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Symple
ti
 Killing spinorsSvatopluk Kr�yslAbstra
t. Let (M;!) be a symple
ti
 manifold admitting a metaple
ti
 stru
ture(a symple
ti
 analogue of the Riemannian spin stru
ture) and a torsion-freesymple
ti
 
onne
tion r. Symple
ti
 Killing spinor �elds for this stru
ture arese
tions of the symple
ti
 spinor bundle satisfying a 
ertain �rst order partialdi�erential equation and they are the main obje
t of this paper. We derive ane
essary 
ondition whi
h has to be satis�ed by a symple
ti
 Killing spinor �eld.Using this 
ondition one may easily 
ompute the symple
ti
 Killing spinor �eldsfor the standard symple
ti
 ve
tor spa
es and the round sphere S2 equippedwith the volume form of the round metri
.Keywords: Fedosov manifolds, symple
ti
 spinors, symple
ti
 Killing spinors,symple
ti
 Dira
 operators, Segal-Shale-Weil representationClassi�
ation: 58J60, 53C071. Introdu
tionIn this arti
le we shall study the so 
alled symple
ti
 Killing spinor �elds onFedosov manifolds admitting a metaple
ti
 stru
ture. A Fedosov manifold is astru
ture 
onsisting of a symple
ti
 manifold (M2l; !) and the so 
alled Fedosov
onne
tion on (M;!). A Fedosov 
onne
tion r is an aÆne 
onne
tion on (M;!)su
h that it is symple
ti
, i.e., r! = 0, and torsion-free. Let us noti
e that in
ontrary to the Riemannian geometry, a Fedosov 
onne
tion is not unique. Thus,it seems natural to add the Fedosov 
onne
tion into the studied stru
ture andobtain the notion of a Fedosov manifold. See, e.g., Tondeur [13℄ for symple
-ti
 
onne
tions for presymple
ti
 stru
tures and Gelfand, Retakh, Shubin [3℄ forFedosov 
onne
tions.It is known that if l > 1, the 
urvature tensor of a Fedosov 
onne
tion de
om-poses into two invariant parts, namely into the so 
alled symple
ti
 Ri

i 
urvatureand symple
ti
 Weyl 
urvature tensor �elds. If l = 1, only the symple
ti
 Ri

i
urvature o

urs. See Vaisman [14℄ for details.In order to de�ne a symple
ti
 Killing spinor �eld, we shall brie
y des
ribe theso 
alled metaple
ti
 stru
tures with help of whi
h these �elds are de�ned. Anysymple
ti
 group Sp(2l;R) admits a non-trivial, i.e., 
onne
ted, two-fold 
overing,The author of this arti
le was supported by the grant GA�CR 306-33/80397 of the GrantAgen
y of the Cze
h Republi
. The work is a part of the resear
h proje
t MSM0021620839�nan
ed by M�SMT �CR.



20 S. Kr�yslthe so 
alled metaple
ti
 group, denoted by Mp(2l;R) in this paper. A metaple
ti
stru
ture over a symple
ti
 manifold is a symple
ti
 analogue of the Riemannianspin stru
ture. In parti
ular, one of its parts is a prin
ipal Mp(2l;R)-bundlewhi
h 
overs twi
e the bundle of symple
ti
 frame of (M2l; !). Let us denote thisprin
ipal Mp(2l;R)-bundle by q : Q !M .Now, let us say a few words about the symple
ti
 spinor �elds. These �eldsare se
tions of the so 
alled symple
ti
 spinor bundle S !M . This ve
tor bundleis the bundle asso
iated to the prin
ipal Mp(2l;R)-bundle q : Q ! M via the so
alled Segal-Shale-Weil representation. The Segal-Shale-Weil representation is adistinguished representation of the metaple
ti
 group and plays a similar role inthe quantization of boson parti
les as the spinor representations of spin groupsplay in the quantization of fermions. See, e.g., Shale [12℄. The Segal-Shale-Weilrepresentation is unitary and does not des
end to a representation of the sym-ple
ti
 group. The ve
tor spa
e of the underlying Harish-Chandra (g;K)-moduleof the Segal-Shale-Weil representation is isomorphi
 to S�(Rl ), the symmetri
power of a Lagrangian subspa
e Rl of the symple
ti
 ve
tor spa
e R2l . Thus, thesituation is parallel to the 
omplex orthogonal 
ase, where the spinor representa-tion 
an be realized on the exterior power of a maximal isotropi
 subspa
e. TheSegal-Shale-Weil representation and some of its analyti
 versions are sometimes
alled os
illatory representation, metaple
ti
 representation or symple
ti
 spinorrepresentation. For a detailed explanation of the last name, see, e.g., Kostant [8℄.The symple
ti
 Killing spinor �eld is a non-zero se
tion of the symple
ti
 spinorbundle S !M satisfying 
ertain linear �rst order partial di�erential equation for-mulated by the 
onne
tion rS : �(M;S)��(M;TM)! �(M;S), the asso
iated
onne
tion to the Fedosov 
onne
tion r. This partial di�erential equation is asymple
ti
 analogue of the 
lassi
al symple
ti
 Killing spinor equation from atleast two aspe
ts. One of them is rather formal. Namely, the de�ning equationfor a symple
ti
 Killing spinor is of the \same shape" as that one for a Killingspinor �eld on a Riemannian spin manifold. The se
ond similarity 
an be ex-pressed by 
omparing this equation with the so 
alled symple
ti
 Dira
 equationand the symple
ti
 twistor equation and will be dis
ussed below in this paper. Letus mention that any symple
ti
 Killing spinor �eld determines a unique 
omplexnumber, the so 
alled symple
ti
 Killing spinor number. Let us noti
e that thesymple
ti
 Killing spinor �elds were 
onsidered already in a 
onne
tion with theexisten
e of a linear embedding of the spe
trum of the so 
alled symple
ti
 Dira
operator into the spe
trum of the so 
alled symple
ti
 Rarita-S
hwinger operator.The symple
ti
 Killing spinor �elds represent an obstru
tion for the mentionedembedding. See Kr�ysl [10℄ for this aspe
t.In many parti
ular 
ases, the equation for symple
ti
 Killing spinor �elds seemsto be rather 
ompli
ated. On the other hand, in many 
ases it is known that itssolutions are rare. Therefore it is reasonable to look for a ne
essary 
onditionsatis�ed by a symple
ti
 Killing spinor �eld whi
h is simpler than the de�ningequation itself. Let us noti
e that similar ne
essary 
onditions are known and



