(t; x) the "-approximate solution with respet to the equation (1.1).Our main result in this setion onerning the estimate on the di�erene be-tween the two approximate solutions of (1.1){(1.2) is given in the following theo-rem.



396 B.G. PagpatteTheorem 3. Suppose that the funtions f; g in (1:1) satisfy the onditions (3:1),(3:2). Let ui(t; x) (i = 1; 2), (t; x) 2 � be respetively "i-approximate solutionsof (1:1) with(4.1) ui (0; x) = �ui (x) ;where �ui 2 C(I;R), and let(4.2) �i(t; x) = �ui(x) + Z t0 h(s; x) ds:Suppose that(4.3) j�1(t; x)� �2 (t; x)j � Æ;where Æ � 0 is a onstant and(4.4) M = supt2R+ [("1 + "2) t+ Æ℄ <1:Then(4.5) ju1(t; x)� u2(t; x)j �MC(t; x) exp Z t0 Z ba k(s; x; y)C(s; y) dy ds!for (t; x) 2 �, where C(t; x) is given by (3:6).Proof: Sine ui(t; x) (i = 1; 2), (t; x) 2 � are respetively "i-approximate solu-tions of (1.1) with (4.1) on �, we have(4.6) ����� ��tui(t; x) � f (t; x; ui(t; x))� Z ba g (t; x; y; ui(t; y)) dy � h(t; x)����� � "i:By taking t = s in (4.6) and integrating both sides with respet to s from 0 to tfor t 2 R+ , we get"it � Z t0 ����� ��sui(s; x)� f (s; x; ui(s; x)) � Z ba g (s; x; y; ui(s; y)) dy � h(s; x)����� ds(4.7)� ����� Z t0 ( ��sui(s; x)� f (s; x; ui(s; x))� Z ba g (s; x; y; ui(s; y)) dy � h(s; x)) ds�����= �����ui(t; x)� �i(t; x) � Z t0 "f (s; x; ui(s; x)) + Z ba g (s; x; y; ui(s; y)) dy# ds����� :



On a paraboli integrodi�erential equation of Barbashin type 397From (4.7) and using the elementary inequalities(4.8) jv � zj � jvj+ jzj; jvj � jzj � jv � zj;for v; z 2 R+ , we observe that("1 + "2) t � �����u1 (t; x)� �1(t; x)(4.9)� Z t0 "f (s; x; u1(s; x)) + Z ba g (s; x; y; u1(s; y)) dy# ds�����+ �����u2(t; x) � �2(t; x) � Z t0 "f (s; x; u2(s; x)) + Z ba g (s; x; y; u2(s; y)) dy# ds������ �����(u1(t; x)� �1(t; x)� Z t0 "f (s; x; u1(s; x)) + Z ba g (s; x; y; u1(s; y)) dy# ds)�(u2(t; x) � �2(t; x) � Z t0 "f (s; x; u2(s; x)) + Z ba g (s; x; y; u2(s; y)) dy# ds)������ ju1 (t; x)� u2(t; x)j � j�1(t; x)� �2 (t; x)j� �����Z t0 "f (s; x; u1(s; x)) + Z ba g (s; x; y; u1(s; y)) dy# ds� Z t0 "f (s; x; u2(s; x)) + Z ba g (s; x; y; u2(s; y)) dy# ds����� :Let u(t; x) = ju1(t; x)�u2(t; x)j, (t; x) 2 �. From (4.9) and using the hypotheses,we observe that(4.10) u(t; x) � ("1 + "2) t+ Æ + Z t0 "(s; x)u(s; x) + Z ba k(s; x; y)u(s; y) dy# ds�M + Z t0 "(s; x)u(s; x) + Z ba k(s; x; y)u(s; y) dy# ds:Now an appliation of Lemma to (4.10) yields (4.5). �Remark 2. In ase u1(t; x) is a solution of (1.1) with u1(0; x) = �u1(x), we have"1 = 0 and from (4.5), we see that u2(t; x) ! u1(t; x) as "2 ! "1 and Æ ! 0.Furthermore, if we put (i) "1 = "2 = 0, �u1(x) = �u2(x) in (4.5), then the uniquenessof solutions of (1.1) is established and (ii) "1 = "2 = 0 in (4.5), then we get thebound whih shows the dependeny of solutions of (1.1) on given initial values.



398 B.G. PagpatteConsider (1.1){(1.2) together with the following integrodi�erential equation(4.11) ��tv (t; x) = �f (t; x; v (t; x)) + Z ba �g (t; x; y; v (t; y)) dy + �h(t; x);with the given initial ondition(4.12) v (0; x) = v0 (x)for (t; x) 2 �, where �f 2 C(� � R;R), �g 2 C(� � I � R;R), �h 2 C(�;R),v0 2 C(I;R).In the following theorem we provide onditions onerning the losedness ofsolutions of (1.1){(1.2) and (4.11){(4.12).Theorem 4. Suppose that the funtions f; g in (1:1) satisfy the onditions (3:1),(3:2), and that there exist onstants �"i � 0, �Æi � 0 (i = 1; 2) suh that��f(t; x; u)� �f(t; x; u)�� � �"1;(4.13) jg(t; x; y; u)� �g(t; x; y; u)j � �"2;(4.14) ��h(t; x)� �h(t; x)�� � �Æ1;(4.15) ju0(x) � v0(x)j � �Æ2;(4.16)where f; g; h; u0 and �f; �g; �h; v0 are the funtions in (1:1){(1:2) and (4:11){(4:12)and(4.17) �M = supt2R+ ��Æ2 + ��Æ1 + �"1 + �"2(b� a)� t� <1:Let u(t; x) and v(t; x) be respetively the solutions of (1:1){(1:2) and (4:11){(4:12)for (t; x) 2 �. Then(4.18) ju(t; x)� v(t; x)j � �MC(t; x) exp Z t0 Z ba k(s; x; y)C(s; y) dy ds! ;for (t; x) 2 �, where C(t; x) is given by (3:6).Proof: Let z(t; x) = ju(t; x)� v(t; x)j, (t; x) 2 �. Using the fats that u(t; x),v(t; x) are respetively the solutions of (1.1){(1.2), (4.11){(4.12) on � and thehypotheses, we observe thatz(t; x) � ����u0(x) + Z t0 h(s; x) ds� v0(x)� Z t0 �h(s; x) ds����(4.19)+ Z t0 [jf(s; x; u(s; x))� f(s; x; v(s; x))j + ��f(s; x; v(s; x))� �f(s; x; v(s; x))��



