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C1-smoothness of Nemytskii operators onSobolev-type spaes of periodi funtionsI. KmitAbstrat. We onsider a lass of Nemytskii superposition operators that oversthe nonlinear part of traveling wave models from laser dynamis, populationdynamis, and hemial kinetis. Our main result is the C1-ontinuity propertyof these operators over Sobolev-type spaes of periodi funtions.Keywords: Nemytskii operators, Sobolev-type spaes of periodi funtions, C1-smoothnessClassi�ation: 47H99, 46E301. Motivation and main resultDevelopment of a bifuration theory for hyperboli PDEs enounters signi�antdiÆulties aused by the fat that hyperboli operators have worse regularityproperties in omparison to ODEs and paraboli PDEs. Suh a theory has toover one- and multi-parameter bifurations (both loal and global), stability ofbifurating solutions, and periodi synhronizations. For hyperboli problemsall these topis urrently remain hallenging researh diretions. In eah of them,investigation of smoothness properties of Nemytskii superposition operators playsan important role.Not losing potential appliability to the aforementioned topis, here we on-sider Nemytskii operators in the ontext of the traveling wave models from laserdynamis [14℄, [17℄, [18℄. The models desribe the dynamis of multisetion semi-ondutor lasers. They inlude a semilinear �rst-order one-dimensional hyperbolisystem.As an additional soure of motivation, note that some problems of populationdynamis [7℄, [8℄, [9℄, [15℄, hemial kinetis [2℄, [3℄, [19℄, [20℄, [21℄, and kinetigas dynamis [6℄, [10℄, [16℄ have the same hyperboli operator. Thus, our analysisapplies to those problems as well, even when they have a di�erent type of boundaryonditions.In the ase of the traveling wave models, we deal with periodi-Dirihlet prob-lems and our overall goal is to provide a bifuration analysis for them. The basiidea is to apply tehniques based on the Impliit Funtion Theorem in Banahspaes and the Lyapunov-Shmidt redution (see, e.g., [5℄, [11℄). The �rst problemsupported by a Humboldt Researh Fellowship



508 I. Kmitto solve on this way is to establish the Fredholm solvability of the orrespond-ing linearized problems, what is done in [12℄, [13℄. To make the linearizationproedure orret and to solve the so-alled \range" equation (obtained after aLyapunov-Shmidt redution) via Impliit Funtion Theorem, we would need ap-propriate smoothness properties of the Nemytskii superposition operators withrespet to the funtion spaes used in [12℄, [13℄. The results obtained in thispaper are suÆient to ahieve this goal.Due to the great importane of Nemytskii operators in the theory of nonlinearequations, their smoothness properties in di�erent funtion spaes were exten-sively studied (see, e.g., [4℄). Here we involve into onsideration new funtionspaes important for solving nonlinear hyperboli PDEs.To state our main result, let us introdue the funtion spaes we are workingwith: For  � 0 we denote byW  the vetor Banah spae of all loally integrablefuntions u : [0; 1℄�R ! Rn suh that u(x; t) = u(x; t+2�) for almost all x 2 (0; 1)and t 2 R and that(1) kuk2W =Xs2Z(1 + s2) Z 10 Z 2�0 u(x; t)e�ist dt2 dx <1:Here and throughout k � k is the Hermitian norm in C n . In other words, W is the anisotropi Sobolev spae of all measurable funtions u : [0; 1℄ � R ! Rnsuh that u(x; t) = u(x; t + 2�) for almost all x 2 (0; 1) and t 2 R and thatthe distributional partial derivatives of u with respet to t up to the order are loally quadratially integrable. Furthermore, given a 2 L1((0; 1);Rn ) withess inf jaj j > 0 for all j � n, we introdue the funtion spaesV  = nu 2W  : �xu 2 W �1; [�tuj + aj�xuj ℄nj=1 2W oendowed with the norms(2) kuk2V  = kuk2W + [�tuj + aj�xuj ℄nj=12W :In the notation V  we drop the dependene of this spae on a. It should bestressed that our results hold true for eah a. Note that the spae V  is largerthan the spae of all u 2 W  with �tu 2W  and �xu 2 W  .We will fous on the pair of funtion spaes (V 2;W 2), for whih we prove ourmain result given by Theorem 1. It is important that V 2 is embedded into thealgebra of (ontinuous) funtions with pointwise multipliation (see assertion (ii)of Lemma 2 and the embedding (5) below). This will allow us to use pointwisenonlinearities for the desription of our Nemytskii operators.Given a funtion f(x; u) : (0; 1)�Rn ! R de�ned for almost all x 2 (0; 1) andall y 2 Rn , let(3) [F (u)℄ (x; t) = f(x; u(x; t)):



C1-smoothness of Nemytskii operators on Sobolev-type spaes of periodi funtions 509We will show that F is a C1-smooth superposition operator from V 2 into W 2.For the sake of tehnial simpliity and without loss of generality we will sup-pose that n = 1.Theorem 1. Suppose that f(�; �) 2 L1(0; 1;C4[�M;M ℄) for eah M > 0. ThenF (u) 2 C1(V 2;W 2).It should be emphasized here that, by physial reasons, the funtion f anhave disontinuities with respet to the �rst argument, and the assumption of thetheorem overs suh ases.Note also that under additional regularity assumptions on f , we an extendTheorem 1 to any desired smoothness of the operator F and to the pair of spaes(V  ;W ) for any integer  � 2.2. Properties of the used funtion spaesAs usual, by H1(0; 1) we denote the Sobolev spae of all funtions u 2 L2(0; 1)suh that the weak derivative u0 belongs to L2(0; 1). The norm in H1(0; 1) isde�ned by kuk2H1(0;1) = 1Xj=0 Z 10 ju(j)(x)j2dx:Similarly, by H1((0; 1) � (0; 2�)) we denote the Sobolev spae of all funtionsu 2 L2((0; 1) � (0; 2�)) suh that for every multiindex � = (�1; �2) 2 N20 withj�j � 1, the weak partial derivative D�u belongs to L2((0; 1)�(0; 2�)). The normin H1((0; 1)� (0; 2�)) is given bykuk2H1((0;1)�(0;2�)) = Xj�j�1Z 10 Z 2�0 jD�u(x; t)j2 dx dt:Moreover, by H1((0; 2�);H1(0; 1)) we denote the abstrat Sobolev spae of allloally quadratially Bohner integrable maps u : (0; 2�) ! H1(0; 1) suh thatthe distributional derivative u0 is also loally quadratially Bohner integrable,with the norm kuk2H1((0;2�);H1(0;1)) = 1Xj=0 Z 2�0 ku(j)(t)k2H1(0;1) dt:Note that the spae H1((0; 2�);H1(0; 1)) is smaller than the lassial Sobolevspae H1((0; 1)� (0; 2�)), and we have the ontinuous embeddingsH1 ((0; 1)� (0; 2�)) ,! Lp ((0; 1)� (0; 2�)) for all p 2 [2;1);(4) H1 �(0; 2�);H1(0; 1)� ,! C ([0; 1℄� [0; 2�℄) ;(5)see [1, Theorem 5.4℄.



