
Comment.Math.Univ.Carolin. 53,2 (2012) 253{267 253
r-Real
ompa
t spa
esD. Bhatta
harya, Lipika DeyAbstra
t. A new generalization of real
ompa
tness based on ultra�lters of regularF�-subsets is introdu
ed. Its relationship with real
ompa
tness, almost real
om-pa
tness, almost* real
ompa
tness, 
-real
ompa
tness is examined. Some of theproperties of the newly introdu
ed spa
e is studied as well.Keywords: regular F�-subsets, almost real
ompa
tness, almost* real
ompa
t-ness, r-weak 
b, regular Oz, regular 
ountably para
ompa
tClassi�
ation: 54D60Introdu
tionThroughout this paper all the spa
es are assumed to be Ty
hono� (
ompletelyregular and Hausdor�). For basi
 de�nitions of zero-sets, 
ozero-sets, �lter, ul-tra�lter, prime �lter et
. we refer to [7℄. An ultra�lter F is �xed i� T �F 6= ;.A non-empty family F of sets is said to have 
ountable (resp. 
losed 
ountable)interse
tion property provided that the interse
tion of any 
ountable number ofmembers (resp. of the 
losures of 
ountable number of members) of F is non-empty. Likewise, �nite interse
tion property (�p) may be de�ned.We know that a spa
e X is real
ompa
t [9℄ if every ultra�lter of zero-sets with
ountable interse
tion property (
ip) is �xed. A spa
e X is said to be almost [5℄(resp. almost* [15℄) real
ompa
t if every ultra�lter of open sets (resp. 
ozero-sets)with 
losed 
ountable interse
tion property (

ip) is �xed.The 
on
ept of regular GÆ-subsets was introdu
ed by J. Ma
k [11℄. A subsetH of a topologi
al spa
e X is 
alled a regular GÆ-subset if H is an interse
tionof a sequen
e of 
losed sets whose interiors 
ontain H (or, equivalently, if H =T1n=1Gn = T1n=1 ClX Gn, where ea
h Gn is open in X). The 
omplement of aregular GÆ-subset is 
alled a regular F�-subset, i.e., a subset V of a spa
eX is saidto be a regular F� if V = S1n=1 Fn = S1n=1 IntX Fn, where ea
h Fn is 
losed in X .Properties of regular GÆ and regular F�-subsets have been studied in [1℄. Everyzero-set is a regular GÆ and every 
ozero-set is a regular F� . The interse
tionof two regular F�-subsets is regular F� and the 
ountable union of regular F�-subsets is also regular F� . The sets of all zero-sets and regular F�-subsets of Xare respe
tively denoted by Z(X) and Rf (X).Frol��k [5℄ and S
hommer-Swardson [15℄ introdu
ed and studied almost real-
ompa
tness and almost* real
ompa
tness using the ultra�lter of open sets and
ozero-sets, respe
tively. It would be interesting to study the stru
ture de�ned in



254 D. Bhatta
harya, L. Deya similar fashion with the help of regular F�-subsets, when it is well known thatevery 
ozero-set is regular F� and every regular F� is open. The motivation ofthe present paper is to investigate whether strengthening (resp. weakening) theoriginal de�nition of almost (resp. almost*) real
ompa
tness with the introdu
-tion of regular F�-subsets produ
e a stronger (resp. weaker) result than that ofalmost (resp. almost*) real
ompa
tness. However, we shall see that almost real-
ompa
tness, almost* real
ompa
tness and r-real
ompa
tness are all independentin Ty
hono� spa
es. Some of the properties of r-real
ompa
t spa
es have also beenstudied.De�nition 1. A spa
e X is said to be r-real
ompa
t , if whenever F is an ultra-�lter of regular F�-subsets of X su
h that �F has the 
ip, then T �F 6= ;.We �rst see that r-real
ompa
tness is indeed a weak real
ompa
tness 
ondition.For this we need the following lemma.Lemma 2. Let F be an ultra�lter of regular F�-subsets of X and Z = fZ : Z isa zero-set of X and Z � F where F 2 Fg. Then Z is a prime z-�lter.Proof: Clearly Z is a z-�lter. To prove that Z is prime, let us de�ne ~Z =fX�Z : Z 2 Z(X)�Zg. If we 
an show that ~Z is a �lter, then by Proposition 1(b)of [6℄, both Z and ~Z will be prime �lters. For this we 
he
k the following:(i) Clearly ; =2 ~Z .(ii) Let X � Z1, X � Z2 2 ~Z, then Z1 and Z2 do not 
ontain any F , F 2F . Under this 
ondition, using the primeness of F it 
an be easily seen thatZ1 [ Z2 does not 
ontain any F 2 F and hen
e does not belong to Z . Therefore(X � Z1) \ (X � Z2) 2 ~Z .(iii) Let X � Z 2 ~Z , then Z does not 
ontain any F , for F 2 F and also letX �Z 0 
ontains X �Z. Then Z 0 � Z and hen
e neither Z 0 
ontains any F 2 F .Therefore X � Z 0 2 ~Z . �Theorem 3. Every real
ompa
t spa
e is r-real
ompa
t.Proof: Let F be an ultra�lter of regular F�-subsets of X with T �F = ;. LetZ = fZ : Z is a zeroset of X and F � Z, where F 2 Fg. By Lemma 2, Z is aprime z-�lter.Sin
e in a 
ompletely regular spa
e the zero-sets form a base for the 
losedsets, we have TZ = TfClX F : F 2 Fg = T �F = ;. Therefore there exists a
ountable 
olle
tion fZn : n 2 Ng � Z su
h that Tn2NZn = ;. By 
onstru
tion,for ea
h Zn 2 Z , there exists Fn 2 F su
h that Fn � Zn, i.e., ClX Fn � Zn. ThusTn2NClX Fn � Tn2NZn = ;, i.e., Tn2NClX Fn = ;. Hen
e X is r-real
ompa
t.�To show that the 
onverse of Theorem 3 is not always true, the following lemmawill assist us in providing a 
ounterexample.Lemma 4. Let F be an ultra�lter of regular F�-subsets of X with 

