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Disonnetedness properties of hyperspaesRodrigo Hern�andez-Guti�errez, Angel Tamariz-Masar�uaAbstrat. Let X be a Hausdor� spae and let H be one of the hyperspaesCL(X), K(X), F(X) or Fn(X) (n a positive integer) with the Vietoris topology.We study the following disonnetedness properties for H: extremal disonnet-edness, being a F 0-spae, P -spae or weak P -spae and hereditary disonnet-edness. Our main result states: if X is Hausdor� and F � X is a losed subsetsuh that (a) both F and X �F are totally disonneted, (b) the quotient X=Fis hereditarily disonneted, then K(X) is hereditarily disonneted. We alsoshow an example proving that this result annot be reversed.Keywords: hyperspaes, Vietoris topology, F 0-spae, P -spae, hereditarily dis-onnetedClassi�ation: 54B20, 54G05, 54G10, 54G12, 54G20Given a T1 spae X , let CL(X) be the hyperspae of nonempty losed subsetsof X with the Vietoris topology. Let us onsider the following hyperspaesK(X) = fA 2 CL(X) : A is ompatg;F(X) = fA 2 CL(X) : A is �niteg;Fn(X) = fA 2 CL(X) : jAj � ng for n a positive integer.The study of the Vietoris topology on hyperspaes was �rst motivated by ErnestMihael's outstanding paper [M℄. Conerning onnetedness properties, Mihaelstated the following:0.1 Theorem ([M, Theorem 4.10℄). Let X be a T1 spae and F(X) � H �CL(X). If any of X , Fn(X) (n a positive integer) or H are onneted, then thefollowing spaes are also onneted: X , Fm(X) for eah positive integer m andevery H0 satisfying F(X) � H0 � CL(X).Reall that a spae X is zero-dimensional if for every losed subset A � X andx 2 X �A, there is a lopen set O suh that x 2 O and O \ A = ;. We say thatX is totally disonneted if for every pair of points x; y 2 X with x 6= y, there isa lopen set O suh that x 2 O, y =2 O.This paper is part of the �rst author's dotoral dissertation direted by the seond author.Researh was supported by PAPIIT grant IN-102910 and CONACyT sholarship for DotoralStudents.



570 R. Hern�andez-Guti�errez, A. Tamariz-Masar�ua0.2 Theorem ([M, Proposition 4.13℄). For a T1 spae X we have:� X is zero-dimensional if and only if K(X) is zero-dimensional,� X is totally disonneted if and only if K(X) is totally disonneted,� X is disrete if and only if K(X) is disrete,� X has no isolated points if and only if CL(X) has no isolated points.In this paper, we present similar results about other lasses of disonnetedspaes. Most of our results will be in the realm of Hausdor� spaes. Tyhono�spaes will be used when the lasses of spaes onsidered require so.First we will onsider lasses of highly disonneted spaes. If X is a spae andp 2 X , we all p a P -point of X if p belongs to the interior of every GÆ set thatontains it. We say that X is a P -spae if all its points are P -points of X . Forproperties of P -spaes, see problem 1W of [PW℄. Every regular P -spae is zero-dimensional, so being a P -spae is a stronger ondition than zero-dimensionalityin the realm of regular spaes. In Setions 2 and 3, we study when a hyperspaean be a P -spae using other lasses of spaes suh as F -spaes. After that, inSetion 4 we give remarks on spaes in whih ompat subsets are �nite (P -spaesare of this kind by Remark 3.4).On the other hand, we onsider a property roughly weaker than total dis-onnetedness. We all a spae X hereditarily disonneted if every nonemptyonneted subset of X is a singleton. Clearly, every totally disonneted spae ishereditarily disonneted but there are examples (given below) that show theselasses do not oinide. In [IN, 83.5℄, Illanes and Nadler ask whether CL(X)or K(X) are hereditarily disonneted when X is hereditarily disonneted andmetrizable. In [P℄, E. Pol and R. Pol answer this in the negative and make someinteresting remarks. In Setion 5, we extend the work of E. Pol and R. Pol andgive some examples. Our main result isMain Theorem. Let X be a Hausdor� spae. Assume that there is a losedsubset F � X suh that(a) both F and X � F are totally disonneted,(b) the quotient X=F is hereditarily disonneted.Then K(X) is hereditarily disonneted.We also show that the statement of the Main Theorem annot be reversed bygiving an example in Setion 6.1. PreliminariesWe denote by N the set of positive integers, ! = N [ f0g, the unit intervalI = [0; 1℄ and the set of rational numbers Q with the Eulidean topology. For anyspae X , let CO(X) denote the olletion of lopen subsets of X . The ardinalityof a set A will be denoted by jAj. A set A is ountable if jAj � !.



Disonnetedness properties of hyperspaes 571LetX be a T1 spae. The Vietoris topology on CL(X) is the topology generatedby the sets of the formU+ = fA 2 CL(X) : A � Ug;U� = fA 2 CL(X) : A \ U 6= ;g;where U is an open subset of X . It is easy to see that a basis of the Vietoristopology onsists of the olletion of sets of the formhU0; : : : Uni = fA 2 CL(X) : A � U0 [ � � � [ Un and if i � n;Ui \ A 6= ;g;where n < ! and U0; : : : ; Un are nonempty open subsets of X . For n 2 N,the hyperspae Fn(X) is alled the n-th symmetri produt of X . Notie thatF1(X) is homeomorphi to X under the map fxg 7! x. We will use the followingstraightforward generalization of [IN, 13.3℄ several times.1.1 Lemma. Let X and Y be Hausdor� spaes and f : X ! Y be a ontinuousfuntion. De�ne f� : K(X) ! K(Y ) by f�(T ) = f [T ℄. Then f� is a ontinuousfuntion.Let X be a Tyhono� spae. A subset A of a spae X is C�-embedded ifevery bounded real-valued ontinuous funtion de�ned on A an be extended toX . A zero set of X is a set of the form f (0), where f is a ontinuous real-valuedfuntion de�ned on X ; a ozero set of X is the omplement of a zero set of X . Ina Tyhono� spae, ozero sets form a basis for its topology.1.2 Lemma. If U is a ozero set of a Hausdor� spae X , then U+ \K(X) andU� \ K(X) are ozero sets of K(X).Proof: Let f : X ! I be suh that U = f [(0; 1℄℄. Consider the ontinuousfuntion f� : K(X)! K(I) from Lemma 1.1. The funtions min : K(I)! I andmax : K(I) ! I that take eah losed subset of I to its minimal and maximalelements, respetively, are easily seen to be ontinuous. Finally, notie thatU+ \ K(X) = (min Æ f�) [(0; 1℄℄;U� \ K(X) = (max Æ f�) [(0; 1℄℄;whih ompletes the proof. �Reall that a Tyhono� spae is pseudoompat if every loally �nite olletionof open sets is �nite. Let X � I� for some ardinal � � 1 and let �A : I� ! IAbe the projetion for eah ; 6= A � �. We say that X is !-dense in I� if wheneverN is a ountable nonempty subset of � it follows that �N [X ℄ = IN .1.3 Lemma ([S, Proposition 1℄). Let X be a dense subspae of I� for someardinal � � 1. Then X is pseudoompat if and only if X is !-dense in I�.1.4 Lemma ([Ke, Theorem 1.3℄). Let X be a Tyhono� spae and n 2 N. ThenFn(X) is pseudoompat if and only if Xn is pseudoompat.



