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Dis
onne
tedness properties of hyperspa
esRodrigo Hern�andez-Guti�errez, Angel Tamariz-Mas
ar�uaAbstra
t. Let X be a Hausdor� spa
e and let H be one of the hyperspa
esCL(X), K(X), F(X) or Fn(X) (n a positive integer) with the Vietoris topology.We study the following dis
onne
tedness properties for H: extremal dis
onne
t-edness, being a F 0-spa
e, P -spa
e or weak P -spa
e and hereditary dis
onne
t-edness. Our main result states: if X is Hausdor� and F � X is a 
losed subsetsu
h that (a) both F and X �F are totally dis
onne
ted, (b) the quotient X=Fis hereditarily dis
onne
ted, then K(X) is hereditarily dis
onne
ted. We alsoshow an example proving that this result 
annot be reversed.Keywords: hyperspa
es, Vietoris topology, F 0-spa
e, P -spa
e, hereditarily dis-
onne
tedClassi�
ation: 54B20, 54G05, 54G10, 54G12, 54G20Given a T1 spa
e X , let CL(X) be the hyperspa
e of nonempty 
losed subsetsof X with the Vietoris topology. Let us 
onsider the following hyperspa
esK(X) = fA 2 CL(X) : A is 
ompa
tg;F(X) = fA 2 CL(X) : A is �niteg;Fn(X) = fA 2 CL(X) : jAj � ng for n a positive integer.The study of the Vietoris topology on hyperspa
es was �rst motivated by ErnestMi
hael's outstanding paper [M℄. Con
erning 
onne
tedness properties, Mi
haelstated the following:0.1 Theorem ([M, Theorem 4.10℄). Let X be a T1 spa
e and F(X) � H �CL(X). If any of X , Fn(X) (n a positive integer) or H are 
onne
ted, then thefollowing spa
es are also 
onne
ted: X , Fm(X) for ea
h positive integer m andevery H0 satisfying F(X) � H0 � CL(X).Re
all that a spa
e X is zero-dimensional if for every 
losed subset A � X andx 2 X �A, there is a 
lopen set O su
h that x 2 O and O \ A = ;. We say thatX is totally dis
onne
ted if for every pair of points x; y 2 X with x 6= y, there isa 
lopen set O su
h that x 2 O, y =2 O.This paper is part of the �rst author's do
toral dissertation dire
ted by the se
ond author.Resear
h was supported by PAPIIT grant IN-102910 and CONACyT s
holarship for Do
toralStudents.
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ar�ua0.2 Theorem ([M, Proposition 4.13℄). For a T1 spa
e X we have:� X is zero-dimensional if and only if K(X) is zero-dimensional,� X is totally dis
onne
ted if and only if K(X) is totally dis
onne
ted,� X is dis
rete if and only if K(X) is dis
rete,� X has no isolated points if and only if CL(X) has no isolated points.In this paper, we present similar results about other 
lasses of dis
onne
tedspa
es. Most of our results will be in the realm of Hausdor� spa
es. Ty
hono�spa
es will be used when the 
lasses of spa
es 
onsidered require so.First we will 
onsider 
lasses of highly dis
onne
ted spa
es. If X is a spa
e andp 2 X , we 
all p a P -point of X if p belongs to the interior of every GÆ set that
ontains it. We say that X is a P -spa
e if all its points are P -points of X . Forproperties of P -spa
es, see problem 1W of [PW℄. Every regular P -spa
e is zero-dimensional, so being a P -spa
e is a stronger 
ondition than zero-dimensionalityin the realm of regular spa
es. In Se
tions 2 and 3, we study when a hyperspa
e
an be a P -spa
e using other 
lasses of spa
es su
h as F -spa
es. After that, inSe
tion 4 we give remarks on spa
es in whi
h 
ompa
t subsets are �nite (P -spa
esare of this kind by Remark 3.4).On the other hand, we 
onsider a property roughly weaker than total dis-
onne
tedness. We 
all a spa
e X hereditarily dis
onne
ted if every nonempty
onne
ted subset of X is a singleton. Clearly, every totally dis
onne
ted spa
e ishereditarily dis
onne
ted but there are examples (given below) that show these
lasses do not 
oin
ide. In [IN, 83.5℄, Illanes and Nadler ask whether CL(X)or K(X) are hereditarily dis
onne
ted when X is hereditarily dis
onne
ted andmetrizable. In [P℄, E. Pol and R. Pol answer this in the negative and make someinteresting remarks. In Se
tion 5, we extend the work of E. Pol and R. Pol andgive some examples. Our main result isMain Theorem. Let X be a Hausdor� spa
e. Assume that there is a 
losedsubset F � X su
h that(a) both F and X � F are totally dis
onne
ted,(b) the quotient X=F is hereditarily dis
onne
ted.Then K(X) is hereditarily dis
onne
ted.We also show that the statement of the Main Theorem 
annot be reversed bygiving an example in Se
tion 6.1. PreliminariesWe denote by N the set of positive integers, ! = N [ f0g, the unit intervalI = [0; 1℄ and the set of rational numbers Q with the Eu
lidean topology. For anyspa
e X , let CO(X) denote the 
olle
tion of 
lopen subsets of X . The 
ardinalityof a set A will be denoted by jAj. A set A is 
ountable if jAj � !.



Dis
onne
tedness properties of hyperspa
es 571LetX be a T1 spa
e. The Vietoris topology on CL(X) is the topology generatedby the sets of the formU+ = fA 2 CL(X) : A � Ug;U� = fA 2 CL(X) : A \ U 6= ;g;where U is an open subset of X . It is easy to see that a basis of the Vietoristopology 
onsists of the 
olle
tion of sets of the formhU0; : : : Uni = fA 2 CL(X) : A � U0 [ � � � [ Un and if i � n;Ui \ A 6= ;g;where n < ! and U0; : : : ; Un are nonempty open subsets of X . For n 2 N,the hyperspa
e Fn(X) is 
alled the n-th symmetri
 produ
t of X . Noti
e thatF1(X) is homeomorphi
 to X under the map fxg 7! x. We will use the followingstraightforward generalization of [IN, 13.3℄ several times.1.1 Lemma. Let X and Y be Hausdor� spa
es and f : X ! Y be a 
ontinuousfun
tion. De�ne f� : K(X) ! K(Y ) by f�(T ) = f [T ℄. Then f� is a 
ontinuousfun
tion.Let X be a Ty
hono� spa
e. A subset A of a spa
e X is C�-embedded ifevery bounded real-valued 
ontinuous fun
tion de�ned on A 
an be extended toX . A zero set of X is a set of the form f (0), where f is a 
ontinuous real-valuedfun
tion de�ned on X ; a 
ozero set of X is the 
omplement of a zero set of X . Ina Ty
hono� spa
e, 
ozero sets form a basis for its topology.1.2 Lemma. If U is a 
ozero set of a Hausdor� spa
e X , then U+ \K(X) andU� \ K(X) are 
ozero sets of K(X).Proof: Let f : X ! I be su
h that U = f [(0; 1℄℄. Consider the 
ontinuousfun
tion f� : K(X)! K(I) from Lemma 1.1. The fun
tions min : K(I)! I andmax : K(I) ! I that take ea
h 
losed subset of I to its minimal and maximalelements, respe
tively, are easily seen to be 
ontinuous. Finally, noti
e thatU+ \ K(X) = (min Æ f�) [(0; 1℄℄;U� \ K(X) = (max Æ f�) [(0; 1℄℄;whi
h 
ompletes the proof. �Re
all that a Ty
hono� spa
e is pseudo
ompa
t if every lo
ally �nite 
olle
tionof open sets is �nite. Let X � I� for some 
ardinal � � 1 and let �A : I� ! IAbe the proje
tion for ea
h ; 6= A � �. We say that X is !-dense in I� if wheneverN is a 
ountable nonempty subset of � it follows that �N [X ℄ = IN .1.3 Lemma ([S, Proposition 1℄). Let X be a dense subspa
e of I� for some
ardinal � � 1. Then X is pseudo
ompa
t if and only if X is !-dense in I�.1.4 Lemma ([Ke, Theorem 1.3℄). Let X be a Ty
hono� spa
e and n 2 N. ThenFn(X) is pseudo
ompa
t if and only if Xn is pseudo
ompa
t.