On a paraboli integrodi�erential equation of Barbashin type 399+ Z ba fjg(s; x; y; u(s; y))� g(s; x; y; v(s; y))j+ jg(s; x; y; v(s; y))� �g(s; x; y; v(s; y))jg dy℄ ds� ju0(x)� v0(x)j+ Z t0 ��h(s; x)� �h (s; x)�� ds+ Z t0 "(s; x)z(s; x) + �"1 + Z ba fk(s; x; y)z(s; y) + �"2g dy# ds� ��Æ2 + �Æ1t+ �"1t+ �"2(b� a)t�+ Z t0 "(s; x)z(s; x) + Z ba k(s; x; y)z(s; y) dy# ds� �M + Z t0 "(s; x)z(s; x) + Z ba k(s; x; y)z(s; y) dy# ds:Now an appliation of Lemma to (4.19) yields (4.18). �Remark 3. We note that the result given in Theorem 4 relates the solutions of(1.1){(1.2) and (4.11){(4.12) in the sense that if f; g; h; u0 are respetively loseto �f; �g; �h; v0; then the solutions of (1.1){(1.2) and (4.11){(4.12) are also losetogether.5. Continuous dependene on parametersIn this setion we shall deal with the ontinuous dependene of solutions ofequations of the form (1.1) on parameters.We onsider the following integrodi�erential equations of Barbashin type��tu(t; x) = f(t; x; u(t; x); �) + Z ba g(t; x; y; u(t; y); �) dy + h(t; x);(5.1) ��tu(t; x) = f(t; x; u(t; x); �0) + Z ba g(t; x; y; u(t; y); �0) dy + h(t; x);(5.2)with the given initial ondition (1.2), where f 2 C(��R �R;R), g 2 C(�� I �R � R;R), h 2 C(�;R) and �, �0 are parameters.The following theorem deals with the dependeny of solutions of (5.1){(1.2)and (5.2){(1.2) on parameters.Theorem 5. Suppose that the funtions f; g in (5.1), (5.2) satisfy the onditionsjf(t; x; u; �)� f(t; x; �u; �)j � �(t; x) ju� �uj ;(5.3) jf(t; x; u; �)� f (t; x; u; �0)j � n1(t; x) j�� �0j ;(5.4) jg(t; x; y; u; �)� g(t; x; y; �u; �)j � �k(t; x; y) ju� �uj ;(5.5) jg(t; x; y; u; �)� g (t; x; y; u; �0)j � n2(t; x; y) j�� �0j ;(5.6)



400 B.G. Pagpattewhere �; n1 2 C(�;R+ ), �k; n2 2 C(�� I;R+ ) and(5.7) N = sup(t;x)2�Z t0 "n1(s; x) + Z ba n2(s; x; y) dy# ds <1:Let u1(t; x) and u2(t; x) be respetively, the solutions of (5:1){(1:2) and (5:2){(1:2)on �. Then(5.8) ju1(t; x) � u2(t; x)j � j�� �0j �C(t; x) exp Z t0 Z ba �k(s; x; y) �C(s; y) dy ds!for (t; x) 2 �, where �C(t; x) is given by (3:6) with (t; x) replaed by �(t; x).The proof an be ompleted by following the proofs of the above given resultsand losely looking at the proof of Theorem 3.3 given in [7℄. We leave the detailsto the reader.Remark 4. We note that, by obtaining a suitable variant of Lemma one anobtain results similar to those given above to the following Barbashin type inte-grodi�erential equation(5.9) ��tu(t; x) = f(t; x; u(t; x)) + ZG k(t; x; y; u(t; y)) dy + h(t; x);with the given initial ondition, under some suitable onditions on the funtionsinvolved in (5.10), where G is a ompat subset of Rn . For more results on theequations of the type (5.10), we refer the interested readers to [1℄, [4℄{[6℄ and thereferenes ited therein.6. Remarks and ommentsIn [1℄, the topologial, monotoniity and variational methods are used to studythe various Barbashin type integrodi�erential equations and also partial integralequations of Barbashin type. The results obtained in this paper point out thewell known truth that the tehnique of inequalities with expliit estimates is re-ally a powerful tool for the study of important qualitative properties of solutionsof (1.1){(1.2). Suppose we are interested in �nding a solution u of the integrod-i�erential equation of Barbashin type (1.0) satisfying the initial ondition (1.2).Putting ��tu(t; x) := w(t; x) in (1.0){(1.2), we arrive at the equation (see [1, p. 5℄)(6.1) w(t; x) = h(t; x) + Z t0 (t; x)w(�; x) d� + Z t0 Z ba k(t; x; �)w(�; �) d� d�;where(6.2) h(t; x) = f(t; x) + (t; x)u0(x) + Z ba k(t; x; �)u0(�) d�:
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