572 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaFor eah spae X and p 2 X , reall that the quasiomponent of X at p is thelosed subset Q (X; p) =\fU 2 CO(X) : p 2 Ug:We an de�ne by trans�nite reursion the �-quasiomponent of X at p, Q� (X; p),in the following way.Q0 (X; p) = X;Q�+1 (X; p) = Q (Q� (X; p) ; p) ; for eah ordinal �;Q� (X; p) = T�<�Q� (X; p); for eah limit ordinal �:We all n(X; p) = minf� : Q�+1 (X; p) = Q� (X; p)g the non-onnetivityindex of X at p. If X is hereditarily disonneted and p 2 X , then n(X; p) =minf� : Q� (X; p) = fpgg. Notie that if X is hereditarily disonneted andjX j > 1, then X is totally disonneted if and only if n(X; p) = 1 for everyp 2 X .If X is any spae (no separation axioms required), we an de�ne a quotientspae Q(X) by shrinking eah quasiomponent of X to a point (that is, Q(X) =fQ (X; p) : p 2 Xg with the quotient topology). Observe thatQ(X) is a Hausdor�totally disonneted spae.Reall a spae X is sattered if for every nonempty Y � X , the set of isolatedpoints of Y is nonempty.1.5 Lemma. If X and Y are ompat Hausdor� spaes, X is sattered and Yis a ontinuous image of X , then Y is also sattered.Proof: Let f : X ! Y be ontinuous and onto. Assume K � Y is nonemptyand does not have isolated points. By taking losure, we may assume that K islosed. Using the Kuratowski-Zorn lemma, we an �nd a losed subset T � Xthat is minimal with the property that f [T ℄ = K. Sine X is sattered, thereexists an isolated point t 2 T of T . Notie that K � ff(t)g � f [T � ftg℄. Also,sine K has no isolated points, K�ff(t)g is dense in K. But T �ftg is ompatso it follows that K � f [T � ftg℄. This ontradits the minimality of T , so suha K annot exist. �2. P -points in symmetri produtsIn this setion we show how to detet P -points in symmetri produts.2.1 Lemma. Let X be a Hausdor� spae, n < !, A 2 Fn+1(X) � Fn(X)(where F0(X) = ;) and U an open set in CL(X) suh that A 2 U . Then thereexist U0; : : : ; Un pairwise disjoint nonempty open sets suh thatA 2 hU0; : : : ; Uni � U :Proof: Let A = fx0; : : : ; xng. Take V0; : : : ; Vn pairwise disjoint open subsets ofX suh that xk 2 Vk for eah k � n. Consider now a basi open setA 2 hW0; : : : ;Wsi � U \ hV0 : : : ; Vni:



Disonnetedness properties of hyperspaes 573For eah k � n let Uk = Vk \ (TfWr : xk 2 Wrg). Notie that U0; : : : ; Un arepairwise disjoint open sets suh thatA 2 hU0; : : : ; Uni � hW0; : : : ;Wsi � U ;whih ompletes the proof. �2.2 Proposition. Let X be a Hausdor� spae and A 2 F(X). The followingonditions are equivalent:(a) A is a P -point of F(X),(b) A is a P -point of Fn(X) for eah n � jAj,() every x 2 A is a P -point of X .Proof: Let A = fx0; : : : ; xmg. The impliation (a))(b) is lear beause theproperty of being a P -point is hereditary to subspaes. Assume A is a P -pointof Fm+1(X). Let fUi : i < !g be a olletion of open subsets of X suh thatx0 2 Ti<! Ui. Take W0; : : : ;Wm pairwise disjoint open subsets of X suh thatxi 2 Wi for j � m. For eah i < !, de�neUi = hUi \W0;W1; : : : ;Wmi:Sine A is a P -point in Fm+1(X), by Lemma 2.1, there is a olletion V0; : : : ; Vmonsisting of pairwise disjoint open subsets of X suh thatA 2 hV0; : : : ; Vmi � \i<! Ui:We may assume xj 2 Vj for eah j � m. We now prove V0 � Ti<! Ui. Takey 2 V0 and onsider the element B = fy; x1; : : : ; xmg 2 hV0; : : : ; Vmi. SineB 2 Ui for eah i < !, we get y 2 Ti<! Ui. This proves that x0 is a P -pointof X and by similar arguments, eah point of A is a P -point of X . This proves(b))().Now, let fUi : i < !g be a olletion of open subsets of F(X) that ontain Aand assume eah point of A is a P -point of X . Using Lemma 2.1, for eah i < !one may de�ne a olletion U(0; i); : : : ; U(m; i) onsisting of pairwise disjoint opensubsets ofX suh that for eah j � m, xj 2 U(j; i) and hU(0; i); : : : ; U(m; i)i � Ui.Eah point of A is a P -point so we may take, for eah j � m, an open subset Ujof X suh that x 2 Uj � Ti<! U(j; i). Thus,A 2 hU0; : : : ; Umi � \i<! Ui;whih proves ())(a). �2.3 Example. We onstrut a homogeneous P -spae with no isolated pointsusing hyperspaes. Let X = f�+1 : � < !1g[f0; !1g as a subspae of the LOTS!1 + 1. So X is a P -spae in whih all its points exept for !1 are isolated. LetY = fA 2 F(X) : !1 2 Ag;



574 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uawhih is a P -spae (Proposition 2.2). Let A 2 Y and let hU0; : : : ; Uki be a basiopen neighborhood of A. We may assume that U0; : : : ; Uk are pairwise disjoint(Lemma 2.1) and !1 2 U0. Let � 2 U0 �f!1g, then A 6= A [ f�g 2 hU0; : : : ; Uni.Thus, Y has no isolated points.To prove the homogeneity of Y it is suÆient to prove the following:(1) if A;B 2 Y are suh that jAj = jBj, then there exists a homeomorphismH : Y ! Y suh that H(A) = B,(2) for every n 2 N, there are A;B 2 Y suh that jAj + 1 = jBj = n+ 1 anda homeomorphism H : Y ! Y suh that H(A) = B.For (1), let h : X ! X be a bijetion suh that h[A℄ = B and h(!1) = !1.De�ne H(P ) = h[P ℄ for every P 2 Y .For (2), let H : Y ! Y be de�ned byH(P ) = (P � f0g; if 0 2 P;P [ f0g; if 0 =2 P:Then H is a homeomorphism suh that for eah A 2 Y with 0 =2 P , jH(A)j =jAj+ 1. It follows that Y is homogeneous. �3. Hyperspaes that are F -spaesAn F -spae is a Tyhono� spae in whih every ozero set is C�-embedded.See problem 6L in [PW℄ for properties of F -spaes. All Tyhono� P -spaes areF -spaes but there are onneted F -spaes (for example, �[0; 1)� [0; 1) by [PW,6L(2)℄ and [PW, 6AA(2)℄). We may also onsider F 0-spaes, that is, Tyhono�spaes in whih eah pair of disjoint ozero sets have disjoint losures (see De�ni-tion 8.12 in [GH℄). Notie that every F -spae is an F 0-spae. The main result ofthis setion, Theorem 3.7, says that a hyperspae an only be an F 0-spae whenit is a P -spae and thus disonneted.3.1 Fat. If X is an in�nite Hausdor� spae, then CL(X) ontains a onvergentsequene.Proof: Let N = fxn : n < !g be an ountable in�nite subspae of X . IfAm = fxn : n � mg for m < !, then fAm : m < !g is a sequene that onvergesto lX(N). �3.2 Fat. If X is an F 0-spae, then X does not ontain onvergent sequenes.Proof: If N = fxn : n < !g is a faithfully indexed sequene that onvergesto x0, let U; V be disjoint ozero sets of X suh that fx2n : n 2 Ng � U andfx2n�1 : n 2 Ng � V . Then x0 2 lX(U) \ lX (V ). �Thus, CL(X) is not an F 0-spae unless X is �nite. So it is left to know whenK(X), F(X) and the symmetri produts an be F 0-spaes.Along with F -spaes and F 0-spaes, we may onsider other lasses of spaesbetween disrete spaes and F -spaes. A spae is extremally disonneted if every



