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Commutative subloop-free loopsMartin Beaudry�, Louis MarhandAbstrat. We desribe, in a onstrutive way, a family of ommutative loops ofodd order, n � 7, whih have no nontrivial subloops and whose multipliationgroup is isomorphi to the alternating group An.Keywords: loops, multipliation group, alternating groupClassi�ation: 20N05, 20D061. IntrodutionWe say that a �nite loop is subloop-free whenever it does not have propersubloops, that is, other than itself and the trivial one-element loop. For example,a redued subsquare-free latin square (also alled N1 latin square) is the Cayleytable of a subloop-free loop. Subsquare-free latin squares are proved to exist forevery n not of the form 2i3j , with i; j � 1 [13℄, and are onjetured to exist forevery n � 5. It is also fairly easy to build a subloop-free loop of any order n � 5by an ad ho method, suh as speifying the top half of a Cayley table (a bottomhalf always exists [11℄) where the entries equal to the identity are loated in suha way that the table annot be ompleted in any way that reates the table ofa subloop.While it is well-known that the yli groups of prime order are the only �niteassoiative subloop-free loops, it turns out that �nite, nonassoiative subloop-free loops are numerous and diverse. We substantiate this statement by provingthat, for every odd n � 7, there exist subloop-free loops whih simultaneouslysatisfy the onditions of being ommutative and having a multipliation groupisomorphi to the alternating group An.Theorem 1.1. For every odd n � 7, there exists a ommutative subloop-freeloop of order n whose multipliation group is the alternating group An.We leave aside the loops of even order. Indeed, it is a well-known fat, that ina symmetri n�n latin square the number of ourrenes of a given objet on thediagonal has the same parity as n; applying this to the identity element impliesthat every ommutative loop of even order has a subgroup isomorphi to Z2.We refer the reader to [3℄, [6℄, [16℄ for detailed bakground on loops. In thisartile, all loops are �nite. Let G be a loop of order n; its operation is denoted�Corresponding author.



474 M. Beaudry, L. Marhandby an asterisk, e.g. a � b = . To eah loop element a we assoiate its right andleft translations , Ra and La respetively, de�ned by Ra(b) = b � a and La(b) =a � b. Both mappings are permutations of G. The translations generate M(G) =hf La; Ra j a 2 G gi, the multipliation group of G. Note that in a ommutativeloop, we have La = Ra for every a; we then speak of the translation of a and usethe notation La.Our desriptions and proofs use only basi notions and fats on groups andpermutations; they an be found in fundamental texts suh as [12℄, [18℄ and weassume that they are familiar to the reader.We denote by G = f0; 1; : : : ; n� 1g the underlying set of a loop G of order n.To make our desriptions simpler, we write them as if G were a subset of N anduse relations and operations usually enountered in these ontexts, suh as \�"and \+". We denote by Sn the symmetri group overG and by An the alternatinggroup, whih is the set of all even permutations of G. In this artile we identifyan even permutation by verifying that its yli representation ontains an evennumber of yles of even length.We regard the multipliation groupM(G) as a subset of Sn; we therefore writestatements like \M(G) = Sn" instead of \M(G) is isomorphi to Sn".For a given loop, most of our work is done on its Cayley table, where rows andolumns are labelled with the loop's elements, and where entry [a; b℄ ontains thevalue a � b. It is well known that a �nite groupoid is a loop i� its Cayley table isa redued latin square; it is ommutative i� the table is symmetri.The notion of multipliation group of a loop was introdued by Albert [1℄. Theproperties of this group have been the objet of extensive study, in partiular thequestion of whih groups an be the multipliative group of a nonassoiative loop.The multipliation group of almost every quasigroup of order n is Sn [4℄, [10℄, andit is onjetured that the same holds for loops [5℄. Among those multipliationgroups other than Sn, the alternating group An an be found for almost everyorder [8℄; out result is thus an alternate proof of this statement for the loops ofodd order n � 7. Conversely, it was proved that ertain groups annot be themultipliation group of a loop, for example the linear groups PSL(2; q) [17℄.2. Proof of the theoremWe prove the theorem by building a family of appropriate loops for n = 37 andeah n � 43. The smaller values of n are dealt with in the Appendix, where wegive an example of a loop for every odd order n � 41 not overed by our proof.The rest of this setion is strutured as follows. First, we build a n�n symmet-ri partially de�ned latin square, whih we all the template, and we show thatit an be ompleted to yield the Cayley table of a ommutative subloop-free loopwhose multipliation group has An as a subgroup, provided that an additionalonstraint is respeted. Next, we show how to �ll the template in order to ensurethat M(G) = An.From now on, let n = 2p + 1. We denote by [i; j℄ the ell loated at theintersetion of row i and olumn j. We all an entry the ontent of this ell and



Commutative subloop-free loops 47519 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 360 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 361 20 3 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 212 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 33 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 2 04 23 24 25 26 27 28 29 30 31 32 33 34 35 36 1 0 3 25 24 25 26 27 28 29 30 31 32 33 34 35 36 2 0 3 4 16 25 26 27 28 29 30 31 32 33 34 35 36 3 1 5 2 0 47 26 27 28 29 30 31 32 33 34 35 36 1 2 0 3 4 5 68 27 28 29 30 31 32 33 34 35 36 ? ? ? ? 4 5 6 79 28 29 30 31 32 33 34 35 36 ? ? ? ? ? 2 6 7 810 29 30 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 911 30 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 1012 31 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 10 1113 32 33 34 35 36 ? ? ? ? ? ? 6 7 8 9 10 11 1214 33 34 35 36 1 ? ? ? ? ? 6 7 8 9 10 11 12 1315 34 35 36 2 0 ? ? ? ? 6 7 8 9 10 11 12 13 1416 35 36 3 1 5 ? ? ? 6 7 8 9 10 11 12 13 14 1517 36 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 1618 1 2 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1719 3 0 5 4 2 6 7 8 9 10 11 12 13 14 15 16 17 1820 : 5 4 21 6 7 8 9 10 11 12 13 14 15 16 17 18 1921 : : 1 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2022 : : : 7 8 9 10 11 12 13 14 15 16 17 18 19 20 523 : : : : 9 10 11 12 13 14 15 16 17 18 19 20 21 22Figure 1. Template for n = 37denote it also by [i; j℄. Sine the table we build is symmetri, we only speify [i; j℄for i � j.The template is obtained from a totally unspei�ed n�n table in several steps.The �rst step onsists in �lling most of the ells as if we were building the Cayleytable of the yli group Zn.� For all i; j suh that i+j � n�1 or i+j � n+6, let [i; j℄ = i+j (mod n).Next, three of these entries are modi�ed, as follows:� [1; 2℄ = 0; [1; p+ 2℄ = 3; [p+ 4; n� 1℄ = 5.Still unde�ned is the width-6 region onsisting of those ells [i; j℄ for whih i � jand n � i+ j � n+5; we all it the orridor . Now we partially de�ne the ontentof the orridor by speifying, on and above the diagonal, a total of 57 entriestaken from the set f0; 1; 2; 3; 4; 5g, with two exeptions:� [1; n� 1℄ = p+ 3; [p+ 2; p+ 4℄ = p+ 3.For the 55 other entries, we refer the reader to Figure 1, where the top right partof the template is displayed for n = 37. (With the sole exeption of position[1; 2℄, the top left part is idential to its ounterpart in the Cayley table of Zn.)In this �gure, the entries below the main diagonal are not represented. Theentries in those ells where the template is idential to the table of Zn, i.e. thosewhere [i; j℄ � i + j (mod n), are printed in standard font. Unspei�ed entriesare identi�ed with a question mark \?"; they form a set of ontiguous ells, theunde�ned zone. The remaining 59 entries are printed in boldfae; all of them



