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Berezin transform for non-s
alarholomorphi
 dis
rete seriesBenjamin CahenAbstra
t. Let M = G=K be a Hermitian symmetri
 spa
e of the non-
ompa
ttype and let � be a dis
rete series representation of G whi
h is holomorphi
allyindu
ed from a unitary irredu
ible representation � ofK. In the paper [B. Cahen,Berezin quantization for holomorphi
 dis
rete series representations: the non-s
alar 
ase, Beitr�age Algebra Geom., DOI 10.1007/s13366-011-0066-2℄, we haveintrodu
ed a notion of 
omplex-valued Berezin symbol for an operator a
tingon the spa
e of �. Here we study the 
orresponding Berezin transform and weshow that it 
an be extended to a large 
lass of symbols. As an appli
ation, we
onstru
t a Stratonovi
h-Weyl 
orresponden
e asso
iated with �.Keywords: Berezin quantization, Berezin symbol, Stratonovi
h-Weyl 
orrespon-den
e, dis
rete series representation, Hermitian symmetri
 spa
e of the non-
ompa
t type, semi-simple non-
ompa
t Lie group, 
oherent states, reprodu
ingkernel, adjoint orbitClassi�
ation: 22E46, 32M10, 32M15, 81S101. Introdu
tionLet G be a 
onne
ted semi-simple non-
ompa
t Lie group with �nite 
enter.Let K be a maximal 
ompa
t subgroup of G. We assume that the 
enter of Khas positive dimension. Then the Hermitian symmetri
 spa
e of the non-
ompa
ttype G=K is di�eomorphi
 to a bounded symmetri
 domain D. We 
onsidera dis
rete series representation � of G whi
h is holomorphi
ally indu
ed froma unitary irredu
ible representation � of K. The spa
e of � is then a �nite-dimensional 
omplex ve
tor spa
e V and � 
an be realized in a Hilbert spa
e Hof holomorphi
 fun
tions on D with values in V .When � is a unitary 
hara
ter of K, we 
an dire
tly de�ne the Berezin symbolS(A) of an operator A on H as a 
omplex-valued fun
tion on D and the mapS : A ! S(A) is a bounded operator from L2(D; �), where � is an invariantmeasure on D, to the spa
e L2(H) of the Hilbert-S
hmidt operators on H, seefor instan
e [29℄. The Berezin transform is then the map B := SS�, whi
h playsan important role in quantization on symmetri
 domains [5℄, [6℄. In that 
ase,Berezin transforms have been intensively studied (see in parti
ular [29℄, [27℄, [16℄,[33℄ and [34℄).In the general 
ase, we have 
onstru
ted in [13℄ a Berezin map S : A ! S(A)from a 
lass of operators a
ting on H to a spa
e of 
omplex-valued fun
tions on



2 B. CahenG=K�o, where o denotes the 
oadjoint orbit of K asso
iated with �. The map Shas some ni
e properties (symmetry, 
ovarian
e . . . ) and then 
an be 
onsideredas the natural generalization of the Berezin 
al
ulus to the non-s
alar 
ase.In the present paper, we introdu
e and study the Berezin transform B 
orre-sponding to the map S. In parti
ular, we show that B extends to a bounded oper-ator a
ting on a spa
e of square-integrable fun
tions on G=K�o (Proposition 5.2).This generalizes some well-known results on the usual Berezin transform, see forinstan
e [29, 1.19℄. Moreover, we study the fun
tions S(d�(X1X2 � � �Xq)) forX1; X2; : : : ; Xq in the Lie algebra of G and we prove that B 
an be also extendedto these fun
tions, generalizing the results of [12℄. As an appli
ation, we 
onstru
ta Stratonovi
h-Weyl 
orresponden
e asso
iated with � (see Se
tion 7 for a pre
isede�nition).This paper is organized as follows. In Se
tion 2, we introdu
e some notationon Hermitian symmetri
 spa
es and holomorphi
 dis
rete series. In Se
tion 3, were
all the results of [13℄ about the 
onstru
tion of the map S and its properties.In Se
tion 4, we introdu
e the Berezin transform B and we show that B is an in-tegral operator. The Se
tions 5 and 6 are devoted to the study and the extensionof B. Our main results are then Proposition 5.2 (L2-extension of B) and Propo-sition 6.5 (extension of B to the symbols of some di�erential operators). Finally,in Se
tion 7, we 
onstru
t a Stratonovi
h-Weyl 
orresponden
e asso
iated with �.2. PreliminariesIn this se
tion, we introdu
e the notation and we 
olle
t some fa
ts on Her-mitian symmetri
 spa
es of the non-
ompa
t type and holomorphi
 dis
rete seriesrepresentations. Our main referen
es are [21, Chapter VIII℄, [26, Chapter XII℄,[23, Chapter 6℄, [17℄ and [31℄.Let G be a 
onne
ted semi-simple non-
ompa
t real Lie group with �nite 
enterand let K be a maximal 
ompa
t subgroup of G. We assume that the 
enter of theLie algebra of K is non-trivial. Then the homogeneous spa
e G=K is a Hermitiansymmetri
 spa
e of the non-
ompa
t type.Let g and k be the Lie algebras of G and K, respe
tively. Let g
 and k
 be the
omplexi�
ations of g and k and G
, K
 the 
orresponding 
omplex Lie groups
ontaining G and K, respe
tively. We denote by � the Killing form of g
, that is,�(X;Y ) = Tr(adX adY ) for X; Y 2 g
. Let p be the ortho-
omplement of k in gwith respe
t to �. Then g = k� p is a Cartan de
omposition of g.We �x a Cartan subalgebra h of k. Then h is also a Cartan subalgebra of g. Wedenote by h
 the 
omplexi�
ation of h. Let � be the root system of g
 relativeto h
 and let g
 = h
 �P�2� g� be the root spa
e de
omposition of g
. Thenwe have the dire
t de
ompositions k
 = h
 �P�2�
 g� and p
 = P�2�n g�where p
 denotes the 
omplexi�
ation of p and �
 (resp. �n) denotes the setof 
ompa
t (resp. non-
ompa
t) roots. We 
hoose an ordering on � as in [21,p. 384℄ and we denote by �+, �+
 and �+n the 
orresponding sets of positiveroots, positive 
ompa
t roots and positive non-
ompa
t roots, respe
tively. Weset p+ = P�2�+n g� and p� = P�2�+n g��. Then we have [k
 ; p�℄ � p� and