ip and letU 2 F . If ClX U is r-real
ompa
t, then T �F 6= ;.
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es 255Proof: Let F be an ultra�lter of regular F�-subsets of X with 

ip and letU 2 F . Further assume that ClX U is r-real
ompa
t. We �rst show that ifH 2 FjClX U , then H \ U 2 F . Let H 2 FjClX U , then H = V \ ClX U ,for V 2 F . So H \ U = V \ ClX U \ U = V \ U , whi
h further shows thatH \ U = V \ U 2 F .We next show that FjClX U is a base for an ultra�lter of regular F�-subsetson ClX U . It is straightforward to 
he
k that FjClX U has �p and is also 
losedunder �p. Let W be a regular F�-subset of ClX U and assume that W \G 6= ;,for all G 2 FjClX U . In parti
ular, W \ U 6= ;. Now sin
e W is regular F�in ClX U , by Theorem 28, W \ U is regular F� in U . Again U is regular F� inX and hen
e by Corollary 32, W \ U is a regular F� in X . Let G0 2 F . ThenG0 \ U 2 F and so G0 \ U = (G0 \ U) \ ClX U 2 FjClX U , whi
h implies thatW \ U \ G0 6= ;. We 
on
lude that W \ U 2 F and W \ U 2 FjClX U . Sin
eW \ U �W , our 
laim is proved.Let G be an ultra�lter of regular F�-subsets on ClX U with FjClX U � G.We show that G has 

ip. Let fVn : n 2 Ng � G. Ea
h Vn � Gn, whereGn 2 FjClX U . Now fGn \ U : n 2 Ng � F . Thus there is a point p 2Tn2NClX(Gn \ U). Clearly p 2 Tn2NClClX U Vn. Sin
e ClX U is r-real
ompa
t,there is p 2 T �G. We 
laim that p 2 T �F . Let P 2 F . Then P \ U 2 F and soP \ U 2 FjClX U � G and hen
e p 2 ClX (P \ U) � ClX P . This 
ompletes theproof. �Example 5. The Mysior plane is not real
ompa
t, but is r-real
ompa
t.In [13℄, Mysior provides an example of an almost real
ompa
t spa
e that isnot real
ompa
t. He de�nes a topology on R2 by �rst isolating the points noton the x-axis. For every point (x; 0) on the x-axis, a base of neighborhoods isde�ned to be the family fUn(x; 0) : n 2 Ng, where ea
h Un(x; 0) is the unionof three segments: f(x; y) : � 1n < y < 1ng, f(x + 1 + y; y) : 0 < y < 1ng andf(x + p2 + y;�y) : 0 < y < 1ng. Mysior demonstrates that the half-planesX+ = f(x; y) : y � 0g and X� = f(x; y) : y � 0g are both 
losed in X andreal
ompa
t, but their union X = X+ [X� is not real
ompa
t.To show that X is r-real
ompa
t, let F be an ultra�lter of regular F�-subsetsof X with 