Symple
ti
 Killing spinors 21parallel methods were used in Riemannian or Lorentzian spin geometry. See, e.g.,Friedri
h [2℄.In this paper, we shall prove that any symple
ti
 Killing spinor �eld ne
essarilysatis�es 
ertain zeroth order di�erential equation. More pre
isely, we prove thatany symple
ti
 Killing spinor is ne
essarily a se
tion of the kernel of a symple
ti
spinor bundle morphism. We derive this equation by prolongating the symple
ti
Killing spinor equation. We make su
h a prolongation that enables us to 
omparethe result with an appropriate part of the 
urvature tensor of the asso
iated
onne
tion rS a
ting on symple
ti
 spinors. An expli
it formula for this part ofthe 
urvature a
tion was already derived in Kr�ysl [11℄. Espe
ially, it is knownthat the symple
ti
 Weyl 
urvature of r does not show up in this part and thus,the mentioned morphism depends on the symple
ti
 Ri

i part of the 
urvatureof the Fedosov 
onne
tion r only. This will make us able to prove that theonly symple
ti
 Killing number of a Fedosov manifold of Weyl type is zero. Thiswill in turn imply that any symple
ti
 Killing spinor on the standard symple
ti
ve
tor spa
e of an arbitrary �nite dimension and equipped with the standard 
at
onne
tion is 
onstant. This result 
an be obtained easily when one knows theprolongated equation, whereas 
omputing the symple
ti
 Killing spinors withoutthis knowledge is rather 
ompli
ated. This fa
t will be illustrated when we will
ompute the symple
ti
 Killing spinors on the standard symple
ti
 2-plane usingjust the de�ning equation for symple
ti
 Killing spinor �eld.The 
ases when the prolongated equation does not help so easily as in the 
aseof the Weyl type Fedosov manifolds are the Ri

i type ones. Nevertheless, weprove that there are no symple
ti
 Killing spinors on the 2-sphere, equipped withthe volume form of the round metri
 as the symple
ti
 form and the Riemann-ian 
onne
tion as the Fedosov 
onne
tion. Let us remark that in this 
ase, theprolongated equation has a shape of a stationary S
hr�odinger equation. More pre-
isely, it has the shape of the equation for the eigenvalues of 
ertain os
illator-likequantum Hamiltonian determined 
ompletely by the symple
ti
 Ri

i 
urvaturetensor of the Fedosov 
onne
tion.Let us noti
e that there are some appli
ations of symple
ti
 spinors in physi
sbesides those in the mentioned arti
le of Shale [12℄. For an appli
ation in stringtheory physi
s, see, e.g., Green, Hull [4℄.In the se
ond se
tion, some ne
essary notions from symple
ti
 linear algebraand representation theory of redu
tive Lie groups are explained and the Segal-Shale-Weil representation and the symple
ti
 Cli�ord multipli
ation are intro-du
ed. In the third se
tion, the Fedosov 
onne
tions are introdu
ed and someproperties of their 
urvature tensors a
ting on symple
ti
 spinor �elds are sum-marized. In the fourth se
tion, the symple
ti
 Killing spinors are de�ned andsymple
ti
 Killing spinors on the standard symple
ti
 2-plane are 
omputed. Inthis se
tion, a 
onne
tion of the symple
ti
 Killing spinor �elds to the eigen-fun
tions of symple
ti
 Dira
 and symple
ti
 twistor operators is formulated andproved. Further, the mentioned prolongation of the symple
ti
 Killing spinor