Berezin transform for non-s
alar holomorphi
 dis
rete series 3p+ and p� are abelian subalgebras [21, Proposition 7.2℄. Sin
e [p; p℄ � k, we alsohave [p+; p�℄ � k
. We denote by P+ and P� the analyti
 subgroups of G
 withLie algebras p+ and p�, respe
tively.For ea
h � 2 (h
)�, we denote by H� the element of h
 satisfying �(H;H�) =�(H) for all H 2 h
. Note that if � is real-valued on ih then iH� 2 g. For�; � 2 (h
)�, we set (�; �) := �(H�; H�).Let � denote the 
onjugation indu
ed by the real form g of g
. For X 2 g
,we set X� = ��(X). We denote by g ! g� the involutive anti-automorphismof G
 whi
h is obtained by exponentiating X ! X� to G
. Re
all that themultipli
ation map (z; k; y) ! zky is a di�eomorphism from P+ � K
 � P�onto an open submanifold of G
 
ontaining G [21, Lemma 7.9℄. Following [26,p. 497℄, we introdu
e the proje
tions � : P+K
P� ! P+, � : P+K
P� !K
 and � : P+K
P� ! P�. Then the map gK ! log �(g) from G=K top+ indu
es a di�eomorphism from G=K onto a bounded domain D � p+ [21,p. 392℄. The natural a
tion of G on G=K 
orresponds to the a
tion of G onD given by g � Z = log �(g expZ). The G-invariant measure on D is d�(Z) =�0(�(expZ� expZ)) d�L(Z) where �0 is the 
hara
ter on K
 de�ned by �0(k) =Detp+(Ad k) and d�L(Z) is a Lebesgue measure on D [26, p. 538℄.Note that by �xing an Iwasawa de
omposition G = NAK, we get a smoothse
tion G=K ! NA � G. Then we obtain a smooth se
tion D ! G; Z ! gZ ,that is, we have gZ � 0 = Z for Z 2 D.Now, let (�; V ) be a unitary irredu
ible representation ofK with highest weight� (relative to �+
 ). We also denote by � the extension of � to K
. Let H be theHilbert spa
e of all holomorphi
 fun
tions on D with values in V su
h thatkfk2 := ZD hK(Z;Z)�1f(Z); f(Z)iV d�(Z) < +1where K(Z;W ) := �(�(expW � expZ))�1 for Z; W 2 D.For g 2 G and Z 2 D, we set J(g; Z) := �(�(g expZ)).Proposition 2.1 ([26, p. 542℄, [17℄). The spa
e H is non-zero if and only if(� + Æ; �) < 0 for ea
h non-
ompa
t positive root �, where Æ stands for half ofthe sum of the positive roots. In that 
ase, H 
ontains all V -valued polynomials.Moreover, the a
tion of G on H de�ned by�(g)f(Z) = J(g�1; Z)�1 f(g�1 � Z)is a unitary irredu
ible representation of G whi
h belongs to the holomorphi
dis
rete series of G.In the rest of the paper, we assume that the 
ondition of the pre
eding propo-sition is ful�lled.The evaluation maps KZ : H ! V , f ! f(Z) are 
ontinuous [26, p. 539℄. Thegeneralized 
oherent states of H are the maps EZ = K�Z : V ! H de�ned byhf(Z); viV = hf; EZvi for f 2 H and v 2 V .We have the following result, see [26, p. 540℄ and [17℄.



