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Hyperplane setion OP20 of the omplexCayley plane as the homogeneous spae F4=P4Karel Pazourek, V��t Tu�ek, Peter FranekAbstrat. We prove that the exeptional omplex Lie group F4 has a transitiveation on the hyperplane setion of the omplex Cayley plane OP2. Althoughthe result itself is not new, our proof is elementary and onstrutive. We use anexpliit realization of the vetor and spin ations of Spin(9; C ) � F4. Moreover,we identify the stabilizer of the F4-ation as a paraboli subgroup P4 (withLevi fator B3T1) of the omplex Lie group F4. In the real ase we obtain ananalogous realization of F4(�20)=P4.Keywords: Cayley plane, otonioni ontat struture, twistor �bration, para-boli geometry, Severi varieties, hyperplane setion, exeptional geometryClassi�ation: Primary 32M12; Seondary 14M171. IntrodutionThe real otonioni projetive plane OP2R, also alled Cayley plane or otaveplane, has been thoroughly treated in the literature. It appears in numerousontexts. It is a projetive plane where the Desargues axiom does not hold. Itwas �rstly onsidered by Ruth Moufang [21℄, who found a relation of the so alledlittle Desargues axiom and the alternativity of the oordinate ring. It is wellknown that OP2R is a Riemanian symmetri manifold F4=Spin(9). Due to itsrelation to the exeptional Jordan algebra J3(O), there is also a onnetion ofthis plane to a model of quantum mehanis onsidered by Neumann, Jordan andWigner [14℄. More reently, the authors of [7℄ show that the Cayley plane onsistsof normalized solutions of a Dira equation. For more details and onnetionswith physis we refer to the artile by Baez [3℄.It is possible to mimi the onstrution of lassial projetive plane RP2 viaequivalene lasses of triples (see [11℄) also in the ase of OP2R, but usually Freuden-thal's approah via the exeptional Jordan algebra J3(O) is used. The idea is thatlines in spae orrespond to projetors with one-dimensional image. Hene theCayley plane an be de�ned as elements of (real) projetivization of J3(O) of rankThe seond author was supported by GA�CR 201/09/H012 and by SVV-2011-263317.The third author was supported by MSM 0021620839 and GA�CR 201/08/397. He was alsosupported by Institutional Researh Plan AV0Z10300504 \Computer Siene for the InformationSoiety: Models, Algorithms, Appliations".



536 K. Pazourek, V. Tu�ek, P. Franekone. Now the rank for otonioni matries is a bit triky due to the nonassoia-tivity and requires the de�nition of Jordan ross produt of these matries. Fordetails we refer to Jaobson's monograph [13℄. There one an also �nd a lassi�-ation of orbits of the automorphism group of J3(O) (whih is F4) from whih itfollows that OP2R is a homogeneous spae. (The isotropy subgroup is determinedfor example in [10℄, [22℄.)In fat, Jaobson's book [13℄ treats otonioni algebras over general �eld andhene we get the de�nition of the omplex Cayley plane OP2 as well. This spaeis also of geometri interest, as it is an exeptional member of the Severi varieties| the unique extremal varieties for seant defets. For details see [18℄, [19℄.Now, let us onsider the intersetion of the omplex Cayley plane OP2 withthe hyperplane given by traeless matries J0 := fA 2 J3(OC ) jTrA = 0g. Theresulting spae is studied in [18℄, [19℄, where the authors all it the generi hyper-plane setion and