22 S. Kr�yslequation is derived and the symple
ti
 Killing spinor �elds on the standard sym-ple
ti
 ve
tor spa
es are 
omputed. At the end, the 
ase of the round sphere S2is treated.2. Symple
ti
 spinors and symple
ti
 spinor valued formsLet us start re
alling some notions from symple
ti
 linear algebra. Let usmention that we shall often use the Einstein summation 
onvention without men-tioning it expli
itly. Let (V; !0) be a symple
ti
 ve
tor spa
e of dimension 2l,i.e., !0 is a non-degenerate anti-symmetri
 bilinear form on the ve
tor spa
e Vof dimension 2l. Let L and L0 be two Lagrangian subspa
es1 of (V; !0) su
h thatL � L0 = V. Let feig2li=1 be an adapted symple
ti
 basis of (V = L � L0 ; !0),i.e., feig2li=1 is a symple
ti
 basis and feigli=1 � L and feig2li=l+1 � L0 . Be
ausethe de�nition of a symple
ti
 basis is not unique, we shall �x one whi
h we shalluse in this text. A basis feig2li=1 of (V; !0) is 
alled symple
ti
, if !0(ei; ej) = 1i� 1 � i � l and j = l + i; !0(ei; ej) = �1 i� l + 1 � i � 2l and j = i � land !0(ei; ej) = 0 in the remaining 
ases. Whenever a symple
ti
 basis will be
hosen, we will denote the basis of V� dual to feig2li=1 by f�ig2li=1. Further fori; j = 1; : : : ; 2l, we set !ij := !0(ei; ej) and similarly for other type of tensors.For i; j = 1; : : : ; 2l, we de�ne !ij by the equation P2lk=1 !ik!jk = Æij .As in the orthogonal 
ase, we would like to rise and lower indi
es. Be
ausethe symple
ti
 form !0 is antisymmetri
, we should be more 
areful in this 
ase.For 
oordinates Kab:::
:::drs:::t:::u of a tensor K over V, we denote the expression!i
Kab:::
:::drs:::t by Kab:::i:::drs:::t and Kab:::
rs:::t:::u!ti by Kab:::
rs:::i:::u and sim-ilarly for other types of tensors and also in a geometri
 setting when we will be
onsidering tensor �elds over a symple
ti
 manifold (M;!).Let us denote the symple
ti
 group Sp(V; !0) of (V; !0) by G. Be
ause themaximal 
ompa
t subgroup of G is isomorphi
 to the unitary group U(l) whi
his of homotopy type Z, we have �1(G) ' Z. From the theory of 
overing spa
es,we know that there exists up to an isomorphism a unique 
onne
ted double 
overof G. This double 
over is the so 
alled metaple
ti
 group Mp(V; !0) and will bedenoted by ~G in this text. We shall denote the 
overing homomorphism by �,i.e., � : ~G ! G is a �xed member of the isomorphism 
lass of all 
onne
ted 2:1
overings.Now, let us re
all some notions from representation theory of redu
tive Liegroups whi
h we shall need in this paper. Let us mention that these notions arerather of te
hni
al 
hara
ter for the purpose of our arti
le. For a redu
tive Liegroup G in the sense of Vogan [15℄, let R(G) be the 
ategory the obje
t of whi
hare 
omplete, lo
ally 
onvex, Hausdor� ve
tor spa
es with a 
ontinuous a
tion ofG whi
h is admissible and of �nite length; the morphisms are 
ontinuous linearG-equivariant maps between the obje
ts. Let us noti
e that, e.g., �nite 
oversof the 
lassi
al groups are redu
tive. It is known that any irredu
ible unitaryrepresentation of a redu
tive group is in R(G). Let g be the Lie algebra of G1i.e., maximal isotropi
 with respe
t to !0, in parti
ular dimL = dimL0 = l
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 Killing spinors 23and K be a maximal 
ompa
t subgroup of G. It is well known that there existsthe so 
alled L2-globalization fun
tor, denoted by L2 here, from the 
ategoryof admissible Harish-Chandra modules to the 
ategory R(G). See Vogan [15℄for details. Let us noti
e that this fun
tor behaves 
ompatibly with respe
t toHilbert tensor produ
ts. See, e.g., Vogan [15℄ again. For an obje
t E in R(G),let us denote its underlying Harish-Chandra (g;K)-module by E and when wewill be 
onsidering only its gC -module stru
ture, we shall denote it by E . If gChappens to be a simple 
omplex Lie algebra of rank l, let us denote its Cartansubalgebra by hC . The set � of roots for (gC ; hC ) is then uniquely determined.Further let us 
hoose a set �+ � � of positive roots and denote the 
orrespondingset of fundamental weights by f$igli=1. For � 2 hC , let us denote the irredu
iblehighest weight module with the highest weight � by L(�).Let us denote by U(W) the group of unitary operators on a Hilbert spa
eW and let L : Mp(V; !0) ! U(L2(L)) be the Segal-Shale-Weil representation ofthe metaple
ti
 group. It is an in�nite dimensional unitary representation of themetaple
ti
 group on the 
omplex valued square Lebesgue integrable fun
tionsde�ned on the Lagrangian subspa
e L. This representation does not des
endto a representation of the symple
ti
 group Sp(V; !0). See, e.g., Weil [16℄ andKashiwara, Vergne [7℄. For 
onvenien
e, let us set S := L2(L) and 
all it thesymple
ti
 spinor module and its elements symple
ti
 spinors. It is well knownthat as a ~G-module, S de
omposes into the dire
t sum S = S+ � S� of twoirredu
ible submodules. The submodule S+ (S�) 
onsists of even (odd) fun
tionsin L2(L). Further, let us noti
e that in Kr�ysl [9℄, a slightly di�erent analyti
version (based on the so 
alled minimal globalizations) of this representation wasused.As in the orthogonal 
ase, we may multiply spinors by ve
tors. The multipli-
ation : : V � S ! S will be 
alled symple
ti
 Cli�ord multipli
ation and it isde�ned as follows. For f 2 S and i = 1; : : : ; l, we set(ei:f)(x) := {xif(x);(el+i:f)(x) := �f�xi (x); x 2 Land extend it linearly to get the symple
ti
 Cli�ord multipli
ation. The symple
ti
Cli�ord multipli
ation (by a �xed ve
tor) has to be understood as an unboundedoperator on L2(L). See Habermann, Habermann [6℄ for details. Let us alsonoti
e that the symple
ti
 Cli�ord multipli
ation 
orresponds to the so 
alledHeisenberg 
anoni
al quantization known from quantum me
hani
s. (For brevity,we shall write v:w:s, instead of v:(w:s), v; w 2 V and s 2 S.)It is easy to 
he
k that the symple
ti
 Cli�ord multipli
ation satis�es the re-lation des
ribed in the followingLemma 1. For v; w 2 V and s 2 S, we havev:(w:s) � w:(v:s) = �{!0(v; w)s:



24 S. Kr�yslProof: See Habermann, Habermann [6℄. �Let us 
onsider the representation� : ~G! Aut( �̂ V� 
 S)of the metaple
ti
 group ~G on V� V� 
 S given by�(g)(�
 s) := ��^r(g)�
 L(g)s;where r = 0; : : : ; 2l, � 2 Vr V�, s 2 S and ��^r denotes the rth wedge power ofthe representation �� dual to �, and extended linearly. For de�niteness, let us
onsider the ve
tor spa
e V� V� 
 S equipped with the topology of the Hilberttensor produ
t. Be
ause the L2-globalization fun
tor behaves 
ompatibly withrespe
t to the Hilbert tensor produ
ts, one 
an easily see that the representation� belongs to the 
lass R( ~G).In the next theorem, the spa
e o symple
ti
 valued exterior two-forms is de-
omposed into irredu
ible summands.Theorem 2. For 12 dim(V) = l > 2, the following isomorphism2̂ V� 
 S� ' E20� �E21� � E22�holds. For j2 = 0; 1; 2, the E2j2 are uniquely determined by the 
onditions that�rst, they are submodules of the 
orresponding tensor produ
ts and se
ond,E20� ' S� ' L($l�1 � 32$l); E20+ ' S+ ' L(�12$l);E21� ' L($1 � 12$l); E21+ ' L($1 +$l�1 � 32$l);E22+ ' L($2 � 12$l) and E22� ' L($2 +$l�1 � 32$l):Proof: This theorem is proved in Kr�ysl [10℄ or Kr�ysl [9℄ for the so 
alled minimalglobalizations. Be
ause the L2-globalization behaves 
ompatibly with respe
t tothe 
onsidered Hilbert tensor produ
t topology, the statement remains true. �Remark. Let us noti
e that for l = 2, the number of irredu
ible summands insymple
ti
 spinor valued two-forms is the same as that one for l > 2. In this 
ase(l = 2), one only has to 
hange the pres
ription for the highest weights des
ribedin the pre
eding theorem. For l = 1, the number of the irredu
ible summands isdi�erent from that one for l � 2. Nevertheless, in this 
ase the de
omposition isalso multipli
ity-free. See Kr�ysl [9℄ for details.In order to make some proofs in the se
tion on symple
ti
 Killing spinor �eldssimpler and more 
lear, let us introdu
e the operators
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F+ : �̂ V� 
 S! �+1̂V� 
 S; F+(�
 s) := 2lXi=1 �i ^ �
 ei:s;F� : �̂ V� 
 S! ��1̂V� 
 S; F�(�
 s) := � 2lXi;j=1!ij �ei�
 ej :s;H : �̂ V� 
 S! �̂ V� 
 S; H := fF+; F�g:Remark. (1) One easily �nds out that the operators are independent of the
hoi
e of an adapted symple
ti
 basis feig2li=1.(2) Let us remark that the operators F+; F� and H de�ned here di�er fromthe operators F+; F�; H de�ned in Kr�ysl [9℄. Though, by a 
onstant realmultiple only.(3) The operators F+ and F� are used to prove the Howe 
orresponden
efor Mp(V; !0) a
ting on V� V�
S via the representation �. More or less,the ortho-symple
ti
 super Lie algebra osp(1j2) plays the role of a (superLie) algebra, a representation of whi
h is the appropriate 
ommutant. SeeKr�ysl [9℄ for details.In the next lemma the ~G-equivarian
e of the operators F+; F� and H is stated,some properties of F� are mentioned and the value of H on degree-homogeneouselements is 
omputed. We shall use this lemma when we will be treating thesymple
ti
 Killing spinor �elds in the fourth se
tion.Lemma 3. Let (V = L � L0 ; !0) be a 2l dimensional symple
ti
 ve
tor spa
e.Then(1) the operators F+, F+ and H are ~G-equivariant,(2) (a) F�jE11 = 0,(b) F+jE00 is an isomorphism onto E10,(
) (F+)2jS = � {2! 
 IdjS and it is an isomorphism onto E20.(3) For r = 0; : : : ; 2l, we haveHjVr V�
S = {(r � l) IdjVr V�
S :Proof: See Kr�ysl [9℄. �Let us remark that the items 1 and 3 of the pre
eding lemma follow by adire
t 
omputation, and the se
ond item follows from the �rst item, de
ompositiontheorem (Theorem 2), a version of the S
hur lemma and a dire
t 
omputation.



26 S. Kr�ysl3. Curvature of Fedosov manifolds and its a
tions on symple
ti
spinorsAfter we have �nished the \algebrai
 part" of this paper, let us re
all somebasi
 fa
ts on Fedosov manifolds, their 
urvature tensors, metaple
ti
 stru
turesand the a
tion of the 
urvature tensor on symple
ti
 spinor �elds.Let us start re
alling some notions and results related to the so 
alled Fedosovmanifolds. Let (M2l; !) be a symple
ti
 manifold of dimension 2l. Any torsion-free aÆne 
onne
tion r on M preserving !, i.e., r! = 0, is 
alled Fedosov
onne
tion. The triple (M;!;r), where r is a Fedosov 
onne
tion, will be 
alledFedosov manifold . As we have already mentioned in the Introdu
tion, a Fedosov
onne
tion for a given symple
ti
 manifold (M;!) is not unique. Let us remarkthat Fedosov manifolds are used for a 
onstru
tion of geometri
 quantization ofsymple
ti
 manifolds due to Fedosov. See, e.g., Fedosov [1℄.To �x our notation, let us re
all the 
lassi
al de�nition of the 
urvature tensorRr of the 
onne
tion r, we shall be using here. We setRr(X;Y )Z := rXrY Z �rYrXZ �r[X;Y ℄Zfor X;Y; Z 2 X(M).Let us 
hoose a lo
al adapted symple
ti
 frame feig2li=1 on a �xed open subsetU �M . By a lo
al adapted symple
ti
 frame feig2li=1 over U , we mean su
h a lo
alframe that for ea
h m 2 U the basis f(ei)mg2li=1 is an adapted symple
ti
 basisof (TmM;!m). Whenever a symple
ti
 frame is 
hosen, we denote its dual frameby f�ig2li=1. Although some of the formulas below hold only lo
ally, 
ontaining alo
al adapted symple
ti
 frame, we will not mention this restri
tion expli
itly.From the symple
ti
 
urvature tensor �eld Rr, we 
an build the symple
ti
Ri

i 
urvature tensor �eld �r de�ned by the 
lassi
al formula�r(X;Y ) := Tr(V 7! Rr(V;X)Y )for ea
h X;Y 2 X(M) (the variable V denotes a ve
tor �eld on M). For the
hosen frame and i; j = 1; : : : ; 2l, we de�ne�ij := �r(ei; ej):Let us de�ne the extended Ri

i tensor �eld by the equatione�(X;Y; Z; U) := e�ijknX iY jZkUn; X; Y; Z; U 2 X(M);where for i; j; k; n = 1; : : : ; 2l,2(l + 1)e�ijkn := !in�jk � !ik�jn + !jn�ik � !jk�in + 2�ij!kn:A Fedosov manifold (M;!;r) is 
alled of Weyl type, if � = 0. Let us noti
e,that it is 
alled of Ri

i type, if R = e�. In Vaisman [14℄, one 
an �nd moreinformation on the Sp(2l;R)-invariant de
omposition of the 
urvature tensors ofFedosov 
onne
tions.