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ar�uaFor ea
h spa
e X and p 2 X , re
all that the quasi
omponent of X at p is the
losed subset Q (X; p) =\fU 2 CO(X) : p 2 Ug:We 
an de�ne by trans�nite re
ursion the �-quasi
omponent of X at p, Q� (X; p),in the following way.Q0 (X; p) = X;Q�+1 (X; p) = Q (Q� (X; p) ; p) ; for ea
h ordinal �;Q� (X; p) = T�<�Q� (X; p); for ea
h limit ordinal �:We 
all n
(X; p) = minf� : Q�+1 (X; p) = Q� (X; p)g the non-
onne
tivityindex of X at p. If X is hereditarily dis
onne
ted and p 2 X , then n
(X; p) =minf� : Q� (X; p) = fpgg. Noti
e that if X is hereditarily dis
onne
ted andjX j > 1, then X is totally dis
onne
ted if and only if n
(X; p) = 1 for everyp 2 X .If X is any spa
e (no separation axioms required), we 
an de�ne a quotientspa
e Q(X) by shrinking ea
h quasi
omponent of X to a point (that is, Q(X) =fQ (X; p) : p 2 Xg with the quotient topology). Observe thatQ(X) is a Hausdor�totally dis
onne
ted spa
e.Re
all a spa
e X is s
attered if for every nonempty Y � X , the set of isolatedpoints of Y is nonempty.1.5 Lemma. If X and Y are 
ompa
t Hausdor� spa
es, X is s
attered and Yis a 
ontinuous image of X , then Y is also s
attered.Proof: Let f : X ! Y be 
ontinuous and onto. Assume K � Y is nonemptyand does not have isolated points. By taking 
losure, we may assume that K is
losed. Using the Kuratowski-Zorn lemma, we 
an �nd a 
losed subset T � Xthat is minimal with the property that f [T ℄ = K. Sin
e X is s
attered, thereexists an isolated point t 2 T of T . Noti
e that K � ff(t)g � f [T � ftg℄. Also,sin
e K has no isolated points, K�ff(t)g is dense in K. But T �ftg is 
ompa
tso it follows that K � f [T � ftg℄. This 
ontradi
ts the minimality of T , so su
ha K 
annot exist. �2. P -points in symmetri
 produ
tsIn this se
tion we show how to dete
t P -points in symmetri
 produ
ts.2.1 Lemma. Let X be a Hausdor� spa
e, n < !, A 2 Fn+1(X) � Fn(X)(where F0(X) = ;) and U an open set in CL(X) su
h that A 2 U . Then thereexist U0; : : : ; Un pairwise disjoint nonempty open sets su
h thatA 2 hU0; : : : ; Uni � U :Proof: Let A = fx0; : : : ; xng. Take V0; : : : ; Vn pairwise disjoint open subsets ofX su
h that xk 2 Vk for ea
h k � n. Consider now a basi
 open setA 2 hW0; : : : ;Wsi � U \ hV0 : : : ; Vni:



Dis
onne
tedness properties of hyperspa
es 573For ea
h k � n let Uk = Vk \ (TfWr : xk 2 Wrg). Noti
e that U0; : : : ; Un arepairwise disjoint open sets su
h thatA 2 hU0; : : : ; Uni � hW0; : : : ;Wsi � U ;whi
h 
ompletes the proof. �2.2 Proposition. Let X be a Hausdor� spa
e and A 2 F(X). The following
onditions are equivalent:(a) A is a P -point of F(X),(b) A is a P -point of Fn(X) for ea
h n � jAj,(
) every x 2 A is a P -point of X .Proof: Let A = fx0; : : : ; xmg. The impli
ation (a))(b) is 
lear be
ause theproperty of being a P -point is hereditary to subspa
es. Assume A is a P -pointof Fm+1(X). Let fUi : i < !g be a 
olle
tion of open subsets of X su
h thatx0 2 Ti<! Ui. Take W0; : : : ;Wm pairwise disjoint open subsets of X su
h thatxi 2 Wi for j � m. For ea
h i < !, de�neUi = hUi \W0;W1; : : : ;Wmi:Sin
e A is a P -point in Fm+1(X), by Lemma 2.1, there is a 
olle
tion V0; : : : ; Vm
onsisting of pairwise disjoint open subsets of X su
h thatA 2 hV0; : : : ; Vmi � \i<! Ui:We may assume xj 2 Vj for ea
h j � m. We now prove V0 � Ti<! Ui. Takey 2 V0 and 
onsider the element B = fy; x1; : : : ; xmg 2 hV0; : : : ; Vmi. Sin
eB 2 Ui for ea
h i < !, we get y 2 Ti<! Ui. This proves that x0 is a P -pointof X and by similar arguments, ea
h point of A is a P -point of X . This proves(b))(
).Now, let fUi : i < !g be a 
olle
tion of open subsets of F(X) that 
ontain Aand assume ea
h point of A is a P -point of X . Using Lemma 2.1, for ea
h i < !one may de�ne a 
olle
tion U(0; i); : : : ; U(m; i) 
onsisting of pairwise disjoint opensubsets ofX su
h that for ea
h j � m, xj 2 U(j; i) and hU(0; i); : : : ; U(m; i)i � Ui.Ea
h point of A is a P -point so we may take, for ea
h j � m, an open subset Ujof X su
h that x 2 Uj � Ti<! U(j; i). Thus,A 2 hU0; : : : ; Umi � \i<! Ui;whi
h proves (
))(a). �2.3 Example. We 
onstru
t a homogeneous P -spa
e with no isolated pointsusing hyperspa
es. Let X = f�+1 : � < !1g[f0; !1g as a subspa
e of the LOTS!1 + 1. So X is a P -spa
e in whi
h all its points ex
ept for !1 are isolated. LetY = fA 2 F(X) : !1 2 Ag;



574 R. Hern�andez-Guti�errez, A. Tamariz-Mas
ar�uawhi
h is a P -spa
e (Proposition 2.2). Let A 2 Y and let hU0; : : : ; Uki be a basi
open neighborhood of A. We may assume that U0; : : : ; Uk are pairwise disjoint(Lemma 2.1) and !1 2 U0. Let � 2 U0 �f!1g, then A 6= A [ f�g 2 hU0; : : : ; Uni.Thus, Y has no isolated points.To prove the homogeneity of Y it is suÆ
ient to prove the following:(1) if A;B 2 Y are su
h that jAj = jBj, then there exists a homeomorphismH : Y ! Y su
h that H(A) = B,(2) for every n 2 N, there are A;B 2 Y su
h that jAj + 1 = jBj = n+ 1 anda homeomorphism H : Y ! Y su
h that H(A) = B.For (1), let h : X ! X be a bije
tion su
h that h[A℄ = B and h(!1) = !1.De�ne H(P ) = h[P ℄ for every P 2 Y .For (2), let H : Y ! Y be de�ned byH(P ) = (P � f0g; if 0 2 P;P [ f0g; if 0 =2 P:Then H is a homeomorphism su
h that for ea
h A 2 Y with 0 =2 P , jH(A)j =jAj+ 1. It follows that Y is homogeneous. �3. Hyperspa
es that are F -spa
esAn F -spa
e is a Ty
hono� spa
e in whi
h every 
ozero set is C�-embedded.See problem 6L in [PW℄ for properties of F -spa
es. All Ty
hono� P -spa
es areF -spa
es but there are 
onne
ted F -spa
es (for example, �[0; 1)� [0; 1) by [PW,6L(2)℄ and [PW, 6AA(2)℄). We may also 
onsider F 0-spa
es, that is, Ty
hono�spa
es in whi
h ea
h pair of disjoint 
ozero sets have disjoint 
losures (see De�ni-tion 8.12 in [GH℄). Noti
e that every F -spa
e is an F 0-spa
e. The main result ofthis se
tion, Theorem 3.7, says that a hyperspa
e 
an only be an F 0-spa
e whenit is a P -spa
e and thus dis
onne
ted.3.1 Fa
t. If X is an in�nite Hausdor� spa
e, then CL(X) 
ontains a 
onvergentsequen
e.Proof: Let N = fxn : n < !g be an 
ountable in�nite subspa
e of X . IfAm = fxn : n � mg for m < !, then fAm : m < !g is a sequen
e that 
onvergesto 
lX(N). �3.2 Fa
t. If X is an F 0-spa
e, then X does not 
ontain 
onvergent sequen
es.Proof: If N = fxn : n < !g is a faithfully indexed sequen
e that 
onvergesto x0, let U; V be disjoint 
ozero sets of X su
h that fx2n : n 2 Ng � U andfx2n�1 : n 2 Ng � V . Then x0 2 
lX(U) \ 
lX (V ). �Thus, CL(X) is not an F 0-spa
e unless X is �nite. So it is left to know whenK(X), F(X) and the symmetri
 produ
ts 
an be F 0-spa
es.Along with F -spa
es and F 0-spa
es, we may 
onsider other 
lasses of spa
esbetween dis
rete spa
es and F -spa
es. A spa
e is extremally dis
onne
ted if every
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tedness properties of hyperspa
es 575open set has open 
losure. A basi
ally dis
onne
ted spa
e is a spa