denote it by OP20. It is a total spae of a ertain twistor �brationover the real Cayley plane (see [2℄, [8℄). Beause OP20 is a omplex projetive vari-ety, the stabilizer is a paraboli subgroup of F4. The authors of [18℄ state that theisomorphism OP20 = F4=P4 is suggested by `geometri folding'. A rigorous proofof this isomorphism an be gleaned from [13℄. This proof however requires a lotof the theory of nonassoiative algebras, most notably the Jordan oordinizationtheorem. Quite a short proof an be given using the Borel �xed point theorem.In a hope to make OP20 more aessible to geometrially inlined audiene, wepresent a onstrutive proof of the transitivity of the ation of F4 on OP20 basedon the representation theory of omplex spin groups. From the theory of nonas-soiative algebras only Artin's theorem is needed. Following the approah of [10℄,we expliitly realize the spin groups Spin(9; C ) and Spin(8; C ) as subgroups of F4and we use the desription of their ations to �nd the redution of an arbitraryelement to a previously hosen one.It is well known that the Cartan geometry modeled on the pair (F4;P4) is rigid,i.e. any regular normal Cartan geometry of this type is loally isomorphi to thehomogeneous model. The real version of this pair orresponding to the groupF(�20)4 appears as a onformal in�nity of the Einstein spae OH2 [4℄. The geom-etry obtained is alled `otonioni-ontat', beause there is a naturally de�nedeight-dimensional maximally nonintegrable subbundle of the tangent bundle. Theontat geometry in the lassial sense (studied for example in [15℄, [16℄) is alsopresent among the homogeneous spaes of the group F4 | namely the one whoseisotropy group is the paraboli subgroup orresponding to the other `outer' simpleroot of the Lie algebra of f4.After some neessary de�nitions in Setion 2, we desribe expliitly the presen-tations of Spin(9; C ) and Spin(8; C ) inside of End(O2 )
R C in Setion 3. We alsoexpliitly desribe vetor and spinor representations of Spin(9; C ) in suh a waythat their image is inside F4. Setion 3 ontinues with the proof of the transitivityof the ation of F4 on OP20. We onlude by dealing with the real ase. In thelast setion we ompute the stabilizer of a point.



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 5372. Notations and de�nitions2.1 Complexi�ed otonions and the hyperplane setion. For a ompre-hensive referene on otonioni algebras over any �eld we refer to [22℄. Wedenote by O the otonioni algebra over the �eld of omplex numbers. Theomplex-valued `norm' on O is denoted by N . The algebra O is normed (N(ab) =N(a)N(b)) but it fails to be a division ring, sine N is isotropi. This algebra isnot assoiative. Nevertheless, it is alternative, whih means that the trilinear form(alled the assoiator) [u; v; w℄ 7! (uv)w � u(vw) is ompletely skew-symmetri.Later on we will use the so alled Artin's theorem whih states that any subalge-bra of an alternative algebra generated by two elements is assoiative. It followsthat produts involving only two elements an be written without parenthesisunambiguously.The symbol Lu denotes the operator of left multipliation by u, i.e. Lu(v) := uvfor any v 2 O . Note that LuLv 6= Luv in general due to the nonassoiativity ofotonioni algebras.Sine there is up to isomorphism only one otonioni algebra over C we anthink of O in the following way: O = OR 