510 I. KmitWe now establish some properties of the funtion spaes V 1 and V 2 introduedin Setion 1, whih are needed for proving Theorem 1.Lemma 2. We have the following ontinuous embeddings:(i) V 1 ,! H1((0; 1)� (0; 2�));(ii) V 2 ,! H1((0; 2�);H1(0; 1)).Proof: Notie the ontinuous embedding(6) V  ,!W  ,!W �1;  � 1;that is a straightforward onsequene of the de�nitions of the spaes V  and W  .(i) Take u 2 V 1. Then u 2 W 1 and, therefore, �tu 2W 0 with(7) k�tuk2W 0 � kuk2W 0 + k�tuk2W 0 = kuk2W 1 � kuk2V 1 :Moreover, by the de�nition of V 1, we have �tu+ a�xu 2 W 1. On the aount ofthe embedding (6),(8) k�tu+ a�xuk2W 0 � k�tu+ a�xuk2W 1 + kuk2W 1 = kuk2V 1 :By triangle inequality(9) ka�xuk2W 0 � k�tuk2W 0 � k�tu+ a�xuk2W 0 :Sine a 2 L1(0; 1) with ess inf jaj > 0, it follows by (7){(9), thatk�xukW 0 � kukV 1 ;where the onstant  does not depend on u. ThereforekukW 0 + k�xukW 0 + k�tukW 0 � (2 + )kukV 1 :To �nish the proof of this part, it remains to note that W 0 = L2((0; 1)� (0; 2�)).(ii) We proeed similarly: Take u 2 V 2. Then u 2 W 2, and we have u aswell as �tu and �xu in W 1. Moreover, kukW 1 � kukW 2 � kukV 2 and k�tukW 1 �kukW 2 � kukV 2 . This implies that k�xukW 1 � kukV 2 , where the onstant  doesnot depend on u. Claim (ii) readily follows from these estimates. �The following fat is similar to the density result for Sobolev spaes (see [1,Setion III℄) and proved by the same method.Lemma 3. The subspae C1 \ V 2 is dense in V 2.Proof: Set � = (0; 1)� (0; 2�). By periodiity, speaking of a funtion in V 2, wean assume its restrition to �. We will use this onvention in the ourse of theproof of the lemma.



C1-smoothness of Nemytskii operators on Sobolev-type spaes of periodi funtions 511Let ' be a non-negative C1(R2 )-funtion that vanishes outside a unit disk andsatis�es the ondition R '(x) dx = 1. Take u 2 V 2 and onsider its regularizationde�ned by u"(x; t) = 1"2 Z� u(�; �)'�x� �" ; t� �" � d�d�for " < dist((x; t); ��). Due to the properties of the onvolutions, for any stritsubdomain �0 � � it holds ��t u" ! ��t u and ��t [�xu"℄ ! ��t [�xu℄ in L2(�0) as" ! 0 for � = 0; 1; 2 and � = 0; 1 (see [1, Setion III℄ for details). This implies,in partiular, that v" ! v in L2(�0) as " ! 0, where v = �tu + a(x)�xu andv" = �tu" + a(x)�xu". Now we intend to prove that u" ! u in V 2 on �0 as" ! 0. It suÆes to show that ��t v" ! ��t v in L2(�0) as " ! 0 for � = 1; 2. Fix"0 < dist(�0; ��) and onsider " < "0. Then for any  2 C10 (�0) we haveZ�0 (�tu"(x; t) + a(x)�xu"(x; t)) ��t  (x; t) dx dt= 1"2 ZR2 ZR2 [�tu+ a�xu℄ (x� �; t� �)'� �" ; �"� ��t  (x; t) d�d�dx dt= (�1)�"2 ZR2 ZR2 ��t [�tu+ a�xu℄ (x� �; t� �)'� �" ; �"� (x; t) d� d� dx dt= (�1)� Z�0 ��t (v)" (x; t) (x; t) dx dt:Therefore, ��t (v")(x; t) = (��t v)"(x; t) in the sense of distributions on �0. Sine��t v 2 L2(�) for � = 1; 2,lim"!0 k��t v" � ��t vkL2(�0) = lim"!0 k(��t v)" � ��t vkL2(�0) = 0;as desired.Consider