Disonnetedness properties of hyperspaes 575open set has open losure. A basially disonneted spae is a spae in whih everyozero set has open losure. So we may onsider disrete spaes, P -spaes, ex-tremally disonneted spaes (ED), basially disonneted spaes (BD), F -spaesand F 0-spaes. The diagram below (taken from [GH℄) shows by an arrow whihof these properties implies another.ED ""EEEEEEEE F / / F0disrete 99tttttttttt %%KKKKKKKKKK BD ::vvvvvvvvvv $ $IIIIIIIIIP <<xxxxxxxxx 0-dimTheorem 3.7 implies that P -spaes, BD spaes, F -spaes and F 0-spaes oin-ide for the hyperspaes K(X), F(X) and the symmetri produts in the realmof Tyhono� spaes. Before heading on to prove this, let us show that the hy-perspaes we are onsidering are extremally disonneted if and only if they aredisrete, even in the realm of Hausdor� spaes.3.3 Proposition. Let X be a Hausdor� spae and F2(X) � H � K(X). ThenH is extremally disonneted if and only if X is disrete.Proof: Clearly, X disrete implies H disrete. So assume that X is not disrete,take a non-isolated point p 2 X and onsider the set Z of all olletions G suhthat the elements of G are pairwise disjoint nonempty open subsets of X and ifU 2 G, then p =2 lX (U). By the Kuratowski-Zorn Lemma, we an onsider a�-maximal element M2 Z . Sine X is Hausdor�, SM is dense in X .Let U = SfU+\H : U 2 Mg. Let N be the �lter of open neighborhoods of p.For eah W 2 N , there must be UW ; VW 2 M suh that UW 6= VW , W \UW 6= ;and W \ VW 6= ;. Let V = SfhUW ; VW i \ H : W 2 Ng. Then, U and V arepairwise disjoint nonempty open subsets of H but fpg 2 lH(U) \ lH(V). �We now return to F 0-spaes. It was shown by Mihael (Theorem 4.9 of [M℄)that K(X) is Tyhono� if and only if X is Tyhono�, so we may assume that X isTyhono� for the rest of this setion. Alternatively, this follows from Lemma 1.2.3.4 Remark. Let X be an in�nite Tyhono� spae. If K(X) is an F -spae,then K(X) = F(X).Proof: If Y 2 K(X) � F(X), then CL(Y ) � K(X) ontains a onvergent se-quene by Fat 3.1. This ontradits Fat 3.2. �3.5 Lemma ([PW, 1W(2)℄). A Tyhono� spae is a P -spae if and only if everyzero set is lopen.3.6 Proposition. Let X be a Tyhono� spae and let F2(X) � H � K(X). IfH is an F 0-spae, then X is a P -spae.



576 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaProof: Let us assume that X is not a P -spae. By Lemma 3.5, we may assumethere is a ontinuous funtion f : X ! I suh that Z = f (0) is not lopen. Letp 2 Z � intX(Z) and onsider the following two statements.(E) There is a neighborhood U of p with f [U ℄ � f0g [ f 12m : m 2 Ng.(O) There is a neighborhood V of p with f [V ℄ � f0g [ f 12m�1 : m 2 Ng.Notie that sine p =2 intX(Z), we annot have (E) and (O) simultaneously.Assume without loss of generality that (E) does not hold. For eah m 2 N, letUm = f [( 12m+2 ; 12m )℄. Then fUm : m 2 Ng is a olletion of pairwise disjointozero sets. Observe that every neighborhood of p intersets some Um. Also,f [[0; 12m+2 )℄ is a neighborhood of p that misses Um. Thus,(�) p 2 lX�[ fUm : m 2 Ng��[flX(Um) : m 2 Ng:Consider the sets:U = [fU+m \ H : m 2 Ng;V = [fhUm; Uki \ H : m; k 2 N;m 6= kg;these are nonempty pairwise disjoint ozero sets by Lemma 1.2. By (�), it followsthat fpg 2 lH(U) \ lH(V), so H is not an F 0-spae. �This allows us to give the next result.3.7 Theorem. Let X be a Tyhono� spae and F2(X) � H � K(X). Then thefollowing are equivalent:(a) X is a P -spae,(b) H is a P -spae,() H is an F 0-spae.Proof: First, assume (a). By Lemma 2.2, F(X) is a P -spae and by Remark 3.4,K(X) = F(X) so H � K(X) is a P -spae. So (b) holds. That (b) implies () iswell-known and () implies (a) by Proposition 3.6. �4. Some spaes suh that K(X) = F(X)We an generalize the tehniques for F 0-spaes to another lass of spaes Xsuh that K(X) = F(X). We onsider the ase of weak P -spaes.We all a point p in a spae X a weak P -point of X if for every ountable setN � X � fpg we have p =2 lX(N). A weak P -spae is a spae X in whih all itspoints are weak P -points of X .4.1 Fat. If X is a weak P -spae, then K(X) = F(X).Proof: If X is a weak P -spae, then every ountable subset of X is losedand disrete. If K � X is ompat and in�nite, it ontains a ountable in�nitedisrete subset N � K and if x 2 lX(N)�N , then N [fxg is ountable but notdisrete. �



Disonnetedness properties of hyperspaes 5774.2 Remark. The property of being a weak P -spae does not imply disonnet-edness. Shakhmatov gave in [S℄ an example of a onneted, pseudoompat, weakP -spae in whih all its ountable subsets are C�-embedded.We have the following results for weak P -spaes, analogous to those of P -spaes.4.3 Proposition. Let X be a Hausdor� spae and A 2 F(X). The followingonditions are equivalent:(a) A is a weak P -point in F(X),(b) A is a weak P -point in Fn(X) for eah n � jAj,() every x 2 A is a weak P -point of X .Proof: Let A = fx0; : : : ; xmg. Notie (a))(b) beause being a weak P -point ishereditary to subspaes.To prove (b))(), assume x0 is not a weak P -point of X . Let D = fyk :k < !g � X � fx0g be suh that x0 2 lX(D). De�ne Bk = fyk; x1; : : : ; xmg 2Fm+1(X) for eah k < !. Then, fBk : k < !g � Fm+1(X) � fAg and A 2lFm+1(X)(fBk : k < !g).Now we prove ())(a). Assume () and take fBk : k < !g � F(X) � fAg.For eah k < !, hoose t(k) 2 f0; : : : ;mg suh that xt(k) =2 Bk. De�ne Er = fk <! : t(k) = rg for eah r � m. So given r � n, xr =2 SfBk : k 2 Erg. SineSfBk : k 2 Erg is ountable, there exists an open subset Ur with xr 2 Ur andUr \ (SfBk : k 2 Erg) = ;. Finally, let U = hU0; : : : ; Uni. Then A 2 U andU \ fBk : k < !g = ;. �4.4 Theorem. Let X be a Hausdor� spae. Then the following are equivalent:(a) X is a weak P -spae,(b) K(X) is a weak P -spae,() F(X) is a weak P -spae,(d) Fn(X) is a weak P -spae for some n 2 N.Proof: If we assume (a), by Fat 4.1 we have K(X) = F(X), whih is a weakP -spae by Proposition 4.3. Clearly, (b) implies () and () implies (d). Finally,(d) and (a) are equivalent by Proposition 4.3. �4.5 Example. Call a Tyhono� spae a Shakhmatov spae if it is a pseudoom-pat, onneted weak P -spae. In [S℄, Shakhmatov gave an example of a subspaeS � I, where  = 2!, that is a Shakhmatov spae. Moreover, S is !-dense in I.Let H be either a symmetri produt of S or one of the hyperspaes K(S) orF(S). By Theorem 4.4, H is also a weak P -spae and by Theorem 0.1, it is alsoonneted. It is interesting to ask whether H is a Shakhmatov spae. Notie thatK(X) = F(X) for every Shakhmatov spae X (Fat 4.1).Sine S is !-dense in I, it is easy to see that for any ardinal �, S� is !-densein (I)� = I��. By Lemmas 1.3 and 1.4, Fn(S) is a Shakhmatov spae for everyn 2 N. However, F(X) is pseudoompat if and only if X is �nite by Lemma 4.6below. Thus, K(X) is never a Shakhmatov spae. �4.6 Lemma. If X is an in�nite Tyhono� spae, F(X) is not pseudoompat.