 C = OR 
R C , where OR is thelassial real algebra of otonions ([3℄). The multipliation on this tensor produtis anonially de�ned by(o1 
 z1)(o2 
 z2) := o1o2 
 z1z2 for o1; o2 2 O ; z1 ; z2 2 Cand onjugation is given by o
 z := �o
 z.The multipliation of an arbitrary element o
z 2 O by a omplex number w isunderstood in the sense of multipliation by element 1
w, i.e. w(o
z) := o
(wz).We identify the elements of R 
 C with omplex numbers under the anonialisomorphism r 
 w 7! rw, for r 2 R, w 2 C . The real and imaginary parts ofo
 z are de�ned to be (< o)
 z and (= o)
 z, where < o and = o are the real andpurely imaginary part of o respetively.The mentioned omplex valued quadrati form N is given byN(o
 z) := o�ozz; o 2 O ; z 2 C :Following Springer [22℄, we denote by h�; �i the double of the bilinear form assoi-ated to N , hx; yi = N(x+y)�N(x)�N(y). An otonion u 2 O is pure imaginaryif and only if hu; 1i = 0.For later use, we will reord here several useful identities whih hold in anyotonioni algebra and whose proof an also be found in [22℄hxy; zi = hy; �xzix(�xy) = N(x)y(1a) u(�xy) + x(�uy) = hu; xiy(1b) u(�x(uy)) = ((u�x)u)y:(1)



538 K. Pazourek, V. Tu�ek, P. FranekDue to the nonassoiativity of the algebras involved we need to make lear dis-tintion between assoiative algebras of C -linear endomorphisms, whih we denoteby End, and the possibly nonassoiative algebras of n � n matries with entriesin some algebra F whih are denoted by M(n; F).The onjugation on O naturally de�nes the onjugation on M(n;O). Theonjugate of an element A 2 M(n;O) is denoted by �A. The symbol Herm(n;O)stands for the set of n� n hermitian matries over O , i.e.Herm(n;O) = fA 2M(n;O)j �AT = Ag:We denote the subspae of trae-free matries by lower index Herm0(n;O). Alltensor produts in this artile are taken over the real numbers.The omplex exeptional Jordan algebra J3(O) is the vetor spae Herm(3;O)endowed with the symmetri produt Æ : Herm(3;O)�Herm(3;O) ! Herm(3;O)de�ned by A ÆB := 12 (AB +BA).Now we de�ne the basi objet of our interest.De�nition 2.1.1. The hyperplane setion of the omplex Cayley plane OP20 isthe projetivization over C of the following subset of J3(O)OP20 := �A 2 Herm(3; O)�� A2 = 0; trA = 0; A 6= 0	 :2.2 The spin groups. For an n-dimensional omplex vetor spae V and anondegenerate quadrati form N on V, we denote the orresponding Cli�ordalgebra by C`(V; N) (our onvention is vv = �N(v)). The spin group of C`(V; N)is denoted by Spin(V; N). It is generated inside C`(V; N) by produts uv, u; v 2 Vwhere N(u) = N(v) = 1. By Spin(n; C ) we denote the spin group assoiated tothe standard quadrati form Pni=1 z2i on C n .For w 2 C we de�ne the generalized omplex sphereSn�1(w) = f0 6= z 2 V jN(z) = w2g:As a onsequene of Witt's theorem we haveLemma 2.2.1. The group Spin(n; C ) ats transitively via the vetor representa-tion on the generalized omplex spheres.2.3 Complex Lie algebra f4. The omplex exeptional Lie group F4 an bede�ned as the automorphism group of the omplex exeptional Jordan algebra(J3(O); Æ) (see [22℄). In other words F4 is the subgroup of GL(27; C ) suh thatg 2 F4 if and only if g(A ÆB) = gA Æ gB for every A;B 2 Herm(3;O).The ation of F4 preserves the trae on Herm(3;O). This an be easily seenfrom the equality TrA = 13Tr (B 7! A ÆB):