now the following loally �nite open overing of �:�1 = �(x; t) 2 � : dist ((x; t); ��) > 12� ;�j = �(x; t) 2 � : 1j + 1 < dist ((x; t); ��) < 1j � 1� ; j � 2:Let �1; �2; : : : be a partition of unity subordinate to the overing f�j+1 n�j�1g.Then, given j � 1, the produt �ju is in V 2 and has support ontained in �j .Consider now the molli�ation (�ju)". Given "0 > 0, we an hoose a sequene"j suh that"j < dist (�j+1; ��j+3) and k(�ju)"j � �jukV 2 � "02j+1 :Let w =P1j=1(�ju)"j . It follows from the de�nition of the partition of unity thatat eah x 2 � only �nitely many terms in the sum are nonzero. Sine eah term



512 I. Kmitis smooth, this implies w 2 C1(�). Moreover, using the triangle inequality, wehave kw � ukV 2n � n+2Xj=1 k(�ju)"j � �jukV 2n � 1Xj=1 "02�j = "0;where k � kV 2n is de�ned by (2) with the integral over�1=n = �(x; t) 2 � : dist ((x; t); ��) > 1n�in plae of the integral over �. This yieldskw � ukV 2 = supn�1 kw � ukV 2n � "0:Sine "0 > 0 is arbitrary, the set Pnj=1(�ju)"j , n � 3, is the desired dense setfrom C1 \ V 2. �3. C1-smoothness of the Nemytskii operator from V 2 into W 2 (proofof Theorem 1)We split the proof into two lemmas.Lemma 4. The superposition operator F given by the formula (3) maps V 2into W 2.Proof: For any funtion u 2 V 2, denote by F 0(u) and F 00(u) the superpositionoperators by putting, for almost all x 2 (0; 1),[F 0(u)℄ (x; t) = (�uf) (x; u(x; t));[F 00(u)℄ (x; t) = ��2uf� (x; u(x; t)):As V 2 ,! C([0; 1℄�[0; 2�℄) ontinuously (see Lemma 2(ii) and the embedding (5)),we an identify any u 2 V 2 with a uniformly ontinuous and 2�-periodi in tfuntion on [0; 1℄� R. Furthermore, we have the inequality(10) kukC([0;1℄�[0;2�℄) � C0kukV 2 for all u 2 V 2;the onstant C0 being independent of u. Combining this with the smoothnessassumptions on f , we onlude that, given u 2 V 2, the funtions [F (u)℄(x; t),[F 0(u)℄(x; t), and [F 00(u)℄(x; t) belong to L1((0; 1)� (0; 2�)).Claim 1. F (u) maps V 2 into W 1. Fix an arbitrary u 2 V 2, set(11) K = kukC([0;1℄�[0;2�℄);and onsider (um)m2Zto be a sequene in C1\V 2 onverging to u in V 2. By (10),we have this onvergene also in C([0; 1℄� [0; 2�℄). For almost all x 2 (0; 1) and



C1-smoothness of Nemytskii operators on Sobolev-type spaes of periodi funtions 513all t 2 R we have(12) [�tF (um)℄(x; t) = [F 0(um)℄(x; t)�tum(x; t):Let us show that(13) F 0(um)�tum ! F 0(u)�tu in L2 ((0; 1)� (0; 2�)) as m!1:Indeed,Z 10 Z 2�0 jF 0(um)�tum � F 0(u)�tuj2 dx dt� 2 Z 10 Z 2�0 jF 0(um)� F 0(u)j2 j�tumj2 dx dt(14) + 2 Z 10 Z 2�0 jF 0(u)j2 j�tum � �tuj2 dx dt� 2 Z 10 Z 2�0 ����Z 10 (�2uf)(x; �um + (1� �)u) d�����2 jum � uj2 j�tumj2 dx dt+ 2 Z 10 Z 2�0 j(�uf)(x; u)j2 j�tum � �tuj2 dx dt� 2 kum � uk2C([0;1℄�[0;2�℄) �2uf2L1((0;1)�(�3K;3K)) k�tumk2W 0(15) + 2 k�ufk2L1((0;1)�(�K;K)) k�tum � �tuk2W 0 :The latter inequality is true for all suÆiently large m 2 N. Sine (um)m2Nonverges to u in V 2 and V 2 ,! L2(0; 