476 M. Beaudry, L. Marhandexept [1; 20℄ and [22; 36℄ are loated in the orridor. Note that here, p+ 3 = 21(see positions [1; 36℄ and [20; 22℄).Two regions within the orridor are highlighted by borders drawn around them;they onsist of 15 positions eah, and their shape and ontent are idential. Weall them butteries . Observe that both ends of the unde�ned zone are delimitedwith a buttery.Loops de�ned by ompleting this template have two useful properties; we pro-eed with their statements and proofs.Lemma 2.1. If a loop has a Cayley table onsistent with the template and if italso satis�es the onstraint that [i; j℄ 6= 0 in every position where i+ j = n, thenit is subloop-free.Proof: Let k 2 G and let hki denote the subloop it generates; we show thathki = G for every k 6= 0. We �rst onsider k = 2: it is readily seen from the abovespei�ations that [2; j℄ = j + 2 for every 2 � j � n � 3, whih implies that 2generates all even values between 2 and n� 1. Next, [2; n� 1℄ = 3, and from thisall odd values between 5 and n� 2 an be generated. Finally, [2; n� 2℄ = 1 and[2; 1℄ = 0 yield h2i = G. Next, sine [1; 1℄ = 2, it follows that h1i = G. Reasoningas in the ase k = 2, it is easily veri�ed that hki = G for 3 � k � 7.In the enter of the template we observe [p + 1; p+ 1℄ = 3, [p + 2; p+ 2℄ = 5,[p+3; p+3℄ = 1, [p+4; p+4℄ = 7; therefore, hp+1i = hp+2i = hp+3i = hp+4i = G.Next, hn � 1i = G follows from the observation that [n; j℄ = j � 1 for everyp + 5 � j � n� 1, therefore p + 4 2 hn � 1i. Also, sine [p; p℄ = n� 1, we havehpi = G.We deal with the other k 2 G by indution. Sine [k; k℄ < k for every k � p+4,we only have to onsider the ase 8 � k � p � 1. For every suh k and every1 � j � n�k�1 we have [k; j℄ = k+ j, so that we know that every tk+ j � n�1belongs to hki as soon as we have veri�ed that j 2 hki. If n is a multiple of k,then we apply this to j = k and t = n=k � 1; the entry [k; n � k℄ is subjet tothe ondition of the lemma's statement, whih yields [k; n � k℄ 2 f1; 2; 3; 4; 5g.Otherwise k does not divide n, i.e. n = (s+1)k� t with 0 < t < k. We are done if[k; sk℄ is nonzero. Otherwise the entry [k; sk℄ = 0 is in the orridor, whih meansn � k + sk � n+ 5. Sine the entries [k; n � k℄; : : : ; [k; n� 1℄ are a permutationof f0; : : : ; k � 1g, it suÆes to show that there is at least one ` 2 hki suh thatn� k � ` � n� 1 and ` 6= sk. Sine k � p� 1 and n = 2p+1, we have s > 1 andn < 2sk < 2n. Therefore [sk; sk℄ = 2sk (mod n) = tk+ j for some 0 < j < k. Bythe above reasoning, we an take ` = rk + j for an appropriate r � t. �Lemma 2.2. If the Cayley table of an order-n loop G is onsistent with thetemplate, then An is a subgroup of M(G).Proof: By de�nition, M(G) is a transitive permutation group, and it is eas-ily veri�ed that the absene of a nontrivial subloop in G implies that M(G) isprimitive. By a theorem of Jordan (see [18, Theorem 13.9℄), An is a subgroupof any primitive group of degree n whih ontains a 3-yle. Let G be a loop as