Symple
ti
 Killing spinors 27Now, let us des
ribe the geometri
 stru
ture with help of whi
h the symple
ti
Killing spinor �elds are de�ned. This stru
ture, 
alled metaple
ti
, is a symple
-ti
 analogue of the notion of a spin stru
ture in the Riemannian geometry. Fora symple
ti
 manifold (M2l; !) of dimension 2l, let us denote the bundle of sym-ple
ti
 frame in TM by P and the foot-point proje
tion of P onto M by p. Thus(p : P !M;G), where G ' Sp(2l;R), is a prin
ipal G-bundle overM . As in Sub-se
tion 2, let � : ~G! G be a member of the isomorphism 
lass of the non-trivialtwo-fold 
overings of the symple
ti
 group G. In parti
ular, ~G ' Mp(2l;R). Fur-ther, let us 
onsider a prin
ipal ~G-bundle (q : Q ! M; ~G) over the symple
ti
manifold (M;!). We 
all a pair (Q;�) metaple
ti
 stru
ture if � : Q ! P isa surje
tive bundle homomorphism over the identity on M and if the followingdiagram, Q� ~G�����
// Q��� q ���������� MP �G // P p >>}}}}}}}}with the horizontal arrows being respe
tive a
tions of the displayed groups, 
om-mutes. See, e.g., Habermann, Habermann [6℄ and Kostant [8℄ for details onmetaple
ti
 stru
tures. Let us only remark that typi
al examples of symple
ti
manifolds admitting a metaple
ti
 stru
ture are 
otangent bundles of orientablemanifolds (phase spa
es), Calabi-Yau manifolds and 
omplex proje
tive spa
esC P2k+1, k 2 N0 .Let us denote the ve
tor bundle asso
iated to the introdu
ed prin
ipal ~G-bundle (q : Q ! M; ~G) via the representation � a
ting on S by S, and 
all thisasso
iated ve
tor bundle symple
ti
 spinor bundle. Thus, we have S = Q �� S.The se
tions � 2 �(M;S) will be 
alled symple
ti
 spinor �elds . Further forj2 = 0; 1; 2, we de�ne the asso
iated ve
tor bundles E2j2 by the pres
riptionE2j2 := Q �� E2j2 . Further, we de�ne Er := �(M;Q �� Vr V� 
 S), i.e., thespa
e o symple
ti
 spinor valued di�erential r-forms, r = 0; : : : ; 2l. Be
ause thesymple
ti
 Cli�ord multipli
ation is ~G-equivariant (see Habermann, Habermann[6℄), we 
an lift it to the asso
iated ve
tor bundle stru
ture, i.e., to let it a
ton the elements from �(M;S). For j2 = 0; 1; 2, let us denote the ve
tor bundleproje
tions �(M; E2)! �(M; E2j2) by p2j2 , i.e., p2j2 : �(M; E2)! �(M; E2j2) forall appropriate j2. This de�nition makes sense be
ause due to the de
ompositionresult (Theorem 2) and Remark below Theorem 2, the ~G-module of symple
ti
spinor valued exterior 2-forms is multipli
ity-free.Let Z be the prin
ipal bundle 
onne
tion on the prin
ipal G-bundle (p : P !M;G) asso
iated to the 
hosen Fedosov 
onne
tion r and ~Z be a lift of Z to the
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ipal ~G-bundle (q : Q !M; ~G). Let us denote by rS the 
ovariant derivativeasso
iated to ~Z. Thus, in parti
ular, rS a
ts on the symple
ti
 spinor �elds.Any se
tion � of the asso
iated ve
tor bundle S = Q�� S 
an be equivalently
onsidered as a ~G-equivariant S-valued fun
tion on Q. Let us denote this fun
tionby �̂, i.e., �̂ : Q ! S. For a lo
al adapted symple
ti
 frame s : U ! P , let usdenote by s : U ! Q one of the lifts of s to Q. Finally, let us set �s := �̂ Æ s.Further for q 2 Q and  2 S, let us denote by [q;  ℄ the equivalen
e 
lass in S
ontaining (q;  ). (As it is well known, the total spa
e S of the symple
ti
 spinorbundle is the produ
t Q� S modulo an equivalen
e relation.)Lemma 4. Let (M;!;r) be a Fedosov manifold admitting a metaple
ti
 stru
-ture. Then for ea
h X 2 X(M), � 2 �(M;S) and a lo
al adapted symple
ti
frame s : U ! P , we haverSX� = [s;X(�s)℄� {2 lXi=1 [ei+l:(rXei):� ei:(rXei+l):℄� andrSX(Y:�) = (rSXY ):� +X:rSY �:Proof: See Habermann, Habermann [6℄. �The 
urvature tensor on symple
ti
 spinor �elds is de�ned by the formulaRS(X;Y )� = rSXrSY ��rSYrSX��rS[X;Y ℄�;where � 2 �(M;S) and X;Y 2 X(M).In the next lemma, a part of the a
tion of RS on the spa
e of symple
ti
 spinorsis des
ribed using just the symple
ti
 Ri