578 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaProof: Let fUn : n < !g be a family of pairwise disjoint nonempty open subsetsof X . If Un = hU0; : : : ; Uni, then fUn \ F(X) : n < !g is an in�nite loally �nitefamily of open nonempty subsets of F(X). �For sake of ompleteness, we show that ondition K(X) = F(X) behaves wellunder the operation of taking hyperspae in the following way.4.7 Proposition. If X is a Hausdor� spae, then K(X) = F(X) if and only ifevery ompat subset of K(X) is �nite (that is, K(K(X)) = F(K(X))).Proof: First, assume K(X) = F(X), and let C � K(X) be ompat. WriteC = Sn2N Cn where Cn = C \ Fn(X). Notie eah Cn is ompat beause Fn(X)is losed in F(X).Claim. Eah Cn is �nite.Fix n 2 N. To prove the laim, onsider the natural identi�ation � : nX !Fn(X) that sends eah n-tuple to the set of its oordinates. Also, onsider �k :nX ! X the projetion onto the kth-oordinate. Sine � is perfet, the set Kn =�k[� [Cn℄℄ is a ompat subset ofX and thus, �nite. Now, � [Cn℄ � K1�� � ��Knso Cn must also be �nite. This proves the Claim.By the Claim, C is a ompat Hausdor� ountable spae. Sine the weight of anin�nite ompat Hausdor� spae is less or equal to its ardinality ([E1, 3.1.21℄),C is a ompat metri spae. Assume C is in�nite, then we an �nd a faithfullyindexed sequene fAn : n < !g � C suh that A0 = limAn.Let A0 = fx0; : : : ; xsg and take U0; : : : ; Us pairwise disjoint open sets suh thatxi 2 Ui for i � s. We may thus assume that for every n < !, An 2 hU0; : : : ; Usi.For eah n 2 N, let kn � s be suh that An \ Ukn 6= fxkng, we may assumewithout loss of generality that kn = 0 for every n 2 N. LetY =[fAn \ U0 : n < !g:First, if Y is �nite, there is an open set V suh that V \ Y = fx0g, so theneighborhood hV \U0; U1; : : : ; Usi intersets the sequene only in A0, whih on-tradits the onvergene of the An. Thus, Y is in�nite. We now prove that Yonverges to x0. Let V be an open set suh that x0 2 V . Let k < ! be suh thatAn 2 hV \ U0; U1; : : : ; Usi for eah n � k. From this it follows that the setY �[fAn \ U0 : n < kgis a o�nite subset of Y ontained in V . Thus, Y is a nontrivial onvergentsequene in X . This ontradition implies C is �nite.The other impliation follows from the fat thatX is homeomorphi toF1(X) �K(X). �We end the disussion by showing that weak P -spaes are not the only ones inwhih the equality ompat=�nite holds.



Disonnetedness properties of hyperspaes 5794.8 Example. Let X = ! [ P , where P is the set of weak P -points of !�. It isa famous result of Kunen ([Ku℄) that P is a dense subset of !� of ardinality 22! .We laim that K(X) = F(X). Every in�nite ompat spae ontains a separableompat subspae, so it is suÆient to show that the losure of every in�niteountable subset N � X is not ompat. Sine P is a weak P -spae losed inX , lX(N \ P ) = lP (N \ P ) = N \ P that is ompat if and only if it is �nite.Thus, we may assume N � !. Sine !��P is also dense in !�, l�!(N)�X 6= ;.It easily follows that lX(N) is not ompat. Notie that X is not a weak P -spaebeause N is dense in X . �Observe that the spae X from Example 4.8 is extremally disonneted be-ause it is a dense subspae of �!. We now present an example of a spae whoseompat subspaes are �nite but it is not an F 0-spae. Reall a spae has ount-able ellularity if every olletion of pairwise disjoint nonempty open subsets isountable. For the proof of the following fat follow the hint in [PW, 6L(8)℄.4.9 Fat. Every F 0-spae of ountable ellularity is extremally disonneted.4.10 Example. Let ! = SfAn : n < !g be a partition in in�nite subsets. LetF0 be the Frehet �lter (or any �lter that ontains it) andF = fB � ! : fn < ! : An �B is �niteg 2 F0g:De�ne the spae X = ! [ fFg where every point of ! is isolated and theneighborhoods of F are of the form fFg [ A with A 2 F.Any in�nite ompat subspae of X must be a onvergent sequene. Let S � !be in�nite. If there exists m < ! suh that S \ Am is in�nite, let R = ! � Am.If for eah n < !, jS \ Anj < ! holds, let R = ! � S. In both ases R 2 F andS �R is in�nite, so S annot onverge to F.Also, notie that X is an F 0-spae if and only if it is extremally disonneted(X has ountable ellularity, use Fat 4.9) and it is easy to see this happens ifand only if F is an ultra�lter. To see F is not an ultra�lter, for eah n < !, letAn = Pn [ Qn be a partition in in�nite subsets. Then P = SfPn : n < !g =2 Fand Q = SfQn : n < !g =2 F but ! = P [Q. Thus, F is not prime so it is not anultra�lter.Thus, X is a spae in whih all ompat subsets are �nite but it is not anF 0-spae. �5. Hereditary disonnetednessOur �rst result gives a method to loate onneted sets in a hyperspae.5.1 Lemma. Let X be a Hausdor� spae. Assume there is a K 2 K(X) suhthat for every U 2 CO(X) with K � U we have X = U . ThenC = fK [ fxg : x 2 Xgis a onneted subset of K(X).