e in whi
h every
ozero set has open 
losure. So we may 
onsider dis
rete spa
es, P -spa
es, ex-tremally dis
onne
ted spa
es (ED), basi
ally dis
onne
ted spa
es (BD), F -spa
esand F 0-spa
es. The diagram below (taken from [GH℄) shows by an arrow whi
hof these properties implies another.ED ""EEEEEEEE F / / F0dis
rete 99tttttttttt %%KKKKKKKKKK BD ::vvvvvvvvvv $ $IIIIIIIIIP <<xxxxxxxxx 0-dimTheorem 3.7 implies that P -spa
es, BD spa
es, F -spa
es and F 0-spa
es 
oin-
ide for the hyperspa
es K(X), F(X) and the symmetri
 produ
ts in the realmof Ty
hono� spa
es. Before heading on to prove this, let us show that the hy-perspa
es we are 
onsidering are extremally dis
onne
ted if and only if they aredis
rete, even in the realm of Hausdor� spa
es.3.3 Proposition. Let X be a Hausdor� spa
e and F2(X) � H � K(X). ThenH is extremally dis
onne
ted if and only if X is dis
rete.Proof: Clearly, X dis
rete implies H dis
rete. So assume that X is not dis
rete,take a non-isolated point p 2 X and 
onsider the set Z of all 
olle
tions G su
hthat the elements of G are pairwise disjoint nonempty open subsets of X and ifU 2 G, then p =2 
lX (U). By the Kuratowski-Zorn Lemma, we 
an 
onsider a�-maximal element M2 Z . Sin
e X is Hausdor�, SM is dense in X .Let U = SfU+\H : U 2 Mg. Let N be the �lter of open neighborhoods of p.For ea
h W 2 N , there must be UW ; VW 2 M su
h that UW 6= VW , W \UW 6= ;and W \ VW 6= ;. Let V = SfhUW ; VW i \ H : W 2 Ng. Then, U and V arepairwise disjoint nonempty open subsets of H but fpg 2 
lH(U) \ 
lH(V). �We now return to F 0-spa
es. It was shown by Mi
hael (Theorem 4.9 of [M℄)that K(X) is Ty
hono� if and only if X is Ty
hono�, so we may assume that X isTy
hono� for the rest of this se
tion. Alternatively, this follows from Lemma 1.2.3.4 Remark. Let X be an in�nite Ty
hono� spa
e. If K(X) is an F -spa
e,then K(X) = F(X).Proof: If Y 2 K(X) � F(X), then CL(Y ) � K(X) 
ontains a 
onvergent se-quen
e by Fa
t 3.1. This 
ontradi
ts Fa
t 3.2. �3.5 Lemma ([PW, 1W(2)℄). A Ty
hono� spa
e is a P -spa
e if and only if everyzero set is 
lopen.3.6 Proposition. Let X be a Ty
hono� spa
e and let F2(X) � H � K(X). IfH is an F 0-spa
e, then X is a P -spa
e.
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ar�uaProof: Let us assume that X is not a P -spa
e. By Lemma 3.5, we may assumethere is a 
ontinuous fun
tion f : X ! I su
h that Z = f (0) is not 
lopen. Letp 2 Z � intX(Z) and 
onsider the following two statements.(E) There is a neighborhood U of p with f [U ℄ � f0g [ f 12m : m 2 Ng.(O) There is a neighborhood V of p with f [V ℄ � f0g [ f 12m�1 : m 2 Ng.Noti
e that sin
e p =2 intX(Z), we 
annot have (E) and (O) simultaneously.Assume without loss of generality that (E) does not hold. For ea
h m 2 N, letUm = f [( 12m+2 ; 12m )℄. Then fUm : m 2 Ng is a 
olle
tion of pairwise disjoint
ozero sets. Observe that every neighborhood of p interse
ts some Um. Also,f [[0; 12m+2 )℄ is a neighborhood of p that misses Um. Thus,(�) p 2 
lX�[ fUm : m 2 Ng��[f
lX(Um) : m 2 Ng:Consider the sets:U = [fU+m \ H : m 2 Ng;V = [fhUm; Uki \ H : m; k 2 N;m 6= kg;these are nonempty pairwise disjoint 
ozero sets by Lemma 1.2. By (�), it followsthat fpg 2 
lH(U) \ 
lH(V), so H is not an F 0-spa
e. �This allows us to give the next result.3.7 Theorem. Let X be a Ty
hono� spa
e and F2(X) � H � K(X). Then thefollowing are equivalent:(a) X is a P -spa
e,(b) H is a P -spa
e,(
) H is an F 0-spa
e.Proof: First, assume (a). By Lemma 2.2, F(X) is a P -spa
e and by Remark 3.4,K(X) = F(X) so H � K(X) is a P -spa
e. So (b) holds. That (b) implies (
) iswell-known and (
) implies (a) by Proposition 3.6. �4. Some spa
es su
h that K(X) = F(X)We 
an generalize the te
hniques for F 0-spa
es to another 
lass of spa
es Xsu
h that K(X) = F(X). We 
onsider the 
ase of weak P -spa
es.We 
all a point p in a spa
e X a weak P -point of X if for every 
ountable setN � X � fpg we have p =2 
lX(N). A weak P -spa
e is a spa
e X in whi
h all itspoints are weak P -points of X .4.1 Fa
t. If X is a weak P -spa
e, then K(X) = F(X).Proof: If X is a weak P -spa
e, then every 
ountable subset of X is 
losedand dis
rete. If K � X is 
ompa
t and in�nite, it 
ontains a 
ountable in�nitedis
rete subset N � K and if x 2 
lX(N)�N , then N [fxg is 
ountable but notdis
rete. �



Dis
onne
tedness properties of hyperspa
es 5774.2 Remark. The property of being a weak P -spa
e does not imply dis
onne
t-edness. Shakhmatov gave in [S℄ an example of a 
onne
ted, pseudo
ompa
t, weakP -spa
e in whi
h all its 
ountable subsets are C�-embedded.We have the following results for weak P -spa
es, analogous to those of P -spa
es.4.3 Proposition. Let X be a Hausdor� spa
e and A 2 F(X). The following
onditions are equivalent:(a) A is a weak P -point in F(X),(b) A is a weak P -point in Fn(X) for ea
h n � jAj,(
) every x 2 A is a weak P -point of X .Proof: Let A = fx0; : : : ; xmg. Noti
e (a))(b) be
ause being a weak P -point ishereditary to subspa
es.To prove (b))(
), assume x0 is not a weak P -point of X . Let D = fyk :k < !g � X � fx0g be su
h that x0 2 
lX(D). De�ne Bk = fyk; x1; : : : ; xmg 2Fm+1(X) for ea
h k < !. Then, fBk : k < !g � Fm+1(X) � fAg and A 2
lFm+1(X)(fBk : k < !g).Now we prove (
))(a). Assume (
) and take fBk : k < !g � F(X) � fAg.For ea
h k < !, 
hoose t(k) 2 f0; : : : ;mg su
h that xt(k) =2 Bk. De�ne Er = fk <! : t(k) = rg for ea
h r � m. So given r � n, xr =2 SfBk : k 2 Erg. Sin
eSfBk : k 2 Erg is 
ountable, there exists an open subset Ur with xr 2 Ur andUr \ (SfBk : k 2 Erg) = ;. Finally, let U = hU0; : : : ; Uni. Then A 2 U andU \ fBk : k < !g = ;. �4.4 Theorem. Let X be a Hausdor� spa
e. Then the following are equivalent:(a) X is a weak P -spa
e,(b) K(X) is a weak P -spa
e,(
) F(X) is a weak P -spa
e,(d) Fn(X) is a weak P -spa
e for some n 2 N.Proof: If we assume (a), by Fa
t 4.1 we have K(X) = F(X), whi
h is a weakP -spa
e by Proposition 4.3. Clearly, (b) implies (
) and (
) implies (d). Finally,(d) and (a) are equivalent by Proposition 4.3. �4.5 Example. Call a Ty
hono� spa
e a Shakhmatov spa
e if it is a pseudo
om-pa
t, 
onne
ted weak P -spa
e. In [S℄, Shakhmatov gave an example of a subspa
eS � I
, where 
 = 2!, that is a Shakhmatov spa
e. Moreover, S is !-dense in I
.Let H be either a symmetri
 produ
t of S or one of the hyperspa
es K(S) orF(S). By Theorem 4.4, H is also a weak P -spa
e and by Theorem 0.1, it is also
onne
ted. It is interesting to ask whether H is a Shakhmatov spa
e. Noti
e thatK(X) = F(X) for every Shakhmatov spa
e X (Fa
t 4.1).Sin
e S is !-dense in I
, it is easy to see that for any 
ardinal �, S� is !-densein (I
)� = I
��. By Lemmas 1.3 and 1.4, Fn(S) is a Shakhmatov spa
e for everyn 2 N. However, F(X) is pseudo
ompa
t if and only if X is �nite by Lemma 4.6below. Thus, K(X) is never a Shakhmatov spa
e. �4.6 Lemma. If X is an in�nite Ty
hono� spa
e, F(X) is not pseudo
ompa
t.