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 539It is easy to verify that the ation of O(3; C ) on Herm(3;O) given byO(3; C ) 3 g 7�! (A 7! gAgT ); A 2 Herm(3;O)de�nes an injetive group homomorphism O(3; C ) ,! F4.Now we present basi fats about the omplex simple Lie algebra f4 of thegroup F4. We shall use these fats as well as the properties of the root system ofthe Lie algebra f4 in the last setion of this text. Details an be found in [5℄.There exist a hoie of the Cartan subalgebra h of f4, an orthonormal (withrespet to the Killing form of f4) basis f�ig4i=1 of h� and a hoie of simple roots� = ��1 = �2 � �3; �2 = �3 � �4; �3 = �4; �4 = 12(�1 � �2 � �3 � �4)� :In this onvention the Dynkin diagram is�1 �2 �3 �4 .The set � determines the set of positive roots �+. For any root �, we de�nethe oroot H� 2 h by �(H�) = 2h�; �i=2h�; �i, where h ; i is the Killing form.The fundamental weights f$ig4i=1 are de�ned as the dual basis to the simpleoroots. We denote the irreduible representation of f4 with the highest weight �by %�.3. Ation of F4 on OP20In this setion we expliitly desribe the group Spin(9; C ) as a multipliativesubgroup of End(O2 )
 C and onstrut its representation on Herm(3;O). Usingthis representation, we prove that F4 ats transitively on the hyperplane setionOP20. The salar multipliation on the algebra End(O2 )
 C ats only on the �rstpart of the tensor produt, i.e. w � (A
 z) = (wA)
 z for w; z 2 C , A 2 End(O2 ).3.1 Realisation of Spin(9; C ). First we need an auxiliary result onerning theCli�ord algebra C`(O ; N).Lemma 3.1.1. The map � : O ! End(O2 ) given byu 7�! � 0 Lu�L�u 0 �an be uniquely extended to the isomorphism of omplex assoiative algebrasC`(O ; N) ' End(O2 ).Proof: Easy alulation and (1a) shows that �(u)�(u) = �N(u) Id. Using theuniversal property of Cli�ord algebras and the fat that the algebra C`(8; C ) issimple (see [9℄), we immediately get the result. �



540 K. Pazourek, V. Tu�ek, P. FranekLet V9 be the omplex vetor spae C � O . We de�ne the quadrati form N 0by (r; u) 7! r2 + N(u). Let � : V9 ! End(O2 ) 
 C be the homomorphism ofvetor spaes given by � : (r; u) 7�! � r LuL�u �r�
 {;where { denotes the imaginary unit in C .Proposition 3.1.2. The Cli�ord algebra C`(V9; N 0) is isomorphi (as an asso-iative algebra) to End(O2 )
 C .Proof: It is known (see e.g. [9℄) that C`(V9; N 0) 'M(16; C )�M(16; C ). Calu-lation and (1a) shows that �(r; u)�(r; u) = �N 0(r; u) Id. The universal mappingproperty of Cli�ord algebras gives us the following ommutative diagramV9 � ''OOOOOOOOOOOOO i // M(16; C ) �M(16; C )f��End(O2 )
 C :Beause �(�1; 0)�(0; u) = �(u) 
 1, we see that the image of f generates thesubalgebra End(O2 )
 1. The equality�A BC D�
 { = �1 00 �1�
 { � � A B�C �D�
 1implies that the image of f generates the whole algebra End(O2 ) 
 C . Sinethe dimensions of the onsidered algebras are the same, it follows that f is anisomorphism. �Lemma 3.1.3. The spin group Spin(V9 ; N 0) is generated (inside End(O2 ) 
 C )by elements of the formgr;u := � r �LuL�u r �
 1; r 2 C ; u 2 O ; r2 + u�u = 1:Proof: The spin group is by de�nition generated by produts of the form�(r; u)�(s; v), where N 0(r; u) = N 0(s; v) = 1. Sine gr;u = �(r; u)�(�1; 0) and�(r; u)�(s; v) = gr;ug�s;v, the lemma follows. �For brevity we will identify A
 1 2 End(O2 )
 C with A 2 End(O2 ) from nowon; i.e. gr;u = � r �LuL�u r � :