580 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaProof: Let U and V be open subsets of K(X) suh that K 2 U , C � U [ V andC \U \V = ;. Let U = fx 2 X : K [fxg 2 Ug and V = X �U . Clearly, K � U ,we now prove that U is lopen.First, we prove every point x 2 U is in the interior of U , we have two ases. Ifx 2 K, let n < ! and U0; : : : ; Un be open subsets of X suh thatK 2 hU0 : : : ; Uni � U :Notie that x 2 K � U0 [ : : : [ Un � U . If x =2 K, let V0; : : : ; Vm;W be opensubsets of X suh that K � V0 [ : : : [ Vm, x 2 W , W \ (V0 [ : : : [ Vm) = ; andK [ fxg 2 hV0; : : : ; Vm;W i � U . Then, x 2 W � U .Now let x 2 V , then K [ fxg 2 C � U � V . Let V0; : : : ; Vm;W be opensubsets of X suh that K � V0 [ : : : [ Vm, x 2 W , W \ (V0 [ : : : [ Vm) = ; andK [ fxg 2 hV0; : : : ; Vm;W i � V . Then x 2 W � V . This proves V is open andthus, U is losed.Therefore, U is lopen and ontains K so by hypothesis U = X . But thisimplies that C � U . Then C is onneted. �Using Lemma 5.1, we give a modi�ation of Example 1.1 of [P℄ showing therewas no need to add a Cantor set to the original spae.5.2 Example. Let C � I be the Cantor set onstruted by removing middle-thirds of intervals in the usual way, let Q � C be the set of endpoints of theCantor set and P = C �Q. For eah  2 C, letL = (fg � ([0; 1) \ Q); if  2 Q;fg � ([0; 1)� Q); if  2 P:Let F = SfL :  2 Cg. Notie F is homeomorphi to the Knaster-Kuratowskifan with its top point removed (see [E2, 1.4.C℄). It is easy to see that F is hered-itarily disonneted. Let � : F ! C be the projetion to the �rst oordinate (inthe plane). We now prove:Claim 1. There is a ompat G � F suh that if  2 C, j� () \Gj = 1.To prove Claim 1, let D = Q[ [Q \ (I �C)℄ whih is a ountable dense subsetof I . It is a well-known fat that there is a homeomorphism h : I ! [0; 12 ℄ suhthat f [D℄ = Q \ [0; 12 ℄. Let G = f �C� C � [0; 12 ℄, the graph of the funtion frestrited to the Cantor set. Claim 1 follows.Claim 2. Let A;B losed sets of the plane suh that A \B \F = ;, G � A andF � A [B. Then F \ B = ;.To prove Claim 2, let Q \ [0; 1) = fqn : n < !g be an enumeration. For eahn < !, let Pn = C �fqng and Kn = �[A \B \ Pn℄. Notie that Kn is a ompatsubset of P beause A \ B \ F = ; and F \ Pn = Q� fqng.Moreover, Kn is nowhere dense in P . To see this, assume W is a nonemptyregular open subset of C with W \ P � Kn. We have lC(W \ P ) = lC(W )



Disonnetedness properties of hyperspaes 581beause P is dense in C. Let x 2 W \ Q, then x 2 W � lC(W \ P ) � Kn.So (x; qn) is a point of F whose �rst oordinate is in Kn, this implies (x; qn) 2A \ B \ F, a ontradition.Sine P is ompletely metrizable, it is a Baire spae and the set Z = P �(Sn<!Kn) is a dense open subset of P . Fix  2 Z. Then for eah n < !,(; qn) =2 A \ B. Sine L is dense in fg � I , fg � I � A [ B. Now, fg � Iis onneted so either fg � I � A or fg � I � B. Sine (; f()) 2 G � A, weneessarily have fg � I � A. But this implies that SfL :  2 Zg is a densesubset of F ontained in A. Then F � A so F \ B = ;. This proves Claim 2.By Claim 2 and Lemma 5.1, C = fG [ fxg : x 2 Fg is a onneted subset ofK(F) with more than one point. We have proved that K(F) is not hereditarilydisonneted. �A question one may ask is if K(X) is hereditarily disonneted when X isan hereditarily disonneted spae that is the union of two totally disonnetedsubspaes. Consider the spae F from Example 5.2: we an write F as theunion of two totally disonneted subspaes F = [F \ Q2 ℄ [ [F � Q2 ℄ and K(F)is not hereditarily disonneted. So we need more onditions that ensure thatK(X) is hereditarily disonneted. Our Main Theorem shows that under ertainonditions K(X) is hereditarily disonneted. Before proving it, we isolate twotehnial lemmas we will use often.5.3 Lemma. Let X be a T1 spae, T � X suh that(a) for every x 2 X � T there is a W 2 CO(X) suh that x 2 W andW \ T = ;,(b) X � T is totally disonneted.Let C � K(X) be onneted. Then the following holds(�) if Y1; Y2 2 C, then Y1 � T = Y2 � T .Proof: For the sake of produing a ontradition, let us assume (�) does nothold for some Y1; Y2 2 C. Let, without loss of generality, y 2 Y2 � T be suhthat y =2 Y1. For eah x 2 Y1 � T , let Ux 2 CO(X) be suh that x; y 2 Ux andUx \T = ;, this an be done by (a). Sine Ux � X �T is totally disonneted by(b), let Vx 2 CO(Ux) be suh that x =2 Vx and y 2 Vx. Let Wx = X �Vx, observethat both Vx;Wx 2 CO(X).Notie that T [ fxg � Wx and y =2 Wx. By ompatness, there is a �nite setfx0; : : : ; xng � Y1�T suh that Y1[T �Wx0[� � �[Wxn . SoW =Wx0[: : :[Wxnis a lopen subset of X suh that Y1 2 W+ and Y2 =2 W+. But this ontraditsthe onnetedness of C so (�) holds. �5.4 Lemma. Let X be a T1 spae, T � X a losed subset and ; 6= C � K(X)suh that(a) if Y1; Y2 2 C, then Y1 � T = Y2 � T ,(b) if Y 2 C, then Y \ T 6= ;.



582 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaDe�ne � : C ! K(T ) by �(Y ) = Y \ T . Then � is a well-de�ned, injetive andontinuous funtion.Proof: The funtion � is well-de�ned by (b) and is injetive by (a), we onlyhave to prove the ontinuity. Let Y0 2 C. De�ne Z = Y0 � T . Notie that by (a),Z = Y � T for every Y 2 C. If Z = ;, � is an inlusion that is learly ontinuousso assume Z 6= ;.Let U be an open subset of K(T ) with �(Y0) 2 U . We now prove there is anopen subset V of K(X) suh that Y0 2 V and �[V \C℄ � U . We may assume thatU = hU1; : : : ; Uni where U1; : : : ; Un are nonempty open subsets of T .Let V0 = X � T . For 1 � m � n, let Vm be an open subset of X suhthat Vm \ T = Um and if Um \ lX (Z) = ;, then also Vm \ lX(Z) = ;. LetV = hV0; V1; : : : ; Vni, learly Y0 2 V .Let Y 2 V \C. First, if y 2 �(Y ), then y 2 Vm \T for some 1 � m � n. Thus,�(Y ) � U1[ : : : Un. Now, let 1 � m � n. If there is a point y 2 Um\lX(Z) 6= ;,then sine lX(Z) � Y , y 2 Um \ �(Y ). If Um \ lX(Z) = ;, let y 2 Y \ Vm sothat y 2 Um \ �(Y ). In both ases, Um \ �(Y ) 6= ;. This shows �(Y ) 2 U andompletes the proof. �The Main Theorem will be proved in two steps. The �rst step is to add justone point to a totally disonneted spae.5.5 Proposition. Let X be a Hausdor� hereditarily disonneted spae andp 2 X be suh that X � fpg is totally disonneted. Then K(X) is hereditarilydisonneted.Proof: Start with a onneted subset C � K(X). By onsidering iterated qua-siomponents, we shall prove that jCj = 1.For eah ordinal �, let T� = Q� (X; p) and � = n(X; p). Notie that fT� :� < �g is a stritly dereasing family of losed subsets of X that ontain p andT� = fpg. We prove the following two properties by trans�nite indution on �:If Y1; Y2 2 C, then Y1 � T� = Y2 � T�.(�)� If there exists Y0 2 C suh that Y0 \ T� = ;, then C = fY0g.(?)�To prove (�)0, just apply Lemma 5.3 to the pair of spaes T0 � X . Now, letY0 be as in (?)0, so one an �nd W 2 CO(X) suh that Y0 �W and T0 \W = ;.But then W+ is a lopen set so Y 2 W+ for all Y 2 C. By (�)0, we get (?)0.Now assume (�) and (?) for every  � �. We now prove (�)�+1 and (?)�+1.We �rst onsider (�)�+1. If there exists Y0 2 C suh that Y0 \ T� = ;, by(?)� , we have C = fY0g and (�)�+1 is learly true. So assume that every Y 2 Cintersets T�. By Lemma 5.4, the funtion �� : C ! K(T�) de�ned by ��(Y ) =Y \ T� is ontinuous and injetive. Let C� = ��[C℄. Using Lemma 5.3 for thepair of spaes T�+1 � T� and the onneted subset C� we get for every Y1; Y2 2 C,(Y1 \ T�)� T�+1 = (Y2 \ T�)� T�+1. By (�)� , this implies (�)�+1.Notie that if there is a Y0 2 C suh that Y0 \T� = ;, then (?)� implies (?)�+1so assume for every Y 2 C, Y \ T� 6= ;. Again we may onsider �� and C� as in