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ar�uaProof: Let fUn : n < !g be a family of pairwise disjoint nonempty open subsetsof X . If Un = hU0; : : : ; Uni, then fUn \ F(X) : n < !g is an in�nite lo
ally �nitefamily of open nonempty subsets of F(X). �For sake of 
ompleteness, we show that 
ondition K(X) = F(X) behaves wellunder the operation of taking hyperspa
e in the following way.4.7 Proposition. If X is a Hausdor� spa
e, then K(X) = F(X) if and only ifevery 
ompa
t subset of K(X) is �nite (that is, K(K(X)) = F(K(X))).Proof: First, assume K(X) = F(X), and let C � K(X) be 
ompa
t. WriteC = Sn2N Cn where Cn = C \ Fn(X). Noti
e ea
h Cn is 
ompa
t be
ause Fn(X)is 
losed in F(X).Claim. Ea
h Cn is �nite.Fix n 2 N. To prove the 
laim, 
onsider the natural identi�
ation � : nX !Fn(X) that sends ea
h n-tuple to the set of its 
oordinates. Also, 
onsider �k :nX ! X the proje
tion onto the kth-
oordinate. Sin
e � is perfe
t, the set Kn =�k[� [Cn℄℄ is a 
ompa
t subset ofX and thus, �nite. Now, � [Cn℄ � K1�� � ��Knso Cn must also be �nite. This proves the Claim.By the Claim, C is a 
ompa
t Hausdor� 
ountable spa
e. Sin
e the weight of anin�nite 
ompa
t Hausdor� spa
e is less or equal to its 
ardinality ([E1, 3.1.21℄),C is a 
ompa
t metri
 spa
e. Assume C is in�nite, then we 
an �nd a faithfullyindexed sequen
e fAn : n < !g � C su
h that A0 = limAn.Let A0 = fx0; : : : ; xsg and take U0; : : : ; Us pairwise disjoint open sets su
h thatxi 2 Ui for i � s. We may thus assume that for every n < !, An 2 hU0; : : : ; Usi.For ea
h n 2 N, let kn � s be su
h that An \ Ukn 6= fxkng, we may assumewithout loss of generality that kn = 0 for every n 2 N. LetY =[fAn \ U0 : n < !g:First, if Y is �nite, there is an open set V su
h that V \ Y = fx0g, so theneighborhood hV \U0; U1; : : : ; Usi interse
ts the sequen
e only in A0, whi
h 
on-tradi
ts the 
onvergen
e of the An. Thus, Y is in�nite. We now prove that Y
onverges to x0. Let V be an open set su
h that x0 2 V . Let k < ! be su
h thatAn 2 hV \ U0; U1; : : : ; Usi for ea
h n � k. From this it follows that the setY �[fAn \ U0 : n < kgis a 
o�nite subset of Y 
ontained in V . Thus, Y is a nontrivial 
onvergentsequen
e in X . This 
ontradi
tion implies C is �nite.The other impli
ation follows from the fa
t thatX is homeomorphi
 toF1(X) �K(X). �We end the dis
ussion by showing that weak P -spa
es are not the only ones inwhi
h the equality 
ompa
t=�nite holds.
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tedness properties of hyperspa
es 5794.8 Example. Let X = ! [ P , where P is the set of weak P -points of !�. It isa famous result of Kunen ([Ku℄) that P is a dense subset of !� of 
ardinality 22! .We 
laim that K(X) = F(X). Every in�nite 
ompa
t spa
e 
ontains a separable
ompa
t subspa
e, so it is suÆ
ient to show that the 
losure of every in�nite
ountable subset N � X is not 
ompa
t. Sin
e P is a weak P -spa
e 
losed inX , 
lX(N \ P ) = 
lP (N \ P ) = N \ P that is 
ompa
t if and only if it is �nite.Thus, we may assume N � !. Sin
e !��P is also dense in !�, 
l�!(N)�X 6= ;.It easily follows that 
lX(N) is not 
ompa
t. Noti
e that X is not a weak P -spa
ebe
ause N is dense in X . �Observe that the spa
e X from Example 4.8 is extremally dis
onne
ted be-
ause it is a dense subspa
e of �!. We now present an example of a spa
e whose
ompa
t subspa
es are �nite but it is not an F 0-spa
e. Re
all a spa
e has 
ount-able 
ellularity if every 
olle
tion of pairwise disjoint nonempty open subsets is
ountable. For the proof of the following fa
t follow the hint in [PW, 6L(8)℄.4.9 Fa
t. Every F 0-spa
e of 
ountable 
ellularity is extremally dis
onne
ted.4.10 Example. Let ! = SfAn : n < !g be a partition in in�nite subsets. LetF0 be the Fre
het �lter (or any �lter that 
ontains it) andF = fB � ! : fn < ! : An �B is �niteg 2 F0g:De�ne the spa
e X = ! [ fFg where every point of ! is isolated and theneighborhoods of F are of the form fFg [ A with A 2 F.Any in�nite 
ompa
t subspa
e of X must be a 
onvergent sequen
e. Let S � !be in�nite. If there exists m < ! su
h that S \ Am is in�nite, let R = ! � Am.If for ea
h n < !, jS \ Anj < ! holds, let R = ! � S. In both 
ases R 2 F andS �R is in�nite, so S 
annot 
onverge to F.Also, noti
e that X is an F 0-spa
e if and only if it is extremally dis
onne
ted(X has 
ountable 
ellularity, use Fa
t 4.9) and it is easy to see this happens ifand only if F is an ultra�lter. To see F is not an ultra�lter, for ea
h n < !, letAn = Pn [ Qn be a partition in in�nite subsets. Then P = SfPn : n < !g =2 Fand Q = SfQn : n < !g =2 F but ! = P [Q. Thus, F is not prime so it is not anultra�lter.Thus, X is a spa
e in whi
h all 
ompa
t subsets are �nite but it is not anF 0-spa
e. �5. Hereditary dis
onne
tednessOur �rst result gives a method to lo
ate 
onne
ted sets in a hyperspa
e.5.1 Lemma. Let X be a Hausdor� spa
e. Assume there is a K 2 K(X) su
hthat for every U 2 CO(X) with K � U we have X = U . ThenC = fK [ fxg : x 2 Xgis a 
onne
ted subset of K(X).