4 B. CahenProposition 2.2. (1) There exists a 
onstant 
� > 0 su
h that E�ZEW =
�K(Z;W ) for ea
h Z; W 2 D.(2) For g 2 G and Z 2 D, we have Eg�Z = �(g)EZJ(g; Z)�.3. Berezin symbolsIn this se
tion, we �rst introdu
e the Berezin 
al
ulus asso
iated with �, see[4℄, [32℄ and [9℄.Let � 2 h� be the highest weight of � relative to �+
 . Let '0 2 h be su
h that�(H) = i�('0; H) for ea
h H 2 h, that is, '0 = �iH�. In the rest of the paper,we assume that '0 is regular in the sense that �('0) 6= 0 for ea
h � 2 �. Thenthe orbit o('0) of '0 under the adjoint a
tion of K is said to be asso
iated with� [8℄, [32℄.Note that a 
omplex stru
ture on o('0) is then de�ned by the di�eomorphismo('0) ' K=H ' K
=H
N� where N� is the analyti
 subgroup of K
 with LiealgebraP�2�+
 g�.Without loss of generality, we 
an assume that V is a spa
e of holomorphi
fun
tions on o('0) as in [9℄. Sin
e V is �nite-dimensional, for ea
h ' 2 o('0) thereexists a unique fun
tion e' 2 V (
alled a 
oherent state) su
h that a(') = ha; e'iVfor ea
h a 2 V . The Berezin 
al
ulus on o('0) asso
iates with ea
h operator Bon V the 
omplex-valued fun
tion s(B) on o('0) de�ned bys(B)(') = hBe'; e'iVhe'; e'iVwhi
h is 
alled the symbol of B.The following properties of the Berezin 
al
ulus 
an be found in [14℄, [4℄ and [9℄.Proposition 3.1. (1) The map B ! s(B) is inje
tive.(2) For ea
h operator B on V , we have s(B�) = s(B).(3) For ' 2 o('0), k 2 K and B 2 End(V ), we haves(B)(Ad(k)') = s(�(k)�1B�(k))('):(4) For U 2 k and ' 2 o('0), we have s(d�(U))(') = i�(';U).Now, in order to de�ne the Berezin symbol S(A) of an operator A on H, we�rst de�ne the pre-symbol S0(A) of A as a End(V )-valued fun
tion on D.Let H0 be the subspa
e of H generated by the fun
tions EZv for Z 2 D andv 2 V . Clearly, H0 is a dense subspa
e of H. Let C be the spa
e 
onsisting ofall operators A on H su
h that the domain of A 
ontains H0 and the domain ofA� also 
ontains H0. For Z 2 D, we denote hZ := �(gZ) 2 K
. We de�ne thepre-symbol S0(A) of A 2 C byS0(A)(Z) = 
�1� �(h�1Z )E�ZAEZ�(h�1Z )�



Berezin transform for non-s
alar holomorphi
 dis
rete series 5and the Berezin symbol S(A) of A is then de�ned as the 
omplex-valued fun
tionon D � o('0) given by S(A)(Z;') = s(S0(A)(Z))('):In [13℄, we proved the following properties of S.Proposition 3.2. (1) The map A! S(A) is inje
tive on C.(2) For ea
h A 2 C, we have S(A�) = S(A).(3) We have S(I) = 1.(4) For ea
h A 2 C, g 2 G, Z 2 D and ' 2 o('0), we haveS(A)(g � Z;') = S(�(g)�1A�(g))(Z;Ad(k(g; Z))')where k(g; Z) := h�1Z �(g expZ)�1hg�Z is an element of K.(5) For ea
h X 2 g
, Z 2 D and ' 2 o('0), we haveS(d�(X))(Z;') = i�(Ad(gZ)';X):Let O('0) be the orbit of '0 under the adjoint a
tion of G on g. In [13℄, we havealso proved that the map 	 : D � o('0)! O('0) de�ned by 	(Z;') = Ad(gZ)'is a di�eomorphism su
h that(3.1) Ad(g)	(Z;') = 	(g � Z;Ad(k(g; Z))�1')for g 2 G, Z 2 D and ' 2 o('0).We �x a K-invariant measure � on o('0) normalized as in [9, Se
tion 2℄. Thenthe measure ~� := � 
 � on D � o('0) is invariant under the a
tion of G onD � o('0) given by g � (Z;') := (g � Z;Ad(k(g; Z))�1'). Moreover, the measure�O('0) := (	�1)�(~�) is a G-invariant measure on O('0).4. The Berezin transformWe denote by L2(H) (respe
tively L2(V )) the spa
e of Hilbert-S
hmidt opera-tors on H (respe
tively V ) endowed with the Hilbert-S
hmidt norm k � k2 de�nedby kAk22 = Tr(A�A). Sin
e V is �nite-dimensional, we have L2(V ) = End(V ). Wedenote by L2(D�o('0)) (respe
tively L2(D); L2(o('0))) the spa
e of fun
tions onD � o('0) (resp. D, o('0)) whi
h are square-integrable with respe
t to the mea-sure ~� (resp. �, �). We de�ne similarly the spa
es L1(D�o('0)), L1(D�o('0)),et
.In [11℄, we proved the following proposition.Proposition 4.1. For ea
h ' 2 o('0), let p' denote the orthogonal proje
tion ofV on the line generated by e'. Then the adjoint s� of the operator s : L2(V ) !L2(o('0)) is given by s�(a) = Zo('0) a(')p' d�(')for ea
h a 2 L2(o('0)).