Disonnetedness properties of hyperspaes 583the former paragraph. Let Y0 2 C be suh that Y0 \ T�+1 = ;. Then one an �ndW 2 CO(T�) suh that �� [Y0℄ � W and W \ T�+1 = ;. So W+ is a lopen setthat intersets the onneted set C� , therefore, �� [Y ℄ 2W+ for every Y 2 C. By(�)�+1 we onlude (?)�+1.We have left to prove (�)� and (?)� for � a limit ordinal but these proofs followfrom (�) and (?) for eah  < � using that T� = T<� T .Observe that (�)� means that if Y1; Y2 2 C, then Y1�fpg = Y2�fpg. By (?)�it easily follows that jCj = 1. So K(X) is hereditarily disonneted. �We now proeed to prove the main result.5.6 Proof of the Main Theorem. Let C � K(X) be a onneted subset.Denote by � : X ! X=F the quotient map and denote by eF the unique pointin �[F ℄. Let D = f�[C℄ : C 2 Cg, this set is onneted beause D = ��[C℄ where�� : K(X) ! K(X=F ) is the ontinuous funtion de�ned in Lemma 1.1. UsingProposition 5.5 for eF 2 X=F it follows that D = fTg for some T 2 K(X=F ). IfeF =2 T , sine � is injetive in X � F , jCj = 1. If eF 2 T , then Y \ F 6= ; for everyY 2 C. Thus, by Lemma 5.4, the funtion � : C ! K(F ) given by �(Y ) = Y \ Fis ontinuous and injetive. But F is totally disonneted, so by Theorem 0.2,K(F ) is totally disonneted. Thus, jCj = jDj = 1. �A natural question here is if the onverse to the Main Theorem is true. Thatis, assume X = Y [ F where both Y; F are totally disonneted, F is losedand K(X) is hereditarily disonneted, is it true that the quotient X=F mustalso be hereditarily disonneted? When F is ompat, the answer is in theaÆrmative (Corollary 5.7) but it may not be in general (Case 2 of the Examplefrom Setion 6).5.7 Corollary. Let X be a Hausdor� spae. Assume X = Y [ T where bothY and T are totally disonneted and T is ompat. Then K(X) is hereditarilydisonneted if and only if the quotient spae X=T is hereditarily disonneted.Proof: Let � : X ! X=T be the quotient and eT the unique point in �[T ℄.If X=T is hereditarily disonneted, then K(X) is hereditarily disonneted bythe Main Theorem. If X=T is not hereditarily disonneted, let R � X=T be aonneted subset with more than one point. Clearly eT 2 R. Let F = � [R℄,notie T � F . De�ne C = fT [ fxg : x 2 Fg whih is onneted by Lemma 5.1.Moreover, jCj > 1 beause R 6= f eTg. �Let us prove that if K(X) has a onneted subset with more than one point,then it must also ontain a annonial one in some sense.5.8 Proposition. Let X be a Hausdor� hereditarily disonneted spae. IfC � K(X) is a onneted set with more than one point and K 2 C, then there isa losed subset F � X with K ( F suh that the set D = fK [ fxg : x 2 Fg isonneted and jDj > 1.



584 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaProof: Consider the setZ = fZ � X : Z is losed and for every Y 2 C; Y � Zg:By the Kuratowski-Zorn lemma, there exists a �-minimal element F 2 Z . NotieK � F . Let D = fK [ fxg : x 2 Fg.Assume K = F . Sine K is ompat, it is zero-dimensional and K(K) is alsozero-dimensional (Theorem 0.2). Then C is a onneted subset of K(K), thisimplies jCj = 1. This is a ontradition so we have K ( F , whih implies jDj > 1.Let q : F ! Q(F ) be the quotient map onto the spae of quasiomponents of F .Consider the ontinuous funtion q� : K(F ) ! K(Q(F )) from Lemma 1.1. SineK(Q(F )) is totally disonneted (Theorem 0.2), q�[C℄ = fTg for some ompatT � Q(F ). Then G = q [T ℄ is suh that G � F and C � K(G). By minimalityof F , F = G. Thus, q[K℄ = q�(K) = T = q[F ℄ = Q(F ) so K intersets everyquasiomponent of F . From this and Lemma 5.1 it easily follows that D is aonneted subset of K(X). �To �nish this setion, we generalize the \ountable" in Theorem 1.3 of [P℄ to\sattered". We start with a useful remark that will help with the proof.5.9 Remark. If F is hereditarily disonneted and K � F is a ompat subsetsuh that fK[fxg : x 2 Fg is onneted, thenK intersets every quasiomponentof F .5.10 Theorem. Let X be a Hausdor� hereditarily disonneted spae. If C �K(X) is onneted and there exists T 2 C that is sattered, then jCj = 1.Proof: Assume that C � K(X) is onneted and jCj > 1. By Proposition 5.8,we may assume C = fT [ fxg : x 2 Fg for some losed subset F � X suh thatT � F .We now de�ne a desending trans�nite sequene of losed sets F� (� an ordinal)in the following way. We �rst take F0 = F . Assume we have already de�ned F�.Let q� : F� ! Q(F�) be the quotient map and let U� � Q(F�) be the set ofisolated points of Q(F�). De�ne F�+1 = F� � q � [U�℄. Finally, if � is a limitordinal, let F� = T�<� F�.We also de�ne for eah ordinal �, T� = F� \ T (so that T0 = T ) andC� = fT� [ fxg : x 2 F�g:By trans�nite indution on � we shall prove the following properties.(0)� If for eah � < � we have F� 6= ;, then for eah � < �, F� ( F� .(1)� (a) For every Y1; Y2 2 C, Y1 � F� = Y2 � F�,(b) For eah Y 2 C, T� � Y ,() If F� 6= ;, the funtion �� : C ! K(F�) given by ��(Y ) = Y \F� iswell-de�ned, ontinuous and injetive. Moreover, C� = ��[C℄.(2)� q�[T�℄ = Q(F�).