580 R. Hern�andez-Guti�errez, A. Tamariz-Mas
ar�uaProof: Let U and V be open subsets of K(X) su
h that K 2 U , C � U [ V andC \U \V = ;. Let U = fx 2 X : K [fxg 2 Ug and V = X �U . Clearly, K � U ,we now prove that U is 
lopen.First, we prove every point x 2 U is in the interior of U , we have two 
ases. Ifx 2 K, let n < ! and U0; : : : ; Un be open subsets of X su
h thatK 2 hU0 : : : ; Uni � U :Noti
e that x 2 K � U0 [ : : : [ Un � U . If x =2 K, let V0; : : : ; Vm;W be opensubsets of X su
h that K � V0 [ : : : [ Vm, x 2 W , W \ (V0 [ : : : [ Vm) = ; andK [ fxg 2 hV0; : : : ; Vm;W i � U . Then, x 2 W � U .Now let x 2 V , then K [ fxg 2 C � U � V . Let V0; : : : ; Vm;W be opensubsets of X su
h that K � V0 [ : : : [ Vm, x 2 W , W \ (V0 [ : : : [ Vm) = ; andK [ fxg 2 hV0; : : : ; Vm;W i � V . Then x 2 W � V . This proves V is open andthus, U is 
losed.Therefore, U is 
lopen and 
ontains K so by hypothesis U = X . But thisimplies that C � U . Then C is 
onne
ted. �Using Lemma 5.1, we give a modi�
ation of Example 1.1 of [P℄ showing therewas no need to add a Cantor set to the original spa
e.5.2 Example. Let C � I be the Cantor set 
onstru
ted by removing middle-thirds of intervals in the usual way, let Q � C be the set of endpoints of theCantor set and P = C �Q. For ea
h 
 2 C, letL
 = (f
g � ([0; 1) \ Q); if 
 2 Q;f
g � ([0; 1)� Q); if 
 2 P:Let F = SfL
 : 
 2 Cg. Noti
e F is homeomorphi
 to the Knaster-Kuratowskifan with its top point removed (see [E2, 1.4.C℄). It is easy to see that F is hered-itarily dis
onne
ted. Let � : F ! C be the proje
tion to the �rst 
oordinate (inthe plane). We now prove:Claim 1. There is a 
ompa
t G � F su
h that if 
 2 C, j� (
) \Gj = 1.To prove Claim 1, let D = Q[ [Q \ (I �C)℄ whi
h is a 
ountable dense subsetof I . It is a well-known fa
t that there is a homeomorphism h : I ! [0; 12 ℄ su
hthat f [D℄ = Q \ [0; 12 ℄. Let G = f �C� C � [0; 12 ℄, the graph of the fun
tion frestri
ted to the Cantor set. Claim 1 follows.Claim 2. Let A;B 
losed sets of the plane su
h that A \B \F = ;, G � A andF � A [B. Then F \ B = ;.To prove Claim 2, let Q \ [0; 1) = fqn : n < !g be an enumeration. For ea
hn < !, let Pn = C �fqng and Kn = �[A \B \ Pn℄. Noti
e that Kn is a 
ompa
tsubset of P be
ause A \ B \ F = ; and F \ Pn = Q� fqng.Moreover, Kn is nowhere dense in P . To see this, assume W is a nonemptyregular open subset of C with W \ P � Kn. We have 
lC(W \ P ) = 
lC(W )
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es 581be
ause P is dense in C. Let x 2 W \ Q, then x 2 W � 
lC(W \ P ) � Kn.So (x; qn) is a point of F whose �rst 
oordinate is in Kn, this implies (x; qn) 2A \ B \ F, a 
ontradi
tion.Sin
e P is 
ompletely metrizable, it is a Baire spa
e and the set Z = P �(Sn<!Kn) is a dense open subset of P . Fix 
 2 Z. Then for ea
h n < !,(
; qn) =2 A \ B. Sin
e L
 is dense in f
g � I , f
g � I � A [ B. Now, f
g � Iis 
onne
ted so either f
g � I � A or f
g � I � B. Sin
e (
; f(
)) 2 G � A, wene
essarily have f
g � I � A. But this implies that SfL
 : 
 2 Zg is a densesubset of F 
ontained in A. Then F � A so F \ B = ;. This proves Claim 2.By Claim 2 and Lemma 5.1, C = fG [ fxg : x 2 Fg is a 
onne
ted subset ofK(F) with more than one point. We have proved that K(F) is not hereditarilydis
onne
ted. �A question one may ask is if K(X) is hereditarily dis
onne
ted when X isan hereditarily dis
onne
ted spa
e that is the union of two totally dis
onne
tedsubspa
es. Consider the spa
e F from Example 5.2: we 
an write F as theunion of two totally dis
onne
ted subspa
es F = [F \ Q2 ℄ [ [F � Q2 ℄ and K(F)is not hereditarily dis
onne
ted. So we need more 
onditions that ensure thatK(X) is hereditarily dis
onne
ted. Our Main Theorem shows that under 
ertain
onditions K(X) is hereditarily dis
onne
ted. Before proving it, we isolate twote
hni
al lemmas we will use often.5.3 Lemma. Let X be a T1 spa
e, T � X su
h that(a) for every x 2 X � T there is a W 2 CO(X) su
h that x 2 W andW \ T = ;,(b) X � T is totally dis
onne
ted.Let C � K(X) be 
onne
ted. Then the following holds(�) if Y1; Y2 2 C, then Y1 � T = Y2 � T .Proof: For the sake of produ
ing a 
ontradi
tion, let us assume (�) does nothold for some Y1; Y2 2 C. Let, without loss of generality, y 2 Y2 � T be su
hthat y =2 Y1. For ea
h x 2 Y1 � T , let Ux 2 CO(X) be su
h that x; y 2 Ux andUx \T = ;, this 
an be done by (a). Sin
e Ux � X �T is totally dis
onne
ted by(b), let Vx 2 CO(Ux) be su
h that x =2 Vx and y 2 Vx. Let Wx = X �Vx, observethat both Vx;Wx 2 CO(X).Noti
e that T [ fxg � Wx and y =2 Wx. By 
ompa
tness, there is a �nite setfx0; : : : ; xng � Y1�T su
h that Y1[T �Wx0[� � �[Wxn . SoW =Wx0[: : :[Wxnis a 
lopen subset of X su
h that Y1 2 W+ and Y2 =2 W+. But this 
ontradi
tsthe 
onne
tedness of C so (�) holds. �5.4 Lemma. Let X be a T1 spa
e, T � X a 
losed subset and ; 6= C � K(X)su
h that(a) if Y1; Y2 2 C, then Y1 � T = Y2 � T ,(b) if Y 2 C, then Y \ T 6= ;.
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ar�uaDe�ne � : C ! K(T ) by �(Y ) = Y \ T . Then � is a well-de�ned, inje
tive and
ontinuous fun
tion.Proof: The fun
tion � is well-de�ned by (b) and is inje
tive by (a), we onlyhave to prove the 
ontinuity. Let Y0 2 C. De�ne Z = Y0 � T . Noti
e that by (a),Z = Y � T for every Y 2 C. If Z = ;, � is an in
lusion that is 
learly 
ontinuousso assume Z 6= ;.Let U be an open subset of K(T ) with �(Y0) 2 U . We now prove there is anopen subset V of K(X) su
h that Y0 2 V and �[V \C℄ � U . We may assume thatU = hU1; : : : ; Uni where U1; : : : ; Un are nonempty open subsets of T .Let V0 = X � T . For 1 � m � n, let Vm be an open subset of X su
hthat Vm \ T = Um and if Um \ 
lX (Z) = ;, then also Vm \ 
lX(Z) = ;. LetV = hV0; V1; : : : ; Vni, 
learly Y0 2 V .Let Y 2 V \C. First, if y 2 �(Y ), then y 2 Vm \T for some 1 � m � n. Thus,�(Y ) � U1[ : : : Un. Now, let 1 � m � n. If there is a point y 2 Um\
lX(Z) 6= ;,then sin
e 
lX(Z) � Y , y 2 Um \ �(Y ). If Um \ 
lX(Z) = ;, let y 2 Y \ Vm sothat y 2 Um \ �(Y ). In both 
ases, Um \ �(Y ) 6= ;. This shows �(Y ) 2 U and
ompletes the proof. �The Main Theorem will be proved in two steps. The �rst step is to add justone point to a totally dis
onne
ted spa
e.5.5 Proposition. Let X be a Hausdor� hereditarily dis
onne
ted spa
e andp 2 X be su
h that X � fpg is totally dis
onne
ted. Then K(X) is hereditarilydis
onne
ted.Proof: Start with a 
onne
ted subset C � K(X). By 
onsidering iterated qua-si
omponents, we shall prove that jCj = 1.For ea
h ordinal �, let T� = Q� (X; p) and � = n
(X; p). Noti
e that fT� :� < �g is a stri
tly de
reasing family of 
losed subsets of X that 
ontain p andT� = fpg. We prove the following two properties by trans�nite indu
tion on �:If Y1; Y2 2 C, then Y1 � T� = Y2 � T�.(�)� If there exists Y0 2 C su
h that Y0 \ T� = ;, then C = fY0g.(?)�To prove (�)0, just apply Lemma 5.3 to the pair of spa
es T0 � X . Now, letY0 be as in (?)0, so one 
an �nd W 2 CO(X) su
h that Y0 �W and T0 \W = ;.But then W+ is a 
lopen set so Y 2 W+ for all Y 2 C. By (�)0, we get (?)0.Now assume (�)
 and (?)