6 B. CahenOur aim is to obtain a similar result for S. To this goal, we introdu
e theoperator T de�ned byT (f) = ZD�o('0) PZ;'f(Z;') d�(Z)d�(')where PZ;' := 
�1� EZ�(h�1Z )�p'�(h�1Z )E�Z .Proposition 4.2. (1) PZ;' is the orthogonal proje
tion of H on the linegenerated by EZ�(h�1Z )�e'.(2) For ea
h A 2 L2(H), we have S(A) 2 L1(D � o('0)).(3) For ea
h f 2 L1(D � o('0)), we have T (f) 2 L2(H).(4) For ea
h A 2 L2(H), we have Tr(APZ;') = S(A)(Z;').(5) The operators S : L2(H) ! L1(D � o('0)) and T : L1(D � o('0)) !L2(H) are adjoint in the sense thatZD�o('0) S(A)(Z;')f(Z;') d�(Z)d�(') = hA; T (f)i2for ea
h A 2 L2(H) and f 2 L1(D � o('0)).Proof: (1) Let Z 2 D. We 
an de
ompose gZ as gZ = expZhZy where y 2 P�.Then we have e = g�ZgZ = y�h�Z expZ� expZhZy where e is the unit elementof G
. This implies that �(expZ� expZ)�1 = hZh�Z . Therefore, by applying (1)of Proposition 2.2, we obtain(4.1) E�ZEZ = 
��(�(expZ� expZ))�1 = 
��(hZh�Z):By using this equality, we immediately verify that P 2Z;' = PZ;'. Moreover, itis 
lear that P �Z;' = PZ;'. Then PZ;' is an orthogonal proje
tion of H. UsingEquality (4.1) again, we get PZ;'EZ�(h�1Z )�e' = EZ�(h�1Z )�e'. Finally, sin
e p'is a rank one operator, we see that PZ;' is also a rank one operator, hen
e theorthogonal proje
tion on the line generated by EZ�(h�1Z )�e'.(2) Let A 2 L2(H). We havekS0(A)(Z)k2 � 
�1� k�(h�1Z )E�ZkopkAk2kEZ�(h�1Z )�kop:Sin
ek�(h�1Z )E�ZkopkEZ�(h�1Z )�kop = k�(h�1Z )E�ZEZ�(h�1Z )�kop = k
�idV kop = 
�;we get kS0(A)(Z)k2 � kAk2. Then we havejS(A)(Z;')j � kS0(A)(Z)kop � kS0(A)(Z)k2 � kAk2:Hen
e S(A) 2 L1(D � o('0)).(3) Let f 2 L1(D�o('0)). Sin
e kPZ;'k2 = 1, we see that T (f) is well-de�nedas a Bo
hner integral and that kT (f)k2 � kfk1.



Berezin transform for non-s
alar holomorphi
 dis
rete series 7(4) Let A 2 L2(H). Re
all that PZ;' is the orthogonal proje
tion on the linegenerated by EZ�(h�1Z )�e'. Then, by 
onsidering an orthonormal basis (hk)k�1of H su
h that h1 = kEZ�(h�1Z )�e'k�12 EZ�(h�1Z )�e', we getTr(APZ;') = hAEZ�(h�1Z )�e'; EZ�(h�1Z )�e'ihEZ�(h�1Z )�e'; EZ�(h�1Z )�e'i :Thus, sin
e we havehEZ�(h�1Z )�e'; EZ�(h�1Z )�e'i = h�(h�1Z )E�ZEZ�(h�1Z )�e'; e'iV = 
�he'; e'iV ;we �nd Tr(APZ;') = 
�1� h�(h�1Z )E�ZAEZ�(h�1Z )�e'; e'iVhe'; e'iV= s(S0(A)(Z))(') = S(A)(Z;'):(5) This is an immediate 
onsequen
e of (4). �Now, we 
an 
onsider the Berezin transform B := ST as an operator fromL1(D� o('0)) to L1(D� o('0)). The following proposition shows that B 
an beexpressed as an integral operator.Proposition 4.3. For ea
h f 2 L1(D � o('0)), we haveB(f)(Z; ) = ZD�o('0) k(Z;W; ; ') f(W;') d�(W )d�(')where k(Z;W; ; ') := jh�(�(g�1Z gW ))�1e ; e'iV j2he'; e'iV he ; e iV :Proof: We begin with the following remark. Let Z; W 2 D. We 
an writegZ = expZhZy and gW = expWhW y0 where y; y0 2 P�. Then we haveexpW � expZ = h��1W y0��1g�W gZy�1h�1Z :Hen
e we get �(expW � expZ) = h��1W �(g�W gZ)h�1Z . Using this equality, we seethat �(h�1Z )E�ZEW �(h�1W )� = 
��(h�1Z )�(�(expW � expZ))�1�(h�1W )�= 
��(�(g�W gZ))�1:Now, let f 2 L1(D � o('0)). We haveS0(T (f))(Z) = 
�1� �(h�1Z )E�ZT (f)EZ�(h�1Z )�= 
�2� ZD�o('0)�(h�1Z )E�ZEW �(h�1W )�p'�(h�1W )E�WEZ�(h�1Z )� f(W;')d�(W )d�('):