Disonnetedness properties of hyperspaes 585First, notie that (1)� implies (2)�. To see this, observe that (1)� implies C�is onneted. By Remark 5.9, we get (2)�.Clearly, (0)0 and (1)0 are true. Assume (0)�, (1)� and (2)� hold.Sine T� is a ompat Hausdor� sattered spae, it must be 0-dimensional soby (2)� and Lemma 1.5, Q(F�) is a ompat 0-dimensional sattered spae. Thus,if F� 6= ;, then also U� 6= ; and sine q� is onto, F�+1 ( F�. From this (0)�+1follows.Observe that for eah x 2 U�, q � (x) is a lopen quasiomponent of F�, so itmust be an isolated point fyg. By (2)�, y 2 T�. We have obtained(?)� q � [U�℄ � T�:So we an write(�)� C� = fT� [ fxg : x 2 F�+1g [ fT�g:We now prove (1)�+1.First, let Y1; Y2 2 C and x 2 Y1 � F�+1. If x =2 F�, by (1a)�, x 2 Y2 � F� �Y2 � F�+1. If x 2 F�, by (�)�, we get T� [ fxg = T� [ fyg for some y 2 F�+1or T� [ fxg = T�. Notie x 6= y so it must be that x 2 T�. Thus, x 2 T � Y2.We have obtained that Y1 � F�+1 � Y2 � F�+1 and by a similar argument,Y2 � F�+1 � Y1 � F�+1. This proves (1a)�+1.Condition (1b)�+1 is true beause of (1b)� and the fat that T�+1 � T�.Assume F�+1 6= ;. Notie that by (2)�, T�+1 = T� \F�+1 6= ;. Then, (1b)�+1implies that for eah Y 2 C, Y \ F�+1 6= ;. Using this, (1a)�+1 and Lemma 5.4it an be shown that ��+1 is a well-de�ned, ontinuous and injetive funtion.By similar arguments and (1)�, we may de�ne a funtion 	 : C� ! K(F�+1)by 	(Y ) = Y \ F�+1 whih is ontinuous and injetive. Moreover, the followingdiagram ommutes: C�� �� ��+1$$HHHHHHHHHHC� 	 // K(F�+1)From equation (�)�, we dedue ��+1[C℄ = 	[C�℄ = C�+1. This proves (1)�+1.Now, let us assume (0)�, (1)� and (2)� for all � <  for some limit ordinal .Assume F� 6= ; for eah � < . Fix � < . From F � F�+1 � F� we see thatF 6= F�. Otherwise, F�+1 = F�, whih ontradits (0)�+1. Thus, we get (0) .From F = T�< F�, T = T�< T� and (1a)�; (1b)�, one an easily dedue(1a) and (1b) . Assume F 6= ;. By (2)�, T� 6= ; for eah � < . Then by (0)�,the T�, with � < , form a stritly desending hain of ompat nonempty sets,this implies T = T�< T� 6= ;. By (1a) and (1b) , we an apply Lemma 5.4 toonlude that � is well-de�ned, ontinuous and injetive. Then, it is easy to seethat � [C℄ = C . This proves (1) .



586 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaThis ompletes the indution. Notie that by (0)�, one an de�ne� = minf� : F� = ;g:One an show, using (2)� and the ompatness of the T�, that � = � + 1 forsome ordinal �. Observe that F� = F�� q � [U�℄, so every point of F� is isolated.Then, T� is a disrete ompat set and thus �nite. By (2)�, Q(F�) must be �niteand sine it is a spae of quasiomponents, F� = Q(F�). Thus, C� = fT�g. ButC� is the injetive image of C under ��. This ontradits jCj > 1. Therefore,jCj = 1. �It is immediate that the following holds5.11 Corollary. Let X be a Hausdor� spae. Then the following are equivalent:(a) X is hereditarily disonneted,(b) for some (equivalently, for eah) n 2 N, Fn(X) is hereditarily dison-neted,() F(X) is hereditarily disonneted.6. An example for the Main TheoremIn this setion, we present two examples related to the Main Theorem. Notiethat the statement of Corollary 5.7 ontains a onverse of the statement of theMain Theorem for the ase that T is a ompat spae. The �rst example (Case 1below) is an example of this inverse impliation. The seond example (Case 2below) shows that one annot obtain an inverse of the statement of the MainTheorem relaxing the requirement of ompatness of T to that of being a losedsubset of X .Consider !2, the Cantor set as a produt (where 2 = f0; 1g is a disrete spae),and [0;1℄ with the interval topology (that is, the Eulidean topology extendedwith a supremum 1). Let � : !2� [0;1℄ ! !2 and h : !2� [0;1℄ ! [0;1℄ bethe �rst and seond projetions, respetively. For eah i < !, let �i : !2 ! 2 bethe projetion onto the i-th oordinate. We will say that a subset A � !2� [0;1℄is bounded if suph[A℄ <1 and unbounded if it is not bounded (thus, h denotesthe \height"). Let � : !2! [0;1℄ be the funtion�(t) = Xm<! tmm+ 1 :We will onsider the spaes X = fx 2 !2 : �(x) <1g and X0 = f(x; �(x)) : x 2Xg. In [D, p. 600℄, Dijkstra shows that X0 is homeomorphi to omplete Erd�osspae. Moreover, this spae has the following property(r) every nonempty lopen subset of X is unbounded.We will use the basis of !2 formed by the lopen subsets of the form[a0; : : : ; an℄ = fx 2 !2 : �m(x) = am for all m � ng;



Disonnetedness properties of hyperspaes 587where fa0; : : : ; ang � f0; 1g.Observe that both X and !2 � X are dense: for every open set of the form[a0; : : : ; an℄ we may hoose x; y 2 [a0; : : : ; an℄ suh that xm = 0 = 1� ym for eahm > n; then x 2 X and y 2 !2�X .For eah K � !2 we de�ne K0 = K � f1g and Y = X0 [ K0. Notie thatsine � �Y is �2-to-1 and �[Y ℄ � !2 is 0-dimensional, Y is hereditarily dis-onneted. By a similar argument, X0 and K0 are totally disonneted. Wenow analyze whether K(Y ) is hereditarily disonneted for two spei� examplesfor K.Case 1. K = !2.First, Y=K0 is onneted: if U 2 CO(Y ) is suh that K0 � U , using the om-patness of K we get that X�U is bounded, so Y = U by (r). By Corollary 5.7,K(Y ) is not hereditarily disonneted. Notie that in this ase, Y=K0 is home-omorphi to the spae of Example 1.4.8 of [E2℄. By [D, p. 600℄, Y=K0 is alsohomeomorphi to the set of non-ordinary points of the Lelek fan.Case 2. K = XFirst, we see that Y=K0 is onneted. Observe that sine K0 is not ompat,Y=K0 is not the same quotient as in Case 1 (it is not even �rst ountable atthe image of K0). If U 2 CO(Y ) is suh that K0 � U and (x;1) 2 K0, thereexists W 2 CO(!2) and t 2 [0;1) suh that (x;1) 2 W � (t;1℄ � U . Thus,V = (W � [0;1℄)� U is a bounded lopen subset. By (r), V = ;. Sine (x;1)was arbitrary, we get U = Y . Thus, Y=K0 is onneted. However, we annotuse Corollary 5.7 beause K0 is not ompat. In fat, we will show that K(Y )is hereditarily disonneted. Observe that the proof that Y=K0 is onneted anbe modi�ed to show that Y is not totally disonneted, so it is not obvious thatK(Y ) is hereditarily disonneted.A �rst attempt to prove that K(Y ) is hereditarily disonneted ould be show-ing that any ompat subset of Y is sattered and use Theorem 5.10. However,this is false. Reall that P1m=0 1m+1 = �26 <1, thus the subsetP = f(x; t) 2 Y : for eah square-free n 2 N; �n�1 (x) = 0gis bounded. As it is pointed out in [D, p. 600℄, P is homeomorphi to the Cantorset. Fortunately, every ompat subset of Y will be \almost everywhere bounded"in the sense of (0)0� below. We will follow the tehnique of Theorem 5.10 to provethat K(Y ) is hereditarily disonneted.Assume that K(Y ) ontains a onneted subset C with more than one point.We may assume by Proposition 5.8 that C = fT [ fxg : x 2 Fg for some losedF � Y and some ompat T ( F . We now onstrut a dereasing sequene oflosed subsets F� � Y for eah ordinal �. Start with F0 = F . If F� has alreadybeen de�ned, let