ip. We see that the open half planes U = f(x; y) : y > 0g andL = f(x; y) : y < 0g are both 
ozero-sets and hen
e regular F�-subsets in X .Clearly f : X ! R de�ned by f(x; y) = y, if (x; y) 2 U and f(x; y) = 0,elsewhere, is 
ontinuous on X and also 
ozero f = U . Further U [ L is densein X . Therefore, either U or L must belong to F . Without loss of generality,assume U 2 F . But X+ = ClX U is real
ompa
t and hen
e r-real
ompa
t and soF must be �xed by using the Lemma 4. Consequently X is r-real
ompa
t.However, we show that r-real
ompa
tness with some additional 
ondition im-plies real
ompa
tness. For this we �rst de�ne the following:De�nition 6. A spa
e X is r-weak 
b if for every de
reasing sequen
e fPn : n 2Ng of regular F�-subsets withTn2NClX Pn = ;, there exists a de
reasing sequen
efZn : n 2 Ng of zero-sets su
h that Pn � Zn for every n, and Tn2NZn = ;.
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harya, L. DeyRemark 7. We re
all here that a spa
e X is a 
b spa
e [10℄ if for every de
reasingsequen
e fFn : n 2 Ng of 
losed sets with Tn2N Fn = ;, there exists a de
reasingsequen
e fZn : n 2 Ng of zero-sets su
h that Fn � Zn for every n, and Tn2NZn =;. The 
on
epts of weak 
b and almost weak 
b were introdu
ed by Ma
k-Johnson[12℄ and S
hommer-Swardson [15℄ respe
tively, as generalizations of 
b spa
es.A spa
e X is weak 
b spa
e if for a given de
reasing sequen
e fFn : n 2 Ngof regular 
losed subsets of X with empty interse
tion, there exists a de
reasingsequen
e fZn : n 2 Ng of zero-sets with empty interse
tion su
h that Zn � Fn forea
h n 2 N. Similarly a spa
e X is almost weak 
b spa
e if for a given de
reasingsequen
e fPn : n 2 Ng of 
ozero-sets of X with Tn2NClX Pn = ;, there exists ade
reasing sequen
e fZn : n 2 Ng of zero-sets with empty interse
tion su
h thatZn � ClX Pn for ea
h n 2 N. It is straightforward to show that every weak 
bspa
e is r-weak 
b and every r-weak 
b spa
e is almost weak 
b.Note 8. The hierar
hy of the di�erent spa
es mentioned is as follows:
b spa
e ) weak 
b ) r-weak 
b ) almost weak 
b.The authors intend to study the properties of r-weak 
b spa
es elsewhere.Theorem 9. If X is r-real
ompa
t and r-weak 
b, then X is real
ompa
t.Proof: Let F be a free z-ultra�lter on X . Let B = fP : P is regular F�-subsetand there exists Z 2 F with Z � Pg. Clearly B is a �lter of regular F�-subsetsof X . Let G be an ultra�lter of regular F�-subsets of X 
ontaining B. We showthat T �G = ;. Let p 2 X . Sin
e F is free, p 2 X � Z for some Z 2 F . Again Xis 
ompletely regular, so there exists a 
ozero-set Q and a zero-set Z 0 su
h thatp 2 Q � Z 0 � X�Z [7℄. Thus Z � X�Z 0 and soX�Z 0 2 G asX�Z 0 is a regularF� (being a 
ozero-set). But p =2 ClX(X � Z 0), as p 2 Q and Q \ (X � Z 0) = ;.Therefore p =2 T �G. Sin
e p is arbitrary, T �G = ;.Again X is r-real
ompa
t and T �G = ;, thus there must exist a 
olle
tionfPn : n 2 Ng � G with Tn2NClX Pn = ;. Let Vn = TfPi : i � ng. ThenfVn : n 2 Ng � G is a de
reasing sequen
e of regular F�-subsets of X withTn2NClX Vn � Tn2NClX Pn = ;, and hen
e Tn2NClX Vn = ;. Sin
e X is r-weak 
b, there exists a 
olle
tion fZn : n 2 Ng of zero-sets with ClX Vn � Zn forea
h n, and Tn2NZn = ;. Now we show that ea
h Zn meets every member of F .If not, there exists a set Z 2 F with Z \ Zn = ; for some n. Then Z � X � Zn,and so X � Zn 2 B � G. Again ClX Vn � Zn and so ClX Vn \ (X � Zn) = ; andtherefore Vn \ (X � Zn) = ;. But it 
ontradi
ts the fa
t that G is a �lter. ThusZn 2 F for ea
h n, and Tn2NZn = ;. This shows that X is real
ompa
t. �Next we show that the notions of almost real
ompa
tness and r-real
ompa
t-ness are independent, neither of them implies the other. However, with someadditional 
ondition one 
ould be obtained from the other.Example 10. The Dieudonn�e plank D is almost real
ompa
t, but not r-real-
ompa
t.
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es 257The Dieudonn�e plank D [14℄ is de�ned by [0; !1℄� [0; !℄�f(!1; !)g, the pointsof the Ty
hono� plank with the topology � generated by de
laring open ea
hpoint of [0; !1)� [0; !), together with the sets U�(�) = f(�; 
) : � < 
 � !g andV�(�) = f(
; �) : � < 
 � !1g, where !1 (resp. !) is the �rst un
ountable (resp.in�nite) ordinal. Thus points on the right edge have neighborhoods 
ontainingtails. The points on the top edge also have basi
 neighborhoods that 
ontain tails(not \re
tangles"). The Dieudonn�e topology � on D is �ner than the Ty
hono�topology on T = D. Now in T , every 
losed GÆ-set is a zero-set [7℄. Hen
ein T , every regular F� (open F�) is a 
ozero-set. Thus in Dieudonn�e plank D,every regular F