8 B. CahenBy the pre
eding remark, we getS0(T (f))(Z) = ZD�o('0) �(�(g�W gZ))�1p'�(�(g�W gZ)�1)� f(W;') d�(W )d�('):Now we aim to 
ompute S(T (f))(Z; ) = s(S0(T (f))(Z))( ). We note that,putting h := �(g�ZgW ), we haves(�(h�1)�p'�(h�1))( ) = h�(h�1)�p'�(h�1)e ; e iVhe ; e iV= hp'�(h�1)e ; �(h�1)e iVhe ; e iV= jh�(h�1)e ; e'iV j2he ; e iV he'; e'iVsin
e p'�(h�1)e = h�(h�1)e ; e'iVhe'; e'iV e':Finally, we obtains(S0(T (f))(Z))( ) = ZD�o('0) jh�(h�1)e ; e'iV j2he ; e iV he'; e'iV f(W;') d�(W )d�(')as desired. �5. Extension of the Berezin transform to L2-spa
esIn this se
tion, we show that the Berezin transform B := ST 
an be extendedto the spa
e L2(D�o('0)). We retain the notation from Se
tion 4. The �rst stepis to show that the integralI(Z; ) := ZD�o('0) k(Z;W; ; ') d�(W )d�(')is �nite for ea
h (Z; ) 2 D� o('0). More pre
isely, we have the following result.Lemma 5.1. For ea
h (Z; ) 2 D � o('0), we have I(Z; ) = 
�1� .Proof: First re
all that for a 2 V we haveZo('0) jha; e'iV j2ke'k2V d�(') = kak2V(see [9℄). Then I(Z; ) = 1ke k2V ZD k�(�(g�1Z gW ))�1e k2V d�(W ):



Berezin transform for non-s
alar holomorphi
 dis
rete series 9Now we perform the 
hange of variables W ! gZ �W in this integral. Remarkthat, sin
e (gZgW )�1ggZ �W � 0 = 0, we have (gZgW )�1ggZ �W 2 K
P� \ G = K.Denoting this element by k, we get �(g�1Z ggZ �W ) = �(gW k) = hW k. Thenk�(�(g�1Z ggZ �W ))�1e kV = k�(k�1h�1W )e kV = k�(hW )�1e kV :Hen
e we obtainI(Z; ) = 1ke k2V ZD k�(hW )�1e k2V d�(W )= 1ke k2V ZDhK(W;W )�1e ; e iV d�(W )sin
e we have �(hWh�W ) = K(W;W ) by Equality (4.1).On the other hand, re
all the reprodu
ing propertyhf(Z); viV = hf; EZvi = ZDhK(W;W )�1f(W ); (EZv)(W )iV d�(W ):Applying this equality to the 
onstant fun
tion f(W ) = v and evaluating atZ = 0, we get kvk2V = ZDhK(W;W )�1v; (E0v)(W )iV d�(W ):Sin
e we have (E0v)(W ) = E�WE0v = 
�v, we obtainkvk2V = 
� ZDhK(W;W )�1v; viV d�(W ):Finally, applying this equality to v = e , we obtain I(Z; ) = 
�1� . �Proposition 5.2. (1) The map B := ST 
an be extended to a boundedoperator of L2(D � o('0)) and we have kBkop � 
�1� .(2) T extends to a bounded operator from L2(D�o('0)) to L2(H), S extendsto a bounded operator from L2(H) to L2(D� o('0)) and these operatorsare adjoint to ea
h other.Proof: (1) Let f 2 L1(D� o('0))\L2(D� o('0)). Then, using Lemma 5.1 andthe Cau
hy-S
hwarz inequality, we havejB(f)(Z; )j2� ZD�o('0) k(Z;W; ; ') d�(W )d�(')� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(W )d�(')� 
�1� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(W )d�('):