i 
urvature tensor �eld �.Lemma 5. Let (M;!;r) be a Fedosov manifold admitting a metaple
ti
 stru
-ture. Then for a symple
ti
 spinor �eld � 2 �(M;S), we havep20RS� = {2l �ij!kl�k ^ �l 
 ei:ej :�:Proof: See Kr�ysl [11℄. �4. Symple
ti
 Killing spinor �eldsIn this se
tion, we shall fo
us our attention to the symple
ti
 Killing spinor�elds. More spe
i�
ally, we 
ompute the symple
ti
 Killing spinor �elds on someFedosov manifolds admitting a metaple
ti
 stru
ture and derive a ne
essary 
on-dition satis�ed by a symple
ti
 Killing spinor �eld.Let (M;!;r) be a Fedosov manifold admitting a metaple
ti
 stru
ture. We
all a non-zero se
tion � 2 �(M;S) symple
ti
 Killing spinor �eld ifrSX� = �X:�
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omplex number � 2 C and ea
h ve
tor �eld X 2 X(M). The 
omplexnumber � will sometimes be 
alled symple
ti
 Killing spinor number. (Allowingthe zero se
tion to be a symple
ti
 Killing spinor would make the notion of asymple
ti
 Killing spinor number meaningless.)Let us note that one 
an rewrite equivalently the pre
eding de�ning equationfor a symple
ti
 Killing spinor intorS� = �F+�:Indeed, if this equation is satis�ed, we get by inserting the lo
al ve
tor �eldX = X iei the equation rSX� = �X(��i 
 ei:�) = ��i(X)ei:� = �X iei:� = �X:�,i.e., the de�ning equation. Conversely, one 
an prove that rSX� = �X:� is equiv-alent to �XrS� = �X(�F+�). Be
ause this equation holds for ea
h ve
tor �eldX , we get rS� = �F+�. We shall 
all both the de�ning equation and the equiv-alent equation for a symple
ti
 Killing spinor �eld the symple
ti
 Killing spinorequation.In the next example, we 
ompute the symple
ti
 Killing spinors on the standardsymple
ti
 2-plane.Example 1. Let us solve the symple
ti
 Killing spinor equation for the stan-dard symple
ti
 ve
tor spa
e (R2 [s; t℄; !0) equipped with the standard 
at Eu-
lidean 
onne
tion r. In this 
ase, (R2 ; !0;r) is also a Fedosov manifold. Thebundle of symple
ti
 frame in TR2 de�nes a prin
ipal Sp(2;R)-bundle. Be
auseH1(R2 ;R) = 0, we know that there exists, up to a bundle isomorphism, onlyone metaple
ti
 bundle over R2 , namely the trivial prin
ipal Mp(2;R)-bundleR2 �Mp(2;R) ! R2 and thus also a unique metaple
ti
 stru
ture � : Mp(2;R) �R2 ! Sp(2;R) � R2 given by �(g; (s; t)) := (�(g); (s; t)) for g 2 Mp(2;R) and(s; t) 2 R2 . Let S ! R2 be the symple
ti
 spinor bundle. In this 
ase S ! R2is isomorphi
 to the trivial ve
tor bundle S� R2 = L2(R) � R2 ! R2 . Thus, wemay think of a symple
ti
 spinor �eld � as of a mapping � : R2 ! S = L2(R).Let us de�ne  : R3 ! C by  (s; t; x) := �(s; t)(x) for ea
h (s; t; x) 2 R3 . Oneeasily shows that � is a symple
ti
 Killing spinor if and only if the fun
tion  satis�es the system � �s = �{x and� �t = �� �x :If � = 0, the solution of this system of partial di�erential equations is ne
es-sarily  (s; t; x) =  (x), (s; t; x) 2 R3 , for any  2 L2(R).If � 6= 0, let us 
onsider the independent variable and 
orresponding depen-dent variable transformation s = s; y = t + ��1x, z = t � ��1x and  (s; t; x) =e (s; t + ��1x; t � ��1x) = e (s; y; z). The Ja
obian of this transformation is�2=� 6= 0 and the transformation is obviously a di�eomorphism. Substitut-ing this transformation in the studied system, one gets the following equivalent



30 S. Kr�ysltransformed system � e �s = {2�2(y � z) e � e �y + � e �z = �(� e �y ��1 + � e �z (���1)):(Let us noti
e that the substitution we have used is similar to that one whi
his usually used to obtain the d'Alemebert's solution of the wave equation in twodimensions.) The �rst equation implies � e �z = 0, and thus e (s; y; z) =  (s; y) for afun
tion  . Substituting this relation into the se
ond equation of the transformedsystem, we get � �s = {2(y � z)�2 :The solution of this equation is  (s; y) = e {2�2(y�z)se (y) for a suitable fun
tion e .Be
ause of the dependen
e of the right hand side of the last written equation on z,we see that  does not exist unless � = 0 or e = 0 (More formally, one gets theserestri
tions by substituting the last written formula for  into the �rst equationof the transformed system.) Thus, ne
essarily  = 0 or � = 0. The 
ase � = 0 isex
luded by the assumption at the beginning of this 
al
ulation.Summing up, we have proved that any symple
ti
 Killing spinor �eld � on(R2 ; !0;r) is 
onstant, i.e., for ea
h (s; t) 2 R2 , we have �(s; t) =  for a fun
tion 2 L2(R). The only symple
ti
 Killing spinor number is zero in this 
ase.Remark. More generally, one 
an treat the 
ase of a standard symple
ti
 ve
-tor spa
e (R2l [s1; : : : ; sl; t1; : : : ; tl℄; !0) equipped with the standard 
at Eu
lidean
onne
tion r. One gets by similar lines of reasoning that any symple
ti
 Killingspinor for this Fedosov manifold is also 
onstant, i.e., (s1; : : : ; sl; t1; : : : ; tl) =  ;for (s1; : : : ; sl); (t1; : : : ; tl) 2 Rl and  2 L2(Rl ). But we shall see this result moreeasily below when we will be studying the prolongated equation mentioned in theIntrodu
tion.Now, in order to make a 
onne
tion of the symple
ti
 Killing spinor equationto some slightly more known equations, let us introdu
e the following operators.The operator D : �(M;S)! �(M;S); D := �F�rSis 
alled symple
ti
 Dira
 operator and its eigenfun
tions are 
alled symple
ti
Dira
 spinors. Let us noti
e that the symple
ti
 Dira
 operator was introdu
edby Katharina Habermann in 1992. See, e.g., Habermann [5℄.