Commutative subloop-free loops 477L2 = � 0 1 2 3 4 � � � n� 4 n� 3 n� 2 n� 12 0 4 5 6 � � � n� 2 n� 1 1 3 �L3 = � 0 1 2 3 � � � n� 5 n� 4 n� 3 n� 2 n� 13 4 5 6 � � � n� 2 n� 1 1 2 0 �Figure 2. Permutations L2 and L3in the lemma's statement. Consider the left translations L2 and L3 of 2 and 3,respetively; they are totally de�ned by the template and are depited, in matrixnotation, on Figure 2. The reader an verify that both permutations onsist of aunique yle of length n, that L2(x) = x+2 for all x =2 f1; n� 2; n� 1g, and thatL3(x) = x+3 for all x =2 fn� 3; n� 2; n� 1g. The permutations � = L2 ÆL3 and� = L3 Æ L2 di�er only on elements 2, 3 and 6, and ��1 Æ � = (2 3 6). �Finally, we give a riterion to deide whether the translation of a loop elementis an even permutation.Lemma 2.3. For every i 2 f6; : : : ; n�2g other than p+2 and p+4, the translationLi is an even permutation i� the table entries [i; n� i℄ to [i; n� i+ 5℄ onstitutean even permutation of f0; 1; 2; 3; 4; 5g.Proof: Consider the translation Li, i 2 f6; : : : ; n�2gnfp+2; p+4g. Taking itsomposition with the mapping x 7! x� i (mod n), whih is an even permutation,yields a permutation with �xed points everywhere exept in the set fn � i; n �i+ 1; : : : ; n� i+ 5g. �The translations not overed by this lemma are fully spei�ed by the template.Verifying that they have even parity is done for L4 and L5 by the above reasoning;meanwhile, L2 and L3 onsist of a unique yle of odd length, and L1 onsists ofa 3-yle and two other yles of equal parity. Reasoning as above shows that theompositions (5 p + 3) Æ Ln�1, (3 p + 3) Æ Lp+2 and (5 p + 3) Æ Lp+4 are oddpermutations.To omplete the proof of the theorem, it suÆes to show how to �ll eah lineand olumn of the unde�ned zone with an even permutation of f0; 1; 2; 3; 4; 5g,while respeting the ondition that [i; n � i℄ 6= 0 for all i 6= 0. For this wede�ne a speial type of patterns whih we all bloks . A blok of index m is anarray of 6(m + 1) + 9 ells loated on six onseutive antidiagonals; there arem + 1 omplete rows (six ells eah) and 9 ells plaed on 5 inomplete rows.Every entry is de�ned, every omplete row and olumn is an even permutationof f0; 1; 2; 3; 4; 5g, and the ends of this array onstitute two disjoint opies of thebuttery. Two bloks an be ombined to build a larger blok, by making the topright buttery of one blok overlap with the bottom left buttery of the other,as illustrated in Figure 3. Combining two bloks of orders m and q, respetively,reates a blok of order m+ q.Thus, �lling the template is simply done by inserting a blok whih �ts theunde�ned zone. Rows 7 to p� 1 in the table oinide with the m+1 fully de�ned



478 M. Beaudry, L. Marhand B13 3 � � �& 2 1 � � �3 1 0 � � �2 1 0 4 � � �1 0 2 3 5 � � �1 3 4 0 5 23 2 0 1 5 41 2 0 5 3 42 0 1 3 4 53 1 5 0 4 21 2 0 3 4 5B10 1 2 0 3 4 5& 3 0 4 1 5 21 2 3 0 5 41 0 5 2 3 41 3 2 0 4 53 2 0 4 1 51 2 0 5 3 42 0 1 3 4 53 1 5 0 4 21 2 0 3 4 54 52Figure 3. Conatenation of bloks B10 and B13rows in the blok, so that its order is m = p � 8, or onversely n = 2m + 17.Experimentally, we found that the olletion of bloksB10; B13; B14; B15; B16; B17; B18; B19; B21; B22,depited on Figure 3 and in the Appendix, enables us to de�ne a loop withM(G) = An for n = 37 (built from B10) and for every odd n � 43. Eah full rowand olumn in these bloks is an even permutation of f0; 1; 2; 3; 4; 5g. Also, sine0 never ours at a position [i; n� i℄, the loops built from these bloks satisfy theondition of Lemma 2.1. In other words, a loop built from the template and ourlist of bloks is subloop-free, ommutative, and suh that M(G) = An. �Corollary 2.4. For every odd n � 7, there exists a ommutative subloop-freeloop G whih satis�es M(G) = Sn.Proof: For the smaller values of n, we generated by omputer ommutativesubloop-free loops onsistent with the template and observed that the vast ma-jority of them satisfyM(G) = Sn. For the larger orders, we leave it to the readerto modify the bloks B10 to B22, in order to make eah of them ontain at leastone odd permutation of f0; 1; 2; 3; 4; 5g. �3. ConlusionAs a preliminary step in this researh, we omputed M(G) for all loops of size6 to 8 using data from [14℄ and [9℄, and identi�ed those whih were subloop-free.Our results are summarized in Figure 4. Among them, we notied a loop of size8 for whih M(G) is neither Sn nor An; this multipliation group has order 1344