1;H1(0; 2�)), the sequene (�tum)m2Nis bounded in L2((0; 1) � (0; 2�)) and onverges to �tu in L2((0; 1) � (0; 2�)).This shows the onvergene (13). It follows by H�older's inequality that for any' 2 D((0; 1)� (0; 2�))(16) Z 10 Z 2�0 (F (u)�t'+ F 0(u)�tu') dx dt= limm!1 �Z 10 Z 2�0 (F (um)�t'+ F 0(um)�tum') dx dt� :By (12), the expression under the limit sign is equal to zero. Hene (16) impliesZ 10 Z 2�0 (F (u)�t'+ F 0(u)�tu') dx dt = 0for any ' 2 D((0; 1)�(0; 2�)). This means that F (u) has a weak partial derivativein t given by the formula �tF (u) = F 0(u)�tu:



514 I. KmitReall that [F 0(u)℄(x; t) 2 L1((0; 1) � (0; 2�)) and �tu 2 L2((0; 1) � (0; 2�)). Itis immediate that [�tF (u)℄(x; t) 2 L2((0; 1)� (0; 2�)) and therefore [F (u)℄(x; t) 2W 1. Sine u 2 V 2 is arbitrary, the desired assertion is therewith proved.Claim 2. F (u) maps V 2 into W 2. As above, �x an arbitrary u 2 V 2 andhoose (um)m2Z as in Claim 1. Similarly to the proof of Claim 1, one an showthe onvergene(17) F 00(um) (�tum)2 + F 0(um)�2t um ! F 00(u) (�tu)2 + F 0(u)�2t uin L2 ((0; 1)� (0; 2�)) as m!1and that(18) �2t F (u) = F 00(u) (�tu)2 + F 0(u)�2t u:The only di�erene appearing here onerns the estimation of the following inte-gral:
(19)

Z 10 Z 2�0 ���F 00(um) (�tum)2 � F 00(u) (�tu)2���2 dx dt� 2 Z 10 Z 2�0 ��(�2uf)(x; um)� (�2uf)(x; u)��2 j�tumj4 dx dt+ 2 Z 10 Z 2�0 ��(�2uf)(x; u)��2 ���(�tum)2 � (�tu)2���2 dx dt� 2 Z 10 Z 2�0 ����Z 10 (�3uf) (x; �um + (1� �)u) d�����2 jum � uj2 j�tumj4 dx dt+ 2 �2uf2L1((0;1)�(�K;K))� Z 10 k�tum(x; �)� �tu(x; �)k2L1(0;2�) dx� Z 2�0 k�tum(�; t) + �tu(�; t)k2L1(0;1) dt� 2 �3uf2L1((0;1)�(�3K;3K)) kum � uk2C k�tumk4L4+ 2 �2uf2L1((0;1)�(�K;K)) Z 10 k�tum(x; �)� �tu(x; �)k2L1(0;2�) dx� Z 2�0 k�tum(�; t) + �tu(�; t)k2L1(0;1) dt;where the onstant K is de�ned by the formula (11). The right hand side tendsto zero by Lemma 2, the embedding (4), and the embeddingV 2 ,!W 2 ,! L2 �0; 1;C1[0; 2�℄� :



C1-smoothness of Nemytskii operators on Sobolev-type spaes of periodi funtions 515Turning bak to (18), we obtain [�2t F (u)℄(x; t) 2 L2((0; 1) � (0; 2�)). Hene[F (u)℄(x; t) 2 W 2 as desired. �Lemma 5. The mapping u 2 V 2 ! F (u) 2 W 2 is C1-smooth and for all u; v 2V 2 it holds(20) [F 0(u)v℄ (x; t) = (�uf)(x; u(x; t))v(x; t):Proof: We now prefer to work with the following norm in W 2:(21) kwk2W 2 = k�2twk2W 0 :Note that it is equivalent to the W 2-norm introdued by (1).To prove the ontinuity of the mapping u 2 V 2 ! F (u) 2 W 2, �x an arbitraryu 2 V 2. On the aount of the expression (18) for �2t F (u) and the estimates (14)and (19) with um replaed by u + v, we derive the following inequality for allv 2 V 2 with kvkV 2 � K=C0, where the onstant C0 is �xed to satisfy (10) and Kis determined by (11):12k�2t F (u+ v)(x; t) � �2t F (u)(x; t)k2W 0� k�3ufk2L1((0;1)�(�3K;3K))k�t(u+ v)k2L2(0;1;L1(0;2�))� k�t(u+ v)k2L2(0;2�;L1(0;1))kvk2C([0;1℄�[0;2�℄)+ k�2ufk2L1((0;1)�(�K;K))k�t(2u+ v)k2L2(0;2�;L1(0;1))k�tvk2L2(0;1;L1(0;2�))+ k�2ufk2L1((0;1)�(�3K;3K))k�2t (u+ v)k2W 0kvk2C([0;1℄�[0;2�℄)+ k�ufk2L1((0;1)�(�K;K))k�2t vk2W 0 � Ckvk2V 2 ;the onstant C being dependent on f and u, but not on v. We onlude thatk�2t F (u+ v)(x; t) � �2t F (u)(x; t)k2W 0 = O(kvk2V 2)as kvkV 2 ! 