10 B. CahenIntegrating this inequality and using Lemma 5.1 again, we then obtainZD�o('0)jB(f)(Z; )j2 d�(Z)d�( )� 
�1� ZD�o('0) k(Z;W; ; ')jf(W;')j2 d�(Z)d�(W )d�(')d�( )� 
�2� ZD�o('0) jf(W;')j2 d�(W )d�('):Therefore, the result follows.(2) Let f 2 L1(D� o('0))\L2(D� o('0)). By applying (5) of Proposition 4.2to A = T (f) and using (1), we getkT (f)k22 � hST (f); fi � kfk2kST (f)k2 � 
�1� kfk22:This implies that T extends to an operator (also denoted by T ) from L2(D�o('0))to L2(H). Let T � : L2(H) ! L2(D � o('0)) be the adjoint of T . Re
all that wehave hS(A); fi = hA; T (f)i2 = hT �(A); fifor ea
h A 2 L2(H) and ea
h f 2 L1(D � o('0)) \ L2(D � o('0)). This showsthat S extends to the operator T � : L2(H)! L2(D � o('0)). �Now we establish that B is G-
ovariant. We denote by � the left-regularrepresentation of G on L2(D�o('0)) de�ned by (�(g)(f))(Z;') = f(g�1 � (Z;')).Then � is unitary. We have the following proposition.Proposition 5.3. For ea
h f 2 L2(D � o('0)) and ea
h g 2 G, we haveB(�(g)f) = �(g)(B(f)).Proof: By (4) of Proposition 3.2, we have �(g)S(A) = S(�(g)A�(g)�1) for ea
hA 2 L2(H) and g 2 G. Sin
e � is unitary, the 
orresponding property for T = S�is S�(�(g)f) = �(g)S�(f)�(g)�1 for ea
h f 2 L2(D � o('0)) and g 2 G. Thisgives SS�(�(g)f) = S(�(g)S�(f)�(g)�1) = �(g)SS�(f)for ea
h f 2 L2(D � o('0)), hen
e the result. �6. Extension of the Berezin transform to symbols of di�erential ope-ratorsLet us introdu
e some additional notation as in [12, Se
tion 4℄. Let (E�)�2�+nbe a basis for p+ as in [21, Chapter VIII, Corollary 7.6℄. In parti
ular, we haveg� = CE� and [E�; E��℄ = 2�(H�)H� for ea
h � 2 �+n . Let �1; �2; : : : ; �n be anenumeration of �+n . Let Z = Pnk=1 zkE�k be the de
omposition of Z 2 p+ inthe basis (E�k ). If f is a holomorphi
 fun
tion on D, then we denote by �kfthe partial derivative of f with respe
t to zk. We say that a fun
tion f(Z) on D
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rete series 11is a polynomial of degree q in the variable Z if f(Pnk=1 zkE�k ) is a polynomialof degree q in the variables z1; z2; : : : ; zn. For Z; W 2 D, we set lZ(W ) :=log �(expZ� expW ) 2 p�.Moreover, if L is a Lie group and X is an element of the Lie algebra of L thenwe denote by X+ the right invariant ve
tor �eld on L generated by X , that is,X+(h) = ddt(exp tX)hjt=0 for h 2 L.We �rst re
all some useful results, in parti
ular an expli
it expression for thederived representation d�. Let pp+ , pk
 and pp� be the proje
tions of g
 ontop+, k
 and p� asso
iated with the dire
t de
omposition g
 = p+ � k
 � p�. Bydi�erentiating the multipli
ation map from P+ � K
 � P� onto P+K
P�, we
an easily prove the following result.Lemma 6.1 ([10℄). Let X 2 g
 and g = z k y where z 2 P+, k 2 K
 and y 2 P�.We have(1) d�g(X+(g)) = (Ad(z) pp+(Ad(z�1)X))+(z).(2) d�g(X+(g)) = (pk
(Ad(z�1)X))+(k).(3) d�g(X+(g)) = (Ad(k�1) pp�(Ad(z�1)X))+(y).From this result, we immediately dedu
e the following proposition (see [26,Proposition XII.2.1℄ and also [10℄).Proposition 6.2. For X 2 g
 and f 2 H, we haved�(X)f(Z) = d�(pk
(Ad((expZ)�1)X)) f(Z)� (df)Z�pp+(e� adZ X)�:In parti
ular, we have(1) if X 2 p+ then d�(X)f(Z) = �(df)Z(X);(2) if X 2 k
 then d�(X)f(Z) = d�(X)f(Z) + (df)Z([Z;X ℄);(3) if X 2 p� then d�(X)f(Z) = �d�([Z;X ℄)f(Z)� 12 (df)Z([Z; [Z;X ℄℄).Now, we study the form of the Berezin symbols of the operators d�(X1X2� � �Xq) for X1; X2; : : : ; Xq 2 g
. The following lemma is the generalization of [12℄,Lemma 4.1 and Lemma 4.2.Lemma 6.3. (1) For ea
h Z; W 2 D, W 0 2 p+ and v 2 V , we haveddt (EZv)(W + tW 0)��t=0= �
�d�([lZ(W );W 0℄)�(�(expZ� expW ))�1v:(2) For Z; W 2 D and W 0 2 p+, we haveddt lZ(W + tW 0)��t=0= 12[lZ(W ); [lZ(W );W 0℄℄:(3) The fun
tion (�k1�k2 � � ��kq EZv)(W ) is of the form Q(lZ(W ))(EZv)(W )where Q is a polynomial of degree � q with values in End(V ).(4) For ea
h X1; X2; : : : ; Xq 2 g
, the operator d�(X1X2 � � �Xq) is a sum ofterms of the form P (Z)�k1�k2 � � � �kr where r � q and P is a polynomialof degree � 2q with values in End(V ).