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 5413.2 Representations of Spin(V9; N 0). We will use the following deompositionof Herm(3;O)0�r1 �x1 �x2x1 r2 x3x2 �x3 r31A = 0�r1 0 00 0 00 0 01A+0� 0 �x1 �x2x1 0 0x2 0 01A+0�0 0 00 s x30 �x3 �s1A+0�0 0 00 t 00 0 t1Ain order to de�ne the ation of Spin(V9; N 0) on it. In other words | we take theC -linear isomorphism Herm(3;O) ! C � O2 � Herm0(2;O) � C and we endoweah of the spaes in the deomposition with an ation of Spin(V9; N 0). The O2summand will be the spinor part and we will all the Herm(2;O)0 summand thevetor part .Lemma 3.2.1. Let � be the linear isomorphism between the spae of trae-freehermitian matries Herm0(2;O) and �(V9) de�ned by� : �s x�x �s� 7! � s LxL�x �s�
 {and let %V be the vetor representation of Spin(V9; N 0).If we de�ne the representation of Spin(V9 ; N 0) on Herm0(2;O) by �V (g)a :=��1(%V (g)�(a)), the following formula holds for the generators gr;u of Spin(V9 ; N 0)�V (gr;u)�s x�x �s� = ��r �u�u r ��s x�x �s��� r u��u r�= �s�r2 �N(u)�� rhx; ui 2rsu+ r2x� u�xu2rs�u+ r2�x� �ux�u �s�r2 �N(u)�+ rh�x; �ui� :(2)Proof: The vetor representation of Spin(V9; N 0) is given by v 7! gvg�1 wherev is an element of �(V9) and g 2 Spin(V9 ; N 0). For gr;u = �(r; u)�(�1; 0) we getg�1r;u = gr;�u.Thus we have the following formula for �V (gr;u) evaluated on v = � s LxL�x �s �
 {�s�r2 �N(u)�� r(LuL�x + LxL�u) 2rsLu + r2Lx � LuL�xLu2rsL�u + r2L�x � L�uLxL�u �s�r2 �N(u)�+ r(L�uLx + L�xLu)�
 {:From (1b) we have LuL�x + LxL�u = Lhx;ui. With the help of the �rst Moufangidentity (1) we may substitute LuL�xLu = L(u�x)u. Applying the isomorphism �to the result gives the expression for �V (gr;u)��1(v) whih agrees with (2). �The spinor representation of Spin(V9; N 0) ats on O2 by (see Chapter 6 of [9℄for details) �S(gr;u)(x1; x2) = � r �LuL�u r ��x1x2� = �rx1 � ux2�ux1 + rx2� :We let the Spin(V9; N 0) at on the rest of the summands of Herm(3;O) triviallyand denote the resulting ation by �.



542 K. Pazourek, V. Tu�ek, P. FranekProposition 3.2.2. The representation � is faithful and preserves the Jordanprodut. In other words Spin(V9; N 0) ' Im(�) is a subgroup of F4.Proof: Sine the spinor representation �S is faithful, the representation � isfaithful as well. In order to prove that this ation preserves the Jordan produtwe introdue the following three by three hermitian matrixGr;u = 0�1 0 00 r �u0 �u r 1A 2 Herm(3;O);where (r; u) 2 V9 is of unit norm. Straightforward alulations reveal that G�1r;u =Gr;�u and that Gr;uAG�1r;u gives the expression for the ation of �(gr;u) on A.Moreover the expression Gr;uAG�1r;u is unambiguous for any A 2 Herm(3;O).Put g = gr;u, G = Gr;u for simpliity. For eah A 2 Herm(3;O) we have(�(g)A)(�(g)A) = (GAG�1)(GAG�1):Let us suppose for a moment that (GAG�1)(GAG�1) = G(A(G�1G)A)G�1.Then we would have (�(g)A)(�(g)A) = �(g)(A2)(3)for any A 2 Herm(3;O). Using this equality for A+B instead of A we would geton the left hand side(�(g)(A+B)) (�(g)(A+B)) = ��(g)A+ �(g)B���(g)A+ �(g)B�= (�(g)A)2 + (�(g)A)(�(g)B)+ (�(g)B)(�(g)A) + (�(g)B)2;while the right hand side would equal�(g) �(A+B)2� = �(g)(A2) + �(g)(AB) + �(g)(BA) + �(g)(B2):Using (3) for �(g)(A2) and �(g)(B2) we would get that(�(g)A)(�(g)B) + (�(g)B)(�(g)A) = �(g)(AB +BA):So we only need to prove that we an rearrange the brakets in the expression(GAG�1)(GAG�1). From the Artin's theorem it follows that(u1au2)(u3au4) = u1(a(u2u3)a)u4;where ui are elements of the linear span of fr; u; �ug and a 2 O is arbitrary. Usingthe same trik as above and writing this equality for a+ b instead of a we get(u1au2)(u3bu4) + (u1bu2)(u3au4) = u1(a(u2u3)b)u4 + u1(b(u2u3)a)u4:



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 543The equation((GAG�1)(GAG�1))a;b= 12 Xi;j;:::;m(Ga;iAi;jG�1j;k)(Gk;lAl;mG�1m;b) + (Ga;lAl;mG�1m;k)(Gk;iAi;jG�1j;b )and the fat that Gi;j are from the linear span of fr; u; �ug imply(GAG�1)(GAG�1) = G(A(G�1G)A)G�1 = GA2G�1: �Remark 3.2.3. One ould de�ne the representation � diretly using the matrixGr;u. It is however not lear that the expression Gr;uAG�1r;u de�nes a representa-tion due to the nonassoiativity of the produt of Herm(3;O).3.3 The subgroup Spin(8; C ). The usual presentation of spin groups gives (seeLemma 3.1.1) the following set of generators of Spin(O ; N)���LuL�v 00 �L�uLv� ��� u; v 2 O ; N(u) = N(v) = 1� :One an obtain matries of this form as produts g0;ug0;v whih means that thesegenerators are in fat elements of Spin(V9 ; N 0). The formula for the restritionof �V to the subgroup Spin(O ; N)(4) �V ��LuL�v 00 L�uLv��� s x3�x3 �s� = � s u(�vx3�v)u�u(v�x3v)�u �s �is easily proved using (2).Analogously, the ation of Spin(O ; N) on O2 is given by(5) �S ��LuL�v 00 L�uLv���x1x2� = �u(�vx1)�u(vx2)� ;whih is the diret sum of two inequivalent spinor representations of Spin(O ; N).Please note that the quadrati form N is invariant with respet to all the threeinequivalent ations of Spin(O ; N) on the vetor spae O .3.4 Transitivity of the F4 ation on OP20.Lemma 3.4.1. Let A = 0��2t �x1 �x2x1 t+ s �x3x2 x3 t� s1Abe an element of OP20. Then the vetor part of A is isotropi (i.e. s2+N(x3) = 0)if and only if N(x1) = N(x2) = 0 and if and only if t = 0.



544 K. Pazourek, V. Tu�ek, P. FranekProof: The statement is a straightforward onsequene of the fat that diagonalelements of A2 must equal zero. �Theorem 3.4.2. The group F4 ats transitively on OP20. For every A 2 OP20there exists g 2 F4 suh that(6) g �A = 0�{ 1 01 �{ 00 0 01A :Proof: First we suppose that A 2 OP20 has nonisotropi vetor part. In suh asewe an use Lemma 2.2.1 to prove that there exists an element h1 2 Spin(V9; N 0)suh that �(h1)A = 0�r1 �x1 �x2x1 r2 0x2 0 r31A , with r1; r2; r3 2 C ; x1; x2 2 O :Let us denote �(h1) =: g1 2 F4. The matrix (g1 �A)2 has the form(7) 0�r21 +N(x1) +N(x2) �x1(r1 + r2) �x2(r1 + r3)x1(r1 + r2) r22 +N(x2) x1�x2x2(r1 + r3) x2�x1 r23 +N(x2)1A :This is a zero matrix, in partiular N(x1)N(x2) = N(x1�x2) = 0, so x1 and x2annot be both non-isotropi. On the other hand, they annot be both isotropibeause of Lemma 3.4.1.Assume �rst that N(x1) 6= 0 and N(x2) = 0. The ation of Spin(O ; N) pre-serves the vetor part � r2 00 r3 � of g1 � A beause of (4). Leth2 := �(0;�1)�(0; x1pN(x1) ) 2 Spin(O ; N)and �(h2) =: g2 2 F4. By (5), g2 sends the spinor part x1�x2 of g1 �A to x01�x02where x01 = pN(x1) 2 C and x02 = 1pN(x1)x1x2. The matrix (g2g1 � A)2 hasthe same form as (7) with x1 and x2 substituted by x01 and x02. It is still a zeromatrix and its (2; 3)-position 0 = x01�x02 implies x02 = 0 (x01 is a nonzero omplexnumber). The other positions of this matrix imply 0 = r23 + N(x02), so r3 = 0,and r21 +N(x01) = r21 + (x01)2 = 0, sog2g1 � A = 0��{w w 0w �{w 00 0 01Afor some 0 6= w 2 C .