Commutative subloop-free loops 479Order Number Multipliation groupn of loops Sn An Zn Other5 2 1 0 1 06 28 28 0 0 07 9 906 9 904 1 1 08 43 803 136 43 799 370 3 765 0 1Figure 4. Multipliation group of subloop-free loops, orders 5 to 80 1 2 3 4 5 6 70 0 1 2 3 4 5 6 71 1 2 3 0 5 6 7 42 2 4 7 6 1 3 0 53 3 6 1 5 2 7 4 04 4 0 5 7 6 2 3 15 5 7 0 4 3 1 2 66 6 5 4 2 7 0 1 37 7 3 6 1 0 4 5 2Figure 5. Loop of order 8 with M(G) = AL(8).and is denoted AL(8) in the ompendium [7℄. The Cayley table of this loop isdisplayed in Figure 5.The vast majority of nonassoiative subloop-free loops of small order satisfyM(G) = Sn, and it is likely to be the same for every order. In this artile,however, we proved that for every odd order n � 7, there exist a ommutativesubloop-free loop whose multipliation group is An. This result, alongside withthe identi�ation of the order-8 loop mentioned above, suggests that subloop-freeloops of larger order deserve further investigation.Aknowledgment. The authors extend their thanks to Markus Holzer, IanWanless and an anonymous referee for helpful omments, informations, and sug-gestions for improvements. This researh was supported by NSERC of Canadaand FQRNT of Qu�ebe. Referenes[1℄ Albert A.A., Quasigroups. I , Trans. Amer. Math. So. 54 (1943), 507{519.[2℄ Bruk R.H., Contributions to the theory of loops, Trans. Amer. Math. So. 60 (1946),245{354.[3℄ Bruk R.H., A Survey of Binary Systems, Springer, 1966.[4℄ Cameron P.J., Almost all quasigroups have rank 2, Disrete Math 106/107 (1992), 111{115.[5℄ Cavenagh N.J., Greenhill C., Wanless I.M., The yle struture of two rows in a randomlatin square, Random Strutures Algorithms 33 (2008), 286{309.[6℄ Chein O., Pfugfelder H.O., Smith J.D.H., Quasigroups and Loops: Theory and Applia-tions, Helderman, Berlin, 1990.
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Commutative subloop-free loops 481AppendixAppendix A. Small subloop-free loopsWe display in full the Cayley tables of ommutative subloop-free loops of orders7 to 13 suh that M(G) = An.0 1 2 3 4 5 6 0 1 2 3 4 5 6 7 80 0 1 2 3 4 5 6 0 0 1 2 3 4 5 6 7 81 1 2 0 4 3 6 5 1 1 2 0 4 5 3 7 8 62 2 0 3 5 6 4 1 2 2 0 6 1 3 7 8 4 53 3 4 5 6 1 2 0 3 3 4 1 5 7 8 0 6 24 4 3 6 1 5 0 2 4 4 5 3 7 8 6 1 2 05 5 6 4 2 0 1 3 5 5 3 7 8 6 1 2 0 46 6 5 1 0 2 3 4 6 6 7 8 0 1 2 4 5 37 7 8 4 6 2 0 5 3 18 8 6 5 2 0 4 3 1 70 1 2 3 4 5 6 7 8 9 100 0 1 2 3 4 5 6 7 8 9 101 1 2 0 4 5 6 3 8 9 10 72 2 0 3 7 8 1 5 9 10 4 63 3 4 7 8 1 2 9 10 5 6 04 4 5 8 1 7 9 10 2 6 0 35 5 6 1 2 9 10 8 3 0 7 46 6 3 5 9 10 8 4 0 7 2 17 7 8 9 10 2 3 0 6 4 1 58 8 9 10 5 6 0 7 4 1 3 29 9 10 4 6 0 7 2 1 3 5 810 10 7 6 0 3 4 1 5 2 8 90 1 2 3 4 5 6 7 8 9 10 11 120 0 1 2 3 4 5 6 7 8 9 10 11 121 1 2 0 4 5 6 7 3 9 10 11 12 82 2 0 3 5 6 7 1 9 10 11 12 8 43 3 4 5 1 7 9 8 10 11 12 6 2 04 4 5 6 7 8 1 10 11 12 3 2 0 95 5 6 7 9 1 10 11 12 4 8 0 3 26 6 7 1 8 10 11 12 2 5 0 4 9 37 7 3 9 10 11 12 2 6 0 4 8 5 18 8 9 10 11 12 4 5 0 7 2 3 1 69 9 10 11 12 3 8 0 4 2 5 1 6 710 10 11 12 6 2 0 4 8 3 1 9 7 511 11 12 8 2 0 3 9 5 1 6 7 4 1012 12 8 4 0 9 2 3 1 6 7 5 10 11Appendix B. Bloks for loops of large orderIn this setion, we display the bloks B13 to B22 used in the proof of thetheorem; blok B10 an be seen on Figure 3. Exept for B13, we show only theentries spei� to the bloks, i.e. those loated between the butteries. Bloks arerepresented as arrays where eah row orresponds to an antidiagonal in the Cayleytable, and eah olumn to a olumn in the Cayley table. Expressed otherwise: ifthe entry loated at [a; b℄ in the array is at position [i; j℄ in the Cayley table, thenposition [a; b+ 1℄ orresponds to [i� 1; j + 1℄, and [a+ 1; b℄ to [i+ 1; j℄.