0. The ontinuity of F is therefore proved.Let us now show that the operator u ! F (u) is ontinuously di�erentiable.Fix u 2 V 2 and introdue the bounded linear operator G : V 2 !W 2 de�ned bythe formula [G(u)v℄(x; t) = (�uf)(x; u(x; t))v(x; t):From the smoothness assumptions on f and the proof of Lemma 4 it followsthat (�uf)(x; u(x; t)) 2 W 2. Sine V 2 ,! W 2 ontinuously, W 2 is an algebraof funtions, and v 2 V 2, the orretness of the de�nition of the operator G isstraightforward.Our next onern is to show that F is di�erentiable in u and that F 0(u) = G(u).Similarly to the above, �x u 2 V 2 and onsider w 2 V 2 with kwkV 2 � K=C0,where C0 is a ertain onstant satisfying (10) andK is spei�ed by (11). It follows



516 I. Kmitby (10) that kwkC([0;1℄�[0;2�℄) � K. The desired assertion now follows from thefollowing estimate:kF (u+ w)(x; t) � F (u)(x; t)� [G(u)w℄(x; t)kW 2= kf(x; u+ w)� f(x; u)� (�uf)(x; u)wkW 2= w Z 10 [(�uf)(x; u+ �w) � (�uf)(x; u)℄ d�W 2= w2 Z 10 Z 10 �(�2uf)(x; u+ ��1w) d�d�1W 2= �2t �w2 Z 10 Z 10 �(�2uf)(x; u+ ��1w) d�d�1�W 0= 2(w�2t w + (�tw)2) Z 10 Z 10 �(�2uf)(x; u+ ��1w) d�d�1+w2 Z 10 Z 10 �(�4uf)(x; u+ ��1w) [�tu+ ��1�tw℄2 d�d�1+w2 Z 10 Z 10 �(�3uf)(x; u+ ��1w) ��2t u+ ��1�2tw� d�d�1+2w�tw Z 10 Z 10 �(�3uf)(x; u+ ��1w) [�tu+ ��1�tw℄ d�d�1W 0� 4 �kwk2L4 + k�twk2L4 + kwkV 2kwkC� kf(�; �)kL1((0;1);C4(�3K;3K))��1 + kukW 2 + k�tuk2L4((0;1)�(0;2�)) + kwkW 2 + kwk2L4((0;1)�(0;2�))�:In the last inequality we again used Lemma 2 and the embedding (4). The ontin-uous di�erentiability of F is proved, whih ompletes the proof of the lemma. �Referenes[1℄ Adams R.A., Sobolev spaes, Aademi Press, New York, 1975.[2℄ Akramov T.A., On the behavior of solutions to a ertain hyperboli problem, Siberian Math.J. 39 (1998), no. 1, 1{17.[3℄ Akramov T.A., Belonosov V.S., Zelenyak T.I., Lavrent'ev M.M., Jr., Slin'ko M.G., SheplevV.S.,Mathematial Foundations of Modeling of Catalyti Proesses: A Review , TheoretialFoundations of Chemial Engineering 34 (2000), no. 3, 295{306.[4℄ Appell J., Zabrejko P., Nonlinear Superposition Operators, Cambridge University Press,Cambridge, UK, 1990.[5℄ Chow S.-N., Hale J.K., Methods of Bifuration Theory, Grundlehren der Math. Wis-senshaften, 251, Springer, New York-Berlin, 1982.[6℄ Conner H.E., Some general properties of a lass of semilinear hyperboli systems analogousto the di�erential-integral equations of gas dynamis, J. Di�erential Equations 10 (1971),188{203.[7℄ Hillen T., Existene theory for orrelated random walks on bounded domains, Can. Appl.Math. Q. 18 (2010), no. 1, 1{40.
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