Symple
ti
 Killing spinors 31The operator T : �(M;S)! �(M; E11); T := rS � p10rSis 
alled (the �rst) symple
ti
 twistor operator.In the next theorem, the symple
ti
 Killing spinor �elds are related to thesymple
ti
 Dira
 spinors and to the kernel of the symple
ti
 twistor operator.Theorem 6. Let (M;!;r) be a Fedosov manifold admitting a metaple
ti
 stru
-ture. A symple
ti
 spinor �eld � 2 �(M;S) is a symple
ti
 Killing spinor �eld ifand only if � is a symple
ti
 Dira
 spinor lying in the kernel of the symple
ti
twistor operator.Proof: We prove this equivalen
e in two steps.(1) Suppose � 2 �(M;S) is a symple
ti
 Killing spinor to a symple
ti
 Killingnumber � 2 C . Thus it satis�es the equation rS� = �F+�. Applying theoperator �F� to the both sides of the pre
eding equation and using thede�nition of the symple
ti
 Dira
 operator, we get D� = ��F�F+� =�(�H + F+F�)� = ��H� = ��(�{l�) = {�l� due to the de�nition ofH and Lemma 3(2)(a) and (3). Thus � is a symple
ti
 Dira
 spinor.Now, we 
ompute T�. Using the de�nition of T, we get T� = (rS �p10rS)� = �(F+��p10F+�) = �p11F+� = 0, be
ause F+� 2 �(M; E10)due to Lemma 3(2)(a).(2) Conversely, let � 2 �(M; E00) be in the kernel of the symple
ti
 twistor op-erator and also a symple
ti
 Dira
 spinor. Thus, we haverS��p10rS� =0 and D� = �F�rS� = �� for a 
omplex number � 2 C . Fromthe �rst equation, we dedu
e that  := rS� 2 �(M; E10). Be
auseF+j�(M;E00) is surje
tive onto �(M; E10) (see Lemma 3(2)(b)), there ex-ists a  0 2 �(M; E00) su
h that  = F+ 0. Let us 
ompute F+F� =F+F�F+ 0 = F+(H � F+F�) 0 = F+(�{l 0) = �{l , where we haveused the de�ning equation for H and Lemma 3(2)(a) and (3). Thus weget �F+F� = {l :(1) From the symple
ti
 Dira
 equation, we get �� = �F� . Thus �F+F� = �F+�. Using the equation (1), we obtain {l = �F+�, i.e., rS� =�{�l F+�. Thus, � is a symple
ti
 Killing spinor to the symple
ti
 Killingspinor number �{�=l. �In the next theorem, we derive the mentioned prolongation of the symple
ti
Killing spinor equation. It is a zeroth order equation. More pre
isely, it is anequation for the se
tions of the kernel of an endomorphism of the symple
ti
spinor bundle S !M . A similar 
omputation is well known from the Riemannianspin geometry. See, e.g., Friedri
h [2℄.



32 S. Kr�yslTheorem 7. Let (M2l; !;r) be a Fedosov manifold admitting a metaple
ti
stru
ture and a symple
ti
 Killing spinor �eld � 2 �(M;S) to the symple
ti
Killing spinor number �. Then�ijei:ej :� = 2l�2�:Proof: Let � 2 �(M2l;S) be a symple
ti
 spinor Killing �eld, i.e., rSX� = �X:�for a 
omplex number � and any ve
tor �eld X 2 X(M). For ve
tor �elds X;Y 2X(M), we may writeRS(X;Y )� = (rXrY �rYrX �r[X;Y ℄)�= �rX(Y:�) � �rY (X:�)� �[X;Y ℄:�= �(rXY ):�+ �Y:(rX�) � �(rYX):�� �X:rY :�� �[X;Y ℄:�= �T (X;Y ):�+ �2(Y:X:� Y:X:)�= �T (X;Y ):�+ {�2!(X;Y )� = {�2!(X;Y )�;where we have used the symple
ti
 Killing spinor equation and the 
ompatibilityof the symple
ti
 spinor 
ovariant derivative and the symple
ti
 Cli�ord multipli-
ation (Lemma 4).Thus RS� = {�2! 
 �. Be
ause of Lemma 3(2)(
), we know that the righthand side is in �(M; E20). Thus also RS� = p20RS�. Using Lemma 5, we get{2l!
�ijei:ej :� = {�2!
�. Thus �ijei:ej :� = 2l�2� and the theorem follows. �Remark. Let us re
all that in the Riemannian spin geometry (positive de�nite
ase), the existen
e of a non-zero Killing spinor implies that the manifold is Ein-stein. Further, let us noti
e that if the symple
ti
 Ri

i 
urvature tensor � is(globally) diagonalizable by a symple
tomorphism, the prolongated equation hasthe shape of the equation for eigenvalues of the Hamiltonian of an ellipti
 l di-mensional harmoni
 os
illator with possibly varying axes lengths. An exampleof a diagonalizable symple
ti
 Ri