12 B. Cahen(5) For ea
h X1; X2; : : : ; Xq 2 g
, the pre-symbol S0(d�(X1X2 � � �Xq)) isa sum of terms of the form �(hZ)�1P (Z)Q(lZ(Z))�(hZ) where P is apolynomial of degree � 2q with values in End(V ) and Q is a polynomialof degree � q with values in End(V ).Proof: The proof, based on Lemma 6.1 and Proposition 6.2, is similar to thatof [12, Lemma 4.1℄. Note that (5) is an immediate 
onsequen
e of (4). �In the following lemma, we give some expressions for k�(hZ)kop and k�(hZ)�1kopwhi
h will be needed in the proof of Proposition 6.5. Re
all that we have denotedby � the highest weight of � relative to �+
 . We also denote the lowest weightof � by �lw (see [30, p. 326℄). Moreover, let 
1; 
2; : : : ; 
r be a subset of �+n 
on-sisting of strongly orthogonal roots (see for instan
e [21, p. 385℄). We also setHs = [E
s ; E�
s ℄ for s = 1; 2; : : : ; r.Lemma 6.4. Let Z = Ad(k)(Prs=1 tsE
s) where k 2 K and 1 � t1 � t2 �: : : � tr � 0. Then we have k�(hZ)k2op =Qrs=1(1� t2s)�lw(Hs) and k�(hZ)�1k2op =Qrs=1(1� t2s)��(Hs).Proof: If Z = Ad(k)(Prs=1 tsE
s) where 1 � t1 � t2 � : : : � tr � 0 then wehave �(expZ� expZ) = k exp(�Prs=1 log(1�t2s)Hs)k�1, see for instan
e [31, p. 3℄or [17, p. 231℄. Hen
e the eigenvalues of�(h�Z)�1�(hZ)�1 = �(�(expZ� expZ)) = exp�� rXs=1 log(1� t2s)d�(Hs)�are the exp(�Prs=1 log(1� t2s)�(Hs)) for � weight of �. Now, sin
elog 11� t21 � log 11� t22 � � � � log 11� t2rwe have � rXs=1 log 11� t2sHs! � � rXs=1 log 11� t2sHs!for ea
h weight � of �, [22, p. 16℄. This implies thatk�(hZ)�1k2op = exp rXs=1 log 11� t2s �(Hs)! :The se
ond equality is proved similarly. �Now we are in position to establish the main result of this se
tion.Proposition 6.5. Let �0 := d�0jh
 and let q� := Min1�s�r(� 32���0+ 12�lw)(Hs).If q � q� then for ea
h X1; X2; : : : ; Xq 2 g
, the Berezin transform of S(d�(X1X2� � �Xq)) is well-de�ned.
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rete series 13Proof: Let (Z; ) 2 D � o('0). Fix g 2 G su
h that g � (0; '0) = (Z; ). Then,by using Proposition 5.3, we see thatB(f)(Z; ) = ZD�o('0) k(0;W; '0; ') f(g � (W;'))�0(�(expW � expW ))d�L(W )d�('):In parti
ular, if f = S(d�(X1X2 � � �Xq)) then by (4) of Proposition 3.2 we havef(g � (W;')) = S(�(g)�1d�(X1X2 � � �Xq)�(g))(W;') = S(d�(Y1Y2 � � �Yq))(W;')where Yk = Ad(g�1)Xk for k = 1; 2; : : : ; q.Now assume that q � q�. In order to show that B(f)(Z; ) is well-de�ned, wewill prove that the integrandJ(W;') := k(0;W; '0; ')S(d�(Y1Y2 � � �Yq))(W;')�0(�(expW � expW ))is bounded hen
e integrable for the measure d�L(W )d�(') on D � o('0). Webegin by the following observations.(1) We have k(0;W; '0; ') = jh�(h�1W )e'0 ; e'iV j2ke'0k2V ke'k2V � k�(h�1W )k2Vfor ea
h W 2 D and ' 2 o('0).(2) Re
all thatS0(d�(Y1Y2 � � �Yq))(W ) = lXi=1 �(hW )�1Pi(W )Qi(lW (W ))�(hW )where the Pi are polynomials of degree � 2q with values in End(V ) and the Qiare polynomials of degree � q with values in End(V ) for i = 1; 2; : : : ; l. Then wehavejS(d�(Y1Y2 � � �Yq))(W;')j � kS0(d�(Y1Y2 � � �Yq))(W )kop� C k�(hW )�1kopk�(hW )kop lXi=1 kQi(lW (W ))kopwhere C is a 
onstant (independent of W ).(3) For ea
h W 2 D, we 
an write W = Ad(k)(Prs=1 tsE
s) where k 2 K and1 � t1 � t2 � : : : � tr � 0 as in Lemma 6.4, see [22, p. 16℄ and [25, Theorem 3℄.Then we have�0��(expW � expW )� = exp rXs=1 log 11� t2s �0(Hs)!



14 B. Cahenand log �(expW � expW ) = Ad(k) � rXs=1 ts1� t2s E�
s! ;see for instan
e [17, p. 231℄.Using these observations and Lemma 6.4, we obtainjJ(W;')j � C k�(hW )�1k3opk�(hW )kop�0(�(expW � expW )) lXi=1 kQi(lW (W ))kop� C 0 lYi=1(1� t2s)q��qwhere C 0 is a 
onstant. Hen
e the result follows. �Example. In order to illustrate the previous proposition, we 
onsider the 
aseG = SU(2; 1) and K = S(U(2) � U(1)) ' U(2). Then we have g
 = sl(3; C )and h
 is the abelian subalgebra of g
 