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Commutative subloop-free loops 483Appendix C. Subloop-free loops of intermediate orderWe give examples of ommutative subloop-free loops of odd order n, 15 �n � 41 and n 6= 37, whih satisfy M(G) = An. To obtain them, we made anexhaustive searh from a template where most of the orridor was left unde�ned,the rest being idential to the desription given in the artile. For eah order n,we display the upper half of the orridor of one of our results; we represent allentries from the main diagonal (entries printed in boldfae) up to and inludingrow 3. 1 0 3 1 2 1 1 3 2 1 13 2 1 0 3 0 3 2 2 1 0 0 2n = 15 5 0 2 1 2 1 n = 17 0 0 0 5 3 3 01 2 3 5 4 2 5 5 3 3 2 4 24 4 4 3 0 4 4 4 4 0 15 10 0 5 4 1 11 2 5 5 41 0 3 1 2 1 13 2 1 0 3 0 0 2n = 19 5 0 2 1 2 3 3 01 2 3 5 4 5 4 24 4 4 3 2 0 15 12 0 5 4 5 43 1 0 3 1 2 1 11 2 2 1 0 3 0 0 2n = 21 0 1 0 2 1 2 3 3 05 5 4 3 5 4 5 4 24 2 5 4 3 2 0 13 13 4 0 5 4 5 41 0 2 4 1 1 2 1 13 2 1 1 3 0 0 3 0 2n = 23 5 3 3 0 2 3 2 4 0 01 0 0 2 3 1 5 3 3 24 2 5 5 5 0 2 5 15 14 4 4 4 4 5 4 41 1 3 2 5 1 1 2 1 13 2 2 1 1 0 3 3 0 0 2n = 25 0 0 0 0 3 2 0 2 3 3 05 5 3 3 2 0 1 4 5 4 24 4 4 4 4 4 3 2 0 11 15 2 5 5 5 5 4 5 41 1 2 3 1 1 0 2 2 1 13 2 0 1 0 5 2 1 1 0 0 2n = 27 0 3 2 3 2 3 3 3 3 3 3 05 5 0 4 0 1 0 0 4 5 4 24 4 5 3 4 4 4 5 2 0 11 16 2 4 5 5 5 2 4 5 41 0 2 4 1 1 2 3 3 2 1 13 2 1 1 3 0 0 1 1 1 0 0 2n = 29 5 3 3 0 2 3 5 0 0 5 3 3 01 0 0 2 3 1 2 2 4 2 2 4 24 2 5 5 5 0 4 3 3 4 0 15 17 4 4 4 4 5 5 4 5 5 41 1 3 2 5 1 1 1 1 4 2 0 13 2 2 1 1 0 3 2 0 3 1 1 2 2n = 31 0 0 0 0 3 2 0 3 2 0 3 3 3 05 5 3 3 2 0 3 2 0 3 2 0 0 24 4 4 4 4 4 4 5 5 5 5 5 11 18 2 5 5 5 5 1 4 4 4 4 4
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