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 545The ase N(x1) = 0, N(x2) 6= 0 leads in a similar way to a matrix of theform ��{w 0 w0 0 0w 0 �{w �, 0 6= w 2 C , whih an be transformed by the orthogonalmatrix � 1 0 00 0 10 1 0� to the previous one. One an get rid of the sign ambiguity with� 0 1 01 0 00 0 1� and the matrix � {w w 0w �{w 00 0 0� an be transformed to the anonial form (6)by onjugating by the orthogonal matrix0B� 1pw 0 �{p1�wpw�{(1�w)pw pw �p1�wpw{p1� w p1� w 1 1CA :So, g3g2g1 �A has the anonial form (6), where g3 is some element in the imageof the embedding O(3; C ) ,! F4 de�ned in Setion 2.3.If A has isotropi but nonzero vetor part, then the preeding lemma impliesthat the topleft element of A is 0. Using Lemma 2.2.1 we an �nd an element g0 2�(Spin(V9 ; N 0)) � F4 suh that g0 � A = � 0 �x1 �x2x1 {w wx2 w �{w � where w 6= 0. Conjugationby � 0 1 01 0 00 0 1� leads to a matrix whose top left element is {w 6= 0. By the previouslemma, suh a matrix has nonisotropi vetor part and we have redued this aseto the already solved one.Finally, suppose that A has zero vetor part, A = � 0 �x1 �x2x1 0 0x2 0 0 �. This matrix isnonzero by de�nition. If x2 6= 0, then the ation of � 0 1 01 0 00 0 1� transforms it to amatrix with nonzero vetor part. The ase x1 6= 0 is treated similarly. �Remark 3.4.3. We see from the proof that in order to prove transitivity of F4on OP20, it is suÆient to onsider only disrete subgroup of O(3; C ) isomorphi toS3 | a permutation group on three letters. This is a manifestation of the trialitypriniple.Now we prove that the one OP20 over OP20 is a smooth manifold.Proposition 3.4.4. The spae OP20 is a smooth manifold of dimension 32.Proof: Let as de�ne the smooth map f : Herm(3;O)0 ! Herm(3;O)0 byf(A) := A2. We use the impliit funtion theorem to show that OP20 = f�1(0)nf0gis a smooth manifold. The di�erential of f at A is easily proved to be B 7! 2AÆB.We already know that F4 ats transitively on f�1(0) n f0g = OP20 and so we havedimker(B 7! AÆB) = dimker �B 7! g �(AÆ(g�1 �B))� = dimker �B 7! (g �A)ÆB�for any g 2 F4. So, the di�erential df of f has onstant rank on the set f�1(0)nf0gand OP20 is a smooth manifold.



546 K. Pazourek, V. Tu�ek, P. FranekThe kernel of the di�erential of f at the anonial point (6) equals8<:0�{<(x1) x1 x2�x1 �{<(x1) �{x2�x2 �{�x2 2<(x1)1A������x1; x2 2 O9=;and is isomorphi to the tangent spae of OP20 at that point. �3.5 The real ase. By hoosing an appropriate involution on J3(OC ) we geta model for F(�20)4 =P4 | i.e. the onformal in�nity of the Einstein spae OH2 .Aording to Yokota [23℄ the following real subalgebra of J3(OC )8<:A 2 J3(OC ) : I1AT I1 = A; I1 = 0��1 0 00 1 00 0 11A9=;= 8<:0� r1 x1 x2�x1 r2 x3�x2 x3 r31A : xi 2 OR; ri 2 R9=;has F(�20)4 as its automorphism group. By restriting the map � to R � OR weget presentation of Spin(9;R) and the restrition of our representation � mapsSpin(9;R) into F(�20)4 . Instead of O(3; C ) we have the ompat orthogonal groupO(3;R).The model of F(�20)4 =P4 is given by the same equations as in the omplex ase.Sine there are no isotropi elements in the vetor part, the proof of transitivity isnow muh simpler. By transitivity of SO(9;R) on spheres we an map any elementof our model to a matrix of the form � �2t x1 x2�x1 t+s 0�x2 0 t�s�. The square of this matrixhas to be zero by de�nition whih for diagonal elements gives three equations thatyield easily t2 � s2 = 0. The ase t = �s leads to x1 = 0 and an be redued tothe ase of t = s by onjugation with � 1 0 00 0 10 1 0�.The ase t = s gives x2 = 0 and we an easily �nd an ation of Spin(8;R) thatmaps x1 to a positive real number whih gives us a matrix in the form � �r x 0�x r 00 0 0�,where all the entries are real and r2 = x2. We an redue the ase r = �x to thease r = x by onjugation with � 0 1 01 0 00 0 1�. Thus we an map an arbitrary elementA from our real Jordan algebra, suh that TrA = 0 and A2 = 0, to a matrix ofthe form ��x x 0�x x 00 0 0� where x is a positive real number. This shows that F(�20)4 hastransitive ation on the real projetivization of the appropriate set.