i 
urvature will be treated in Example 3. Al-though, in this 
ase the axis will be 
onstant and the harmoni
 os
illator will bespheri
al.Now, we derive a simple 
onsequen
e of the pre
eding theorem in the 
ase ofFedosov manifolds of Weyl type, i.e., � = 0.Corollary 8. Let (M;!;r) be a Fedosov manifold of Weyl type. Let (M;!)admit a metaple
ti
 stru
ture and a symple
ti
 Killing spinor � �eld to the sym-ple
ti
 Killing spinor number �. Then the symple
ti
 Killing spinor number � = 0and � is lo
ally 
ovariantly 
onstant.Proof: Follows immediately from the pre
eding theorem and the symple
ti
Killing spinor equation. �Example 2. Let us go ba
k to the 
ase of (R2l ; !0;r) from Remark below Ex-ample 1. Corollary 8 implies that any symple
ti
 Killing spinor �eld for this
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ture is 
ovariantly 
onstant, i.e., in fa
t 
onstant in this 
ase, and any sym-ple
ti
 Killing number is zero. In this 
ase, we see that the prolongated equationfrom Theorem 7 makes it possible to 
ompute the symple
ti
 Killing spinor �eldswithout any big e�ort, 
ompared to the 
al
ulations in Example 1 where the2-plane was treated.In the next example, we 
ompute the symple
ti
 Killing spinor �elds on S2equipped with the standard symple
ti
 stru
ture and the Riemannian 
onne
tionof the round metri
. This is an example of a Fedosov manifold (spe
i�ed more
arefully below) for whi
h one 
annot use Corollary 8, be
ause it is not of Weyltype. But still, one 
an use Theorem 7.Example 3. Consider the round sphere (S2; r2(d�2 + sin2 �d�2)) of radius r >0, � being the longitude a � the latitude. Then ! := r2 sin �d� ^ d� is thevolume form of the round sphere. Be
ause ! is also a symple
ti
 form, (S2; !)is a symple
ti
 manifold. Let us 
onsider the Riemannian 
onne
tion r of theround sphere. Then r preserves the symple
ti
 volume form ! being a metri

onne
tion of the round sphere. Be
auser is torsion-free, we see that (S2; !;r) isa Fedosov manifold. Now, we will work in a 
oordinate pat
h without mentioningit expli
itly. Let us set e1 := 1r ��� and e2 := 1r sin � ��� . Clearly, fe1; e2g is a lo
aladapted symple
ti
 frame and it is a lo
al orthogonal frame as well. With respe
tto this basis, the Ri

i form � of r takes the form[�ij ℄i;j=1;2 = �1=r 00 1=r� :Let us 
onsider S2 as the 
omplex proje
tive spa
e C P1. It is easy to see thatthe (unique) 
omplex stru
ture on C P1 is 
ompatible with the volume form. The�rst Chern 
lass of the tangent bundle to C P1 is known to be even. Thus, thesymple
ti
 manifold (S2; !) admits a metaple
ti
 stru
ture and we may 
onsider asymple
ti
 Killing spinor �eld � 2 �(S2;S) 
orresponding to a symple
ti
 Killingspinor number �. Be
ause the �rst homology group of the sphere S2 is zero, themetaple
ti
 stru
ture is unique and thus the trivial one. Be
ause of the triviality ofthe asso
iated symple
ti
 spinor bundle S ! S2, we may write �(m) = (m; f(m))where f(m) 2 L2(R) for ea
h m 2 S2. Using Theorem 7 and the pres
ription forthe Ri

i form, we get that �ijei:ej :[f(m)℄ = 1rH [f(m)℄ = 2�2f(m), where H =�2�x2 �x2 is the quantum Hamiltonian of the one dimensional harmoni
 os
illator.The solutions of the Sturm-Liouville type equationH [f(m)℄ = 2r�2f(m), m 2 S2,are well known. The eigenfun
tions of H are the Hermite fun
tions fl(m)(x) =hl(x) := ex2=2 dldxl (e�x2) for m 2 S2 and x 2 R and the 
orresponding eigenvaluesare �(2l+ 1), l 2 N0 . Thus 2r�2 = �(2l+ 1) and 
onsequently� = �{r2l+ 12r :



34 S. Kr�yslUsing the fa
t that fe1; e2g is a lo
al orthonormal frame and r is metri
 andtorsion-free, we easily getre1e1 = 0 re1e2 = 0re2e1 = 
ot �r e2 re2e2 = � 
ot �r e1:From the de�nition of di�erentiability of fun
tions with values in a Hilbertspa
e, we see easily as a 
onsequen
e of the pre
eding 
omputations that anysymple
ti
 Killing spinor �eld is ne
essarily of the form �(m) = (m; 
(m)fl(m))for a smooth fun
tion 
 2 C1(S2; C ). Substituting this Ansatz into the symple
ti
Killing spinor equation, we get for ea
h ve
tor �eld X 2 X(S2) the equationrX(
fl) = (X
)fl + 
rXfl = �
(X:fl):Due to Lemma 4, we have for a lo
al adapted symple
ti
 frame s : U � S2 !P = Sp(2;R) � S2,rXfl = [s;X(fl)s℄� {2[e2:(rXe1):� e1:(rXe2):℄fl:(See the paragraph above Lemma 4 for an explanation of the notation used inthis formula.)Be
ause m 7! (m; fl(m)) is 
onstant as a se
tion of the trivial bundle S ! S2,the �rst summand of the pre
eding expression vanishes. Thus for X = e1, we get(e1
)fl + {
2 [e2:(re1e1):� e1:(re1e2):℄fl = �
(e1:fl):Using the knowledge of the values of re1ej , for j = 1; 2, 
omputed above, these
ond summand at the left hand side of the last written equation vanishes andthus, we get 1r �
��fl = �
{xfl:This equation implies 
(�; �) =  (x; �)e{rx�� for x su
h that hl(x) 6= 0 and asuitable fun
tion  . (The set of su
h x 2 R, su
h that hl(x) 6= 0 is the 
omplementin R of a �nite set.) Be
ause r > 0 is given and � is 
ertainly non-zero (see thepres
ription for � above), the only possibility for 
 to be independent of x is = 0. Therefore 
 = 0 and 
onsequently � = 0. On the other hand, � = 0 (thezero se
tion) is 
learly a solution, but a

ording to the de�nition not a symple
ti
Killing spinor. Thus, there is no symple
ti
 Killing spinor �eld on the roundsphere.Remark. In the future, one 
an study holonomy restri
tions implied by the ex-isten
e of a symple
ti
 Killing spinor. One 
an also try to extend the results togeneral symple
ti
 
onne
tions, i.e., to drop the 
ondition on the torsion-freenessor study also the symple
ti
 Killing �elds on Ri

i type Fedosov manifolds admit-ting a metaple
ti
 stru
ture in more detail.
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