onsisting of the matri
es Diag(a1; a2; a3)where ai 2 C for i = 1; 2; 3 and a1 + a2 + a3 = 0. The set of roots of h
 on g
 isf�i��j : 1 � i 6= j � 3g where �i(X) = ai for X 2 h
 as above. We take the setof positive roots to be �1��2 (
ompa
t root), �1��3 and �2��3 (non-
ompa
troots). Hen
e the system of strongly orthogonal roots redu
es to 
 = �1 � �3.Let H1 = Diag(1; 1;�2) and H2 = Diag(1;�1; 0) in h
. Let �m be the unitaryirredu
ible representation of SU(2) of dimensionm+1. Here we 
onsider SU(2) asa subgroup ofK ' U(2). The highest weight ~�m of �m is de�ned by ~�m(H2) = m.Let S1 be the group of diagonal matri
es of the form Diag(ei�; ei�; e�2i�) where� 2 R. Let n 2 Z be su
h that m+n is even. Then �m;n(ug) := un�m(g) is a uni-tary irredu
ible representation ofK and all the unitary irredu
ible representationsof K are of this form [7, p. 87℄.The highest weight � of �m;n is de�ned by �(H1) = n and �(H2) = m. More-over, we have �lw(H1) = n and �lw(H2) = �m. Also, note that �0(H1) = 2 and�0(H2) = 0 (see [26, p. 541℄).Then the 
ondition of Proposition 2.1 is n + 2 < m < �n � 4. Furthermore,sin
e we have [E
 ; E�
 ℄ = 2
(H
)H
 where H
 = Diag( 16 ; 0;� 16 ), we easily obtainthat q� = � 12n�m� 3.7. Stratonovi
h-Weyl 
orresponden
eIn this se
tion, we 
onstru
t a Stratonovi
h-Weyl 
orresponden
e asso
iatedwith � by using the method of [19℄, [11℄ and [12℄. Re
all that the notion ofStratonovi
h-Weyl 
orresponden
e was introdu
ed in [28℄ as a natural generaliza-tion of the 
lassi
al Weyl 
orresponden
e [1℄, [18℄. Stratonovi
h-Weyl 
orrespon-den
es were systemati
ally studied, espe
ially by J.M. Gra
ia-Bond��a, J.C. V�arillyand their 
o-workers, see in parti
ular [19℄, [15℄ and [20℄ (see also the work ofJ. Arazy and H. Upmeier on invariant symboli
 
al
uli [2℄, [3℄).



Berezin transform for non-s
alar holomorphi
 dis
rete series 15De�nition 7.1. Let G0 be a Lie group and �0 a unitary representation of G0on a Hilbert spa
e H0. Let M be a homogeneous G0-spa
e and let �0 be a(suitably normalized) G0-invariant measure on M . Then a Stratonovi
h-Weyl
orresponden
e for the triple (G0; �0;M) is an isomorphism W from a ve
torspa
e of operators on H0 to a spa
e of fun
tions on M satisfying the followingproperties:(1) the fun
tion W (A�) is the 
omplex-
onjugate of W (A);(2) Covarian
e: we have W (�0(g)A�0(g)�1)(x) =W (A)(g�1 � x);(3) Tra
iality: we haveZM W (A)(x)W (B)(x) d�(x) = Tr(AB):The previous de�nition is adapted from [15, p. 906℄. Note that here we havedropped the requirement that W maps the identity operator I of H0 to the 
on-stant fun
tion 1 sin
e it is not adapted to the present situation where I is notHilbert-S
hmidt. However, in general, this requirement should hold in some gen-eralized sense, up to a suitable normalization of �, see [15℄.The basi
 example is the 
ase when G0 is the (2n+1)-dimensional Heisenberggroup Hn whi
h a
ts on R2n by translations and �0 is the S
hr�odinger represen-tation of Hn on L2(Rn ). In that 
ase, the 
lassi
al Weyl 
orresponden
e gives aStratonovi
h-Weyl 
orresponden
e for the triple (Hn; �0;R2n ) [18℄, [20℄.When G0 is a 
ompa
t semi-simple Lie group, �0 a unitary irredu
ible repre-sentation of G0 and M the 
oadjoint orbit of G0 whi
h is asso
iated with �0 bythe Kostant-Kirillov method of orbits [24℄, a Stratonovi
h-Weyl 
orresponden
efor (G0; �0;M) was 
onstru
ted in [19℄ and [11℄ by a taking the isometri
 partin the polar de
omposition of the Berezin 
al
ulus on M . The same methodalso works for the holomorphi
 dis
rete series representations of s
alar type ofa semi-simple Lie group, see [12℄. Now, we will apply this method to 
onstru
ta Stratonovi
h-Weyl 
orresponden
e asso
iated with � as an appli
ation of theresults of Se
tion 5.We introdu
e the polar de
omposition of S : L2(H) ! L2(D � o('0)). Wehave S = (SS�)1=2W = B1=2W where W = B�1=2S is a unitary operator fromL2(H) onto L2(D � o('0)). Then we have the following proposition.Proposition 7.2. (1) The map W : L2(H)! L2(D � o('0)) is a Stratono-vi
h-Weyl 
orresponden
e for the triple (G; �;D � o('0)).(2) The map W from L2(H) to L2(O('0); �O('0)) de�ned by W(f) =W (f Æ	) is a Stratonovi
h-Weyl 
orresponden
e for the triple (G; �;O('0)).Proof: (1) Sin
e W is unitary, we have just to verify that the properties (1)and (2) of De�nition 7.1 are satis�ed. Sin
e we have the properties S(A�) = S(A)and S�(f) = (S�f)�, we see that B hen
e B�1=2 
ommute with 
omplex 
onju-gation. This gives Property (1). Finally, Property (2) is a 
onsequen
e of the
ovarian
e properties of S, S� and B, see (4) of Proposition 3.2 and Proposi-tion 5.3.
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