 for every 
 � �. We now prove (�)�+1 and (?)�+1.We �rst 
onsider (�)�+1. If there exists Y0 2 C su
h that Y0 \ T� = ;, by(?)� , we have C = fY0g and (�)�+1 is 
learly true. So assume that every Y 2 Cinterse
ts T�. By Lemma 5.4, the fun
tion �� : C ! K(T�) de�ned by ��(Y ) =Y \ T� is 
ontinuous and inje
tive. Let C� = ��[C℄. Using Lemma 5.3 for thepair of spa
es T�+1 � T� and the 
onne
ted subset C� we get for every Y1; Y2 2 C,(Y1 \ T�)� T�+1 = (Y2 \ T�)� T�+1. By (�)� , this implies (�)�+1.Noti
e that if there is a Y0 2 C su
h that Y0 \T� = ;, then (?)� implies (?)�+1so assume for every Y 2 C, Y \ T� 6= ;. Again we may 
onsider �� and C� as in
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onne
tedness properties of hyperspa
es 583the former paragraph. Let Y0 2 C be su
h that Y0 \ T�+1 = ;. Then one 
an �ndW 2 CO(T�) su
h that �� [Y0℄ � W and W \ T�+1 = ;. So W+ is a 
lopen setthat interse
ts the 
onne
ted set C� , therefore, �� [Y ℄ 2W+ for every Y 2 C. By(�)�+1 we 
on
lude (?)�+1.We have left to prove (�)� and (?)� for � a limit ordinal but these proofs followfrom (�)
 and (?)
 for ea
h 
 < � using that T� = T
<� T
 .Observe that (�)� means that if Y1; Y2 2 C, then Y1�fpg = Y2�fpg. By (?)�it easily follows that jCj = 1. So K(X) is hereditarily dis
onne
ted. �We now pro
eed to prove the main result.5.6 Proof of the Main Theorem. Let C � K(X) be a 
onne
ted subset.Denote by � : X ! X=F the quotient map and denote by eF the unique pointin �[F ℄. Let D = f�[C℄ : C 2 Cg, this set is 
onne
ted be
ause D = ��[C℄ where�� : K(X) ! K(X=F ) is the 
ontinuous fun
tion de�ned in Lemma 1.1. UsingProposition 5.5 for eF 2 X=F it follows that D = fTg for some T 2 K(X=F ). IfeF =2 T , sin
e � is inje
tive in X � F , jCj = 1. If eF 2 T , then Y \ F 6= ; for everyY 2 C. Thus, by Lemma 5.4, the fun
tion � : C ! K(F ) given by �(Y ) = Y \ Fis 
ontinuous and inje
tive. But F is totally dis
onne
ted, so by Theorem 0.2,K(F ) is totally dis
onne
ted. Thus, jCj = jDj = 1. �A natural question here is if the 
onverse to the Main Theorem is true. Thatis, assume X = Y [ F where both Y; F are totally dis
onne
ted, F is 
losedand K(X) is hereditarily dis
onne
ted, is it true that the quotient X=F mustalso be hereditarily dis
onne
ted? When F is 
ompa
t, the answer is in theaÆrmative (Corollary 5.7) but it may not be in general (Case 2 of the Examplefrom Se
tion 6).5.7 Corollary. Let X be a Hausdor� spa
e. Assume X = Y [ T where bothY and T are totally dis
onne
ted and T is 
ompa
t. Then K(X) is hereditarilydis
onne
ted if and only if the quotient spa
e X=T is hereditarily dis
onne
ted.Proof: Let � : X ! X=T be the quotient and eT the unique point in �[T ℄.If X=T is hereditarily dis
onne
ted, then K(X) is hereditarily dis
onne
ted bythe Main Theorem. If X=T is not hereditarily dis
onne
ted, let R � X=T be a
onne
ted subset with more than one point. Clearly eT 2 R. Let F = � [R℄,noti
e T � F . De�ne C = fT [ fxg : x 2 Fg whi
h is 
onne
ted by Lemma 5.1.Moreover, jCj > 1 be
ause R 6= f eTg. �Let us prove that if K(X) has a 
onne
ted subset with more than one point,then it must also 
ontain a 
annoni
al one in some sense.5.8 Proposition. Let X be a Hausdor� hereditarily dis
onne
ted spa
e. IfC � K(X) is a 
onne
ted set with more than one point and K 2 C, then there isa 
losed subset F � X with K ( F su
h that the set D = fK [ fxg : x 2 Fg is
onne
ted and jDj > 1.
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ar�uaProof: Consider the setZ = fZ � X : Z is 
losed and for every Y 2 C; Y � Zg:By the Kuratowski-Zorn lemma, there exists a �-minimal element F 2 Z . Noti
eK � F . Let D = fK [ fxg : x 2 Fg.Assume K = F . Sin
e K is 
ompa
t, it is zero-dimensional and K(K) is alsozero-dimensional (Theorem 0.2). Then C is a 
onne
ted subset of K(K), thisimplies jCj = 1. This is a 
ontradi
tion so we have K ( F , whi
h implies jDj > 1.Let q : F ! Q(F ) be the quotient map onto the spa
e of quasi
omponents of F .Consider the 
ontinuous fun
tion q� : K(F ) ! K(Q(F )) from Lemma 1.1. Sin
eK(Q(F )) is totally dis
onne
ted (Theorem 0.2), q�[C℄ = fTg for some 
ompa
tT � Q(F ). Then G = q [T ℄ is su
h that G � F and C � K(G). By minimalityof F , F = G. Thus, q[K℄ = q�(K) = T = q[F ℄ = Q(F ) so K interse
ts everyquasi
omponent of F . From this and Lemma 5.1 it easily follows that D is a
onne
ted subset of K(X). �To �nish this se
tion, we generalize the \
ountable" in Theorem 1.3 of [P℄ to\s
attered". We start with a useful remark that will help with the proof.5.9 Remark. If F is hereditarily dis
onne
ted and K � F is a 
ompa
t subsetsu
h that fK[fxg : x 2 Fg is 
onne
ted, thenK interse
ts every quasi
omponentof F .5.10 Theorem. Let X be a Hausdor� hereditarily dis
onne
ted spa
e. If C �K(X) is 
onne
ted and there exists T 2 C that is s
attered, then jCj = 1.Proof: Assume that C � K(X) is 
onne
ted and jCj > 1. By Proposition 5.8,we may assume C = fT [ fxg : x 2 Fg for some 
losed subset F � X su
h thatT � F .We now de�ne a des
ending trans�nite sequen
e of 
losed sets F� (� an ordinal)in the following way. We �rst take F0 = F . Assume we have already de�ned F�.Let q� : F� ! Q(F�) be the quotient map and let U� � Q(F�) be the set ofisolated points of Q(F�). De�ne F�+1 = F� � q � [U�℄. Finally, if � is a limitordinal, let F� = T�<� F�.We also de�ne for ea
h ordinal �, T� = F� \ T (so that T0 = T ) andC� = fT� [ fxg : x 2 F�g:By trans�nite indu
tion on � we shall prove the following properties.(0)� If for ea
h � < � we have F� 6= ;, then for ea
h � < �, F� ( F� .(1)� (a) For every Y1; Y2 2 C, Y1 � F� = Y2 � F�,(b) For ea
h Y 2 C, T� � Y ,(
) If F� 6= ;, the fun
tion �� : C ! K(F�) given by ��(Y ) = Y \F� iswell-de�ned, 
ontinuous and inje
tive. Moreover, C� = ��[C℄.(2)� q�[T�℄ = Q(F�).