Hyperplane setion OP20 of the omplex Cayley plane as the homogeneous spae F4=P4 5474. Desription of the stabilizer of the F4 ationIn this setion we will identify the stabilizer of OP20 as a onrete parabolisubgroup of F4.Lemma 4.0.1. There exists up to isomorphism only one irreduible representa-tion % of the group F4 suh that1 < dimC % � 26:The highest weight of this representation is $4 = �1.Proof: Let �; � 2 h� be two integral dominant weights, � 6= 0. By a diretappliation of the Weyl dimensional formula (see Goodman, Wallah [9℄), weobtain that dim %�+� > dim %�. Using the program LiE [20℄, we get dim �$1 = 52,dim %$2 = 1274, dim %$3 = 273 and dim %$4 = 26. By the previous inequality,we see that there is only one irreduible 26-dimensional representations of the Liealgebra f4. �Sine dimJ0 = 26 and all �nite dimensional representation of the simple Liegroup F4 are ompletely reduible, we obtain immediately the following.Proposition 4.0.2. The restrition to the de�ning representation of F4 on J0 =Herm(3;O)0 is isomorphi to the 26-dimensional irreduible representation %�1 .It is lear from de�nition that OP20 is a projetive variety. Aording toHumphreys [12℄ this implies that the stabilizer group of any point is a para-boli subgroup of F4. Sine any paraboli subgroup ontains Borel subgroup, itfollows that the points of the variety are lines spanned by highest weight vetors.For a �xed hoie of the Cartan subalgebra h and simple roots � there is a1� 1 orrespondene between isomorphism lasses of paraboli subalgebras p � gand subsets � � � of the set � of simple roots desribed e.g. in [6, Chapter 3℄.We will denote the paraboli subalgebra orresponding to � = f�ig by pi.Beause the highest weight of J0 is �1, the following theorem follows diretlyfrom [6, Theorem 3.2.5℄. Its proof is not diÆult | it is based on the fat that foreah X 2 g� one an �nd Y 2 g�� suh that [Y;X ℄ = H�, where H�(�) = h�; �iand the fat that the set of weights is invariant under the ation of Weyl group.Theorem 4.0.3. Let P be the stabilizer of a point p 2 OP20 with respet to theation of the group F4. Then the Lie algebra p of the group P is isomorphi to p4.Remark 4.0.4. We see that OP20 is the F4-orbit of the highest weight vetorin J0. Points in OP20 are exatly all possible highest weight vetors for thisrepresentation, orresponding to di�erent hoies of h and �+. The real ase anbe treated in similar manner with analogous results. See [6℄ for details.Remark 4.0.5. From the omputation of the harmoni urvature (as done forexample in [17℄, also see [6℄) one an prove that the homogeneous spae doesnot admit urved deformations in the sense of regular normal Cartan geometries.



548 K. Pazourek, V. Tu�ek, P. FranekHowever, if one relaxes the regularity ondition there are some deformations ofthis struture [1℄.Aknowledgment. We are thankful to Mark MaDonald who pointed out Ja-obson's work to us. Also, the role of Svatopluk Kr�ysl was indispensable.
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