588 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaU� = fx 2 F� : there is an open subset U � !2 and r 2 (0;1) with�(x) 2 U suh that if y 2 F� \ � [U ℄; then h(y) < r or h(y) =1g:Notie that U� is open in F�. Moreover, if x 2 F� and U is like in the de�nitionabove for x, then F� \ � [U ℄ � U�. Thus:Let x; y 2 F� be suh that �(x) = �(y). Then x 2 U� if and(?)� only if y 2 U�.So let F�+1 = F� � U�, whih is losed. Finally, if � is a limit ordinal, letF� = T�<� F�. We also de�ne for eah ordinal �, T� = T \ F� and C� =fT� [ fxg : x 2 F�g.We now prove the following properties by trans�nite indution.(1)� (a) For every Y 2 C, T� � Y .(b) If Y1; Y2 2 C, Y1 � F� = Y2 � F�.() If F� 6= ;, the funtion �� : C ! K(F�) given by �(Y ) = Y \ F� iswell-de�ned, ontinuous and injetive. Moreover, C� = ��[C℄.(2)� For eah x 2 X , F� \ � (x) 6= ; implies T� \ � (x) 6= ;.(3)� If x 2 �[U�℄, F� \ � (x) = T� \ � (x).We will proeed in the following fashion.� Step 1: (1)0 is true.� Step 2: (1)� implies (2)� and (3)� for eah ordinal �.� Step 3: (1)� implies (1)�+1 for eah ordinal �.� Step 4: If � is a limit ordinal, (1)� for eah � < � implies (1)� .This proof is very similar to that of Theorem 5.10, so we will omit some argu-ments when they follow in a similar way. Step 1 is lear, observe that �0 is theidentity funtion.Proof of Step 2: Notie that if F� = ;, (2)� and (3)� are true, so we mayassume F� 6= ;. Thus, (1)� implies C� is onneted.First, we prove (2)�. Let x 2 X and(�) Y \ � (x) = f(x; t0); (x; t1)g:Aiming towards a ontradition, assume (x; t0) 2 F� and T� \ � (x) = ;. Sinex is not in the ompat set �[T�℄, there is a W 2 CO(!2) suh that x 2 W andW \�[T�℄ = ;. Sine T� [f(x; t0)g 2 (� [W ℄)� and T� =2 (� [W ℄)�, the lopenset (� [W ℄)� separates C�. This ontradition shows that (2)� holds.Next, we prove (3)�. Let x 2 �[U�℄ be suh that � (x) \ F� 6= ;. Let us useequation (�) above. By (2)� and the fat that T� � F�, we only have to showthat the ase when � (x)\F� = � (x) and � (x)\T� = f(x; t0)g is impossible.We will analyze when t0 <1, the other possibility being similar.Sine x 2 �[U�℄, there is an open subset U � !2 and r 2 (0;1) suh thatif y 2 F� and �(y) 2 U , then h(y) =2 [r;1). Sine T� \ (!2 � [0; r℄) = R is



Disonnetedness properties of hyperspaes 589a nonempty ompat set and x =2 �[R℄, there exists W0 2 CO(!2) suh thatx 2W0 and W0 \ �[R℄ = ;. We may assume that W0 � U . LetW1 = (W0 � [0; r℄) \ F� = (W0 � [0; r)) \ F�whih is a lopen subset of F�. Further, T� [ f(x; t0)g 2 W�1 and T� =2 W�1 , thisgives a separation of C�. This is a ontradition so (3)� follows.Proof of Step 3: Assume (1)�. By Step 2, (2)� and (3)� hold. We may alsoassume that F�+1 6= ;, otherwise (1)�+1 is learly true. First we prove that(�)� C� = fT� [ fxg : x 2 F�+1g [ fT�g:The right side of (�)� is learly ontained in the left side. Let T� [ fxg 2 C�with x 2 F�. If x =2 F�+1, by (3)�, x 2 T�. Thus, T� [ fxg = T� that is in theright side of (�)�. Thus, (�)� follows.We also need that T�+1 6= ;. Let x 2 �[F�+1℄, by (2)� there are x1; x2 2F� \ � (x) suh that x1 2 F�+1 and x2 2 T�. By (?)�, x2 2 T�+1.The remaining part of the argument is similar to that of Theorem 5.10, in thepart where it is shown that (1)�+1 is a onsequene of (0)�, (1)� and (2)�.The proof of Step 4 is also similar to the part of Theorem 5.10 where it isshown (1)� is the onsequene of (0)�,(1)� and (2)� for all � < � when � is alimit ordinal so we omit it. This ompletes the indution.The key to this example is the following statement:(0)� If F� 6= ;, then U� 6= ;.We shall use the tehnique Erd�os used for the proof of (r) (for the originalErd�os spae, see [Er℄) to prove (0)�. Assume F� 6= ; but U� = ; for some �.We now use indution to �nd elements fxn : n < !g � F�, a stritly inreasingsequene fsn : n < !g � !, y 2 !2�X and a dereasing sequene of open subsetsfUn : n < !g. For eah n < !, all tn = �(xn) and yn = �n(y). We �nd all thesewith the following properties(i) tn 2 Un,(ii) for eah m � n and r � sn, �r(tm) = yr,(iii) if m < n, then m+ h(xm) < h(xn) <1,(iv) if m < n, then m+ h(xm) <Pn+1m=0 ymm+1 <1,(v) Un = [y0; : : : ; ysn ℄.For n = 0 de�ne s0 = 0 and hoose x0 2 F� arbitrarily. Assume that we havethe onstrution up to n. Sine xn =2 U�, there exists xn+1 2 F� \ � [Un℄ suhthat n+ h(xn) < h(xn+1) <1. SineXm<! �m(tn+1)m+ 1 = h(xn+1) <1;



590 R. Hern�andez-Guti�errez, A. Tamariz-Masar�uaby the onvergene of this series, there exists sn+1 > sn suh thatn+ h(xn) < sn+1Xm=0 �m(tn+1)m+ 1 :De�ne ym = �m(tn+1) for m 2 fsn + 1; : : : ; sn+1g. Clearly, onditions (i){(v)hold. Notie that by (iv), �(y) =1 so in fat y 2 !2�X .By (ii), ftn : n < !g onverges to y. Moreover, by (iii), fxn : n < !g onvergesto (y;1) =2 Y . Sine T� is ompat, there exists N < ! suh that for eahN � n < !, xn 2 F� � T�.Let zn = (tn;1) for eah n < !. If N � n < ! then by (2)�, zn 2 T�. Butfzn : N � n < !g onverges to (y;1) =2 T�, whih is a ontradition. Thus, (0)�follows.Observe that one may also use a similar argument to prove:(0)0� U� is dense in F�.We are now ready to produe a ontradition to the assumption that K(Y ) isnot hereditarily disonneted. By (0)�, we know that if F� 6= ;, then F�+1 ( F�.Thus, there exists � = minf� : F� = ;g:By (2)� and a ompatness argument, it an be proved that � = �+1 for some �.Then U� = F�, by (3)� this implies F� = T�. Thus C� = fT�g. But �� is aninjetive funtion by (1)� so we have a ontradition. This ontradition provesthat K(Y ) is hereditarily disonneted.7. Final remarksA substantial part of this paper was foused on giving onditions on X so thatK(X) is hereditarily disonneted. The Main Theorem and its Corollary 5.7 areexamples of this. We an also infer a little more by onsidering Theorem 5.10,Example 5.2 and Case 2 from Setion 6. It is lear that none of this results givesa omplete solution to this problem. However, aording to Proposition 5.8 andRemark 5.9, we have the following haraterization.7.1 Proposition. Let X be a hereditarily disonneted spae. Then K(X)ontains a onneted set with more than one point if and only if there exists alosed subset F � X and a ompat subset K ( F suh that K intersets everyquasiomponent of F .However, this result is not something tangible in the following sense. Corol-lary 5.7 says that if we want to know whether K(X) is hereditarily disonnetedwe just have to examine a spei� spae X=T . However, Proposition 7.1 says wemust look for some undetermined subsets K and F .7.2 Question. Give tangible onditions on X so that K(X) is hereditarily dis-onneted.
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