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tedness properties of hyperspa
es 585First, noti
e that (1)� implies (2)�. To see this, observe that (1
)� implies C�is 
onne
ted. By Remark 5.9, we get (2)�.Clearly, (0)0 and (1)0 are true. Assume (0)�, (1)� and (2)� hold.Sin
e T� is a 
ompa
t Hausdor� s
attered spa
e, it must be 0-dimensional soby (2)� and Lemma 1.5, Q(F�) is a 
ompa
t 0-dimensional s
attered spa
e. Thus,if F� 6= ;, then also U� 6= ; and sin
e q� is onto, F�+1 ( F�. From this (0)�+1follows.Observe that for ea
h x 2 U�, q � (x) is a 
lopen quasi
omponent of F�, so itmust be an isolated point fyg. By (2)�, y 2 T�. We have obtained(?)� q � [U�℄ � T�:So we 
an write(�)� C� = fT� [ fxg : x 2 F�+1g [ fT�g:We now prove (1)�+1.First, let Y1; Y2 2 C and x 2 Y1 � F�+1. If x =2 F�, by (1a)�, x 2 Y2 � F� �Y2 � F�+1. If x 2 F�, by (�)�, we get T� [ fxg = T� [ fyg for some y 2 F�+1or T� [ fxg = T�. Noti
e x 6= y so it must be that x 2 T�. Thus, x 2 T � Y2.We have obtained that Y1 � F�+1 � Y2 � F�+1 and by a similar argument,Y2 � F�+1 � Y1 � F�+1. This proves (1a)�+1.Condition (1b)�+1 is true be
ause of (1b)� and the fa
t that T�+1 � T�.Assume F�+1 6= ;. Noti
e that by (2)�, T�+1 = T� \F�+1 6= ;. Then, (1b)�+1implies that for ea
h Y 2 C, Y \ F�+1 6= ;. Using this, (1a)�+1 and Lemma 5.4it 
an be shown that ��+1 is a well-de�ned, 
ontinuous and inje
tive fun
tion.By similar arguments and (1
)�, we may de�ne a fun
tion 	 : C� ! K(F�+1)by 	(Y ) = Y \ F�+1 whi
h is 
ontinuous and inje
tive. Moreover, the followingdiagram 
ommutes: C�� �� ��+1$$HHHHHHHHHHC� 	 // K(F�+1)From equation (�)�, we dedu
e ��+1[C℄ = 	[C�℄ = C�+1. This proves (1
)�+1.Now, let us assume (0)�, (1)� and (2)� for all � < 
 for some limit ordinal 
.Assume F� 6= ; for ea
h � < 
. Fix � < 
. From F
 � F�+1 � F� we see thatF
 6= F�. Otherwise, F�+1 = F�, whi
h 
ontradi
ts (0)�+1. Thus, we get (0)
 .From F
 = T�<
 F�, T
 = T�<
 T� and (1a)�; (1b)�, one 
an easily dedu
e(1a)
 and (1b)
 . Assume F
 6= ;. By (2)�, T� 6= ; for ea
h � < 
. Then by (0)�,the T�, with � < 
, form a stri
tly des
ending 
hain of 
ompa
t nonempty sets,this implies T
 = T�<
 T� 6= ;. By (1a)
 and (1b)
 , we 
an apply Lemma 5.4 to
on
lude that �
 is well-de�ned, 
ontinuous and inje
tive. Then, it is easy to seethat �
 [C℄ = C
 . This proves (1
)
 .
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ar�uaThis 
ompletes the indu
tion. Noti
e that by (0)�, one 
an de�ne� = minf� : F� = ;g:One 
an show, using (2)� and the 
ompa
tness of the T�, that � = � + 1 forsome ordinal �. Observe that F� = F�� q � [U�℄, so every point of F� is isolated.Then, T� is a dis
rete 
ompa
t set and thus �nite. By (2)�, Q(F�) must be �niteand sin
e it is a spa
e of quasi
omponents, F� = Q(F�). Thus, C� = fT�g. ButC� is the inje
tive image of C under ��. This 
ontradi
ts jCj > 1. Therefore,jCj = 1. �It is immediate that the following holds5.11 Corollary. Let X be a Hausdor� spa
e. Then the following are equivalent:(a) X is hereditarily dis
onne
ted,(b) for some (equivalently, for ea
h) n 2 N, Fn(X) is hereditarily dis
on-ne
ted,(
) F(X) is hereditarily dis
onne
ted.6. An example for the Main TheoremIn this se
tion, we present two examples related to the Main Theorem. Noti
ethat the statement of Corollary 5.7 
ontains a 
onverse of the statement of theMain Theorem for the 
ase that T is a 
ompa
t spa
e. The �rst example (Case 1below) is an example of this inverse impli
ation. The se
ond example (Case 2below) shows that one 
annot obtain an inverse of the statement of the MainTheorem relaxing the requirement of 
ompa
tness of T to that of being a 
losedsubset of X .Consider !2, the Cantor set as a produ
t (where 2 = f0; 1g is a dis
rete spa
e),and [0;1℄ with the interval topology (that is, the Eu
lidean topology extendedwith a supremum 1). Let � : !2� [0;1℄ ! !2 and h : !2� [0;1℄ ! [0;1℄ bethe �rst and se
ond proje
tions, respe
tively. For ea
h i < !, let �i : !2 ! 2 bethe proje
tion onto the i-th 
oordinate. We will say that a subset A � !2� [0;1℄is bounded if suph[A℄ <1 and unbounded if it is not bounded (thus, h denotesthe \height"). Let � : !2! [0;1℄ be the fun
tion�(t) = Xm<! tmm+ 1 :We will 
onsider the spa
es X = fx 2 !2 : �(x) <1g and X0 = f(x; �(x)) : x 2Xg. In [D, p. 600℄, Dijkstra shows that X0 is homeomorphi
 to 
omplete Erd�osspa
e. Moreover, this spa
e has the following property(r) every nonempty 
lopen subset of X is unbounded.We will use the basis of !2 formed by the 
lopen subsets of the form[a0; : : : ; an℄ = fx 2 !2 : �m(x) = am for all m � ng;
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onne
tedness properties of hyperspa
es 587where fa0; : : : ; ang � f0; 1g.Observe that both X and !2 � X are dense: for every open set of the form[a0; : : : ; an℄ we may 
hoose x; y 2 [a0; : : : ; an℄ su
h that xm = 0 = 1� ym for ea
hm > n; then x 2 X and y 2 !2�X .For ea
h K � !2 we de�ne K0 = K � f1g and Y = X0 [ K0. Noti
e thatsin
e � �Y is �2-to-1 and �[Y ℄ � !2 is 0-dimensional, Y is hereditarily dis-
onne
ted. By a similar argument, X0 and K0 are totally dis
onne
ted. Wenow analyze whether K(Y ) is hereditarily dis
onne
ted for two spe
i�
 examplesfor K.Case 1. K = !2.First, Y=K0 is 
onne
ted: if U 2 CO(Y ) is su
h that K0 � U , using the 
om-pa
tness of K we get that X�U is bounded, so Y = U by (r). By Corollary 5.7,K(Y ) is not hereditarily dis
onne
ted. Noti
e that in this 
ase, Y=K0 is home-omorphi
 to the spa
e of Example 1.4.8 of [E2℄. By [D, p. 600℄, Y=K0 is alsohomeomorphi
 to the set of non-ordinary points of the Lelek fan.Case 2. K = XFirst, we see that Y=K0 is 
onne
ted. Observe that sin
e K0 is not 
ompa
t,Y=K0 is not the same quotient as in Case 1 (it is not even �rst 
ountable atthe image of K0). If U 2 CO(Y ) is su
h that K0 � U and (x;1) 2 K0, thereexists W 2 CO(!2) and t 2 [0;1) su
h that (x;1) 2 W � (t;1℄ � U . Thus,V = (W � [0;1℄)� U is a bounded 
lopen subset. By (r), V = ;. Sin
e (x;1)was arbitrary, we get U = Y . Thus, Y=K0 is 
onne
ted. However, we 
annotuse Corollary 5.7 be
ause K0 is not 
ompa
t. In fa
t, we will show that K(Y )is hereditarily dis
onne
ted. Observe that the proof that Y=K0 is 
onne
ted 
anbe modi�ed to show that Y is not totally dis
onne
ted, so it is not obvious thatK(Y ) is hereditarily dis
onne
ted.A �rst attempt to prove that K(Y ) is hereditarily dis
onne
ted 
ould be show-ing that any 
ompa
t subset of Y is s
attered and use Theorem 5.10. However,this is false. Re
all that P1m=0 1m+1 = �26 <1, thus the subsetP = f(x; t) 2 Y : for ea
h square-free n 2 N; �n�1 (x) = 0gis bounded. As it is pointed out in [D, p. 600℄, P is homeomorphi
 to the Cantorset. Fortunately, every 
ompa
t subset of Y will be \almost everywhere bounded"in the sense of (0)0� below. We will follow the te
hnique of Theorem 5.10 to provethat K(Y ) is hereditarily dis
onne
ted.Assume that K(Y ) 
ontains a 
onne
ted subset C with more than one point.We may assume by Proposition 5.8 that C = fT [ fxg : x 2 Fg for some 
losedF � Y and some 
ompa
t T ( F . We now 
onstru
t a de
reasing sequen
e of
losed subsets F� � Y for ea
h ordinal �. Start with F0 = F . If F� has alreadybeen de�ned, let
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ar�uaU� = fx 2 F� : there is an open subset U � !2 and r 2 (0;1) with�(x) 2 U su
h that if y 2 F� \ � [U ℄; then h(y) < r or h(y) =1g:Noti
e that U� is open in F�. Moreover, if x 2 F� and U is like in the de�nitionabove for x, then F� \ � [U ℄ � U�. Thus:Let x; y 2 F� be su
h that �(x) = �(y). Then x 2 U� if and(?)� only if y 2 U�.So let F�+1 = F� � U�, whi
h is 
losed. Finally, if � is a limit ordinal, letF� = T�<� F�. We also de�ne for ea
h ordinal �, T� = T \ F� and C� =fT� [ fxg : x 2 F�g.We now prove the following properties by trans�nite indu
tion.(1)� (a) For every Y 2 C, T� � Y .(b) If Y1; Y2 2 C, Y1 � F� = Y2 � F�.(
) If F� 6= ;, the fun
tion �� : C ! K(F�) given by �(Y ) = Y \ F� iswell-de�ned, 
ontinuous and inje
tive. Moreover, C� = ��[C℄.(2)� For ea
h x 2 X , F� \ � (x) 6= ; implies T� \ � (x) 6= ;.(3)� If x 2 �[U�℄, F� \ � (x) = T� \ � (x).We will pro
eed in the following fashion.� Step 1: (1)0 is true.� Step 2: (1
)� implies (2)� and (3)� for ea
h ordinal �.� Step 3: (1)� implies (1)�+1 for ea
h ordinal �.� Step 4: If � is a limit ordinal, (1)� for ea
h � < � implies (1)� .This proof is very similar to that of Theorem 5.10, so we will omit some argu-ments when they follow in a similar way. Step 1 is 
lear, observe that �0 is theidentity fun
tion.Proof of Step 2: Noti
e that if F� = ;, (2)� and (3)� are true, so we mayassume F� 6= ;. Thus, (1
)� implies C� is 
onne
ted.First, we prove (2)�. Let x 2 X and(�) Y \ � (x) = f(x; t0); (x; t1)g:Aiming towards a 
ontradi
tion, assume (x; t0) 2 F� and T� \ � (x) = ;. Sin
ex is not in the 
ompa
t set �[T�℄, there is a W 2 CO(!2) su
h that x 2 W andW \�[T�℄ = ;. Sin
e T� [f(x; t0)g 2 (� [W ℄)� and T� =2 (� [W ℄)�, the 
lopenset (� [W ℄)� separates C�. This 
ontradi
tion shows that (2)� holds.Next, we prove (3)�. Let x 2 �[U�℄ be su
h that � (x) \ F� 6= ;. Let us useequation (�) above. By (2)� and the fa
t that T� � F�, we only have to showthat the 
ase when � (x)\F� = � (x) and � (x)\T� = f(x; t0)g is impossible.We will analyze when t0 <1, the other possibility being similar.Sin
e x 2 �[U�℄, there is an open subset U � !2 and r 2 (0;1) su
h thatif y 2 F� and �(y) 2 U , then h(y) =2 [r;1). Sin
e T� \ (!2 � [0; r℄) = R is
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tedness properties of hyperspa
es 589a nonempty 
ompa
t set and x =2 �[R℄, there exists W0 2 CO(!2) su
h thatx 2W0 and W0 \ �[R℄ = ;. We may assume that W0 � U . LetW1 = (W0 � [0; r℄) \ F� = (W0 � [0; r)) \ F�whi
h is a 
lopen subset of F�. Further, T� [ f(x; t0)g 2 W�1 and T� =2 W�1 , thisgives a separation of C�. This is a 
ontradi
tion so (3)� follows.Proof of Step 3: Assume (1)�. By Step 2, (2)� and (3)� hold. We may alsoassume that F�+1 6= ;, otherwise (1)�+1 is 
learly true. First we prove that(�)� C� = fT� [ fxg : x 2 F�+1g [ fT�g:The right side of (�)� is 
learly 
ontained in the left side. Let T� [ fxg 2 C�with x 2 F�. If x =2 F�+1, by (3)�, x 2 T�. Thus, T� [ fxg = T� that is in theright side of (�)�. Thus, (�)� follows.We also need that T�+1 6= ;. Let x 2 �[F�+1℄, by (2)� there are x1; x2 2F� \ � (x) su
h that x1 2 F�+1 and x2 2 T�. By (?)�, x2 2 T�+1.The remaining part of the argument is similar to that of Theorem 5.10, in thepart where it is shown that (1)�+1 is a 
onsequen
e of (0)�, (1)� and (2)�.The proof of Step 4 is also similar to the part of Theorem 5.10 where it isshown (1)� is the 
onsequen
e of (0)�,(1)� and (2)� for all � < � when � is alimit ordinal so we omit it. This 
ompletes the indu
tion.The key to this example is the following statement:(0)� If F� 6= ;, then U� 6= ;.We shall use the te
hnique Erd�os used for the proof of (r) (for the originalErd�os spa
e, see [Er℄) to prove (0)�. Assume F� 6= ; but U� = ; for some �.We now use indu
tion to �nd elements fxn : n < !g � F�, a stri
tly in
reasingsequen
e fsn : n < !g � !, y 2 !2�X and a de
reasing sequen
e of open subsetsfUn : n < !g. For ea
h n < !, 
all tn = �(xn) and yn = �n(y). We �nd all thesewith the following properties(i) tn 2 Un,(ii) for ea
h m � n and r � sn, �r(tm) = yr,(iii) if m < n, then m+ h(xm) < h(xn) <1,(iv) if m < n, then m+ h(xm) <Pn+1m=0 ymm+1 <1,(v) Un = [y0; : : : ; ysn ℄.For n = 0 de�ne s0 = 0 and 
hoose x0 2 F� arbitrarily. Assume that we havethe 
onstru
tion up to n. Sin
e xn =2 U�, there exists xn+1 2 F� \ � [Un℄ su
hthat n+ h(xn) < h(xn+1) <1. Sin
eXm<! �m(tn+1)m+ 1 = h(xn+1) <1;
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ar�uaby the 
onvergen
e of this series, there exists sn+1 > sn su
h thatn+ h(xn) < sn+1Xm=0 �m(tn+1)m+ 1 :De�ne ym = �m(tn+1) for m 2 fsn + 1; : : : ; sn+1g. Clearly, 
onditions (i){(v)hold. Noti
e that by (iv), �(y) =1 so in fa
t y 2 !2�X .By (ii), ftn : n < !g 
onverges to y. Moreover, by (iii), fxn : n < !g 
onvergesto (y;1) =2 Y . Sin
e T� is 
ompa
t, there exists N < ! su
h that for ea
hN � n < !, xn 2 F� � T�.Let zn = (tn;1) for ea
h n < !. If N � n < ! then by (2)�, zn 2 T�. Butfzn : N � n < !g 
onverges to (y;1) =2 T�, whi
h is a 
ontradi
tion. Thus, (0)�follows.Observe that one may also use a similar argument to prove:(0)0� U� is dense in F�.We are now ready to produ
e a 
ontradi
tion to the assumption that K(Y ) isnot hereditarily dis
onne
ted. By (0)�, we know that if F� 6= ;, then F�+1 ( F�.Thus, there exists � = minf� : F� = ;g:By (2)� and a 
ompa
tness argument, it 
an be proved that � = �+1 for some �.Then U� = F�, by (3)� this implies F� = T�. Thus C� = fT�g. But �� is aninje
tive fun
tion by (1
)� so we have a 
ontradi
tion. This 
ontradi
tion provesthat K(Y ) is hereditarily dis
onne
ted.7. Final remarksA substantial part of this paper was fo
used on giving 
onditions on X so thatK(X) is hereditarily dis
onne
ted. The Main Theorem and its Corollary 5.7 areexamples of this. We 
an also infer a little more by 
onsidering Theorem 5.10,Example 5.2 and Case 2 from Se
tion 6. It is 
lear that none of this results givesa 
omplete solution to this problem. However, a

ording to Proposition 5.8 andRemark 5.9, we have the following 
hara
terization.7.1 Proposition. Let X be a hereditarily dis
onne
ted spa
e. Then K(X)
ontains a 
onne
ted set with more than one point if and only if there exists a
losed subset F � X and a 
ompa
t subset K ( F su
h that K interse
ts everyquasi
omponent of F .However, this result is not something tangible in the following sense. Corol-lary 5.7 says that if we want to know whether K(X) is hereditarily dis
onne
tedwe just have to examine a spe
i�
 spa
e X=T . However, Proposition 7.1 says wemust look for some undetermined subsets K and F .7.2 Question. Give tangible 
onditions on X so that K(X) is hereditarily dis-
onne
ted.
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es 5917.3 Question. Let X be a homogeneous (topologi
al group, perhaps) heredi-tarily dis
onne
ted spa
e. Can one give some 
hara
terization of hereditarily dis-
onne
tedness of K(X) in terms of (iterated) quasi
omponents and/or the spa
eof quasi
omponents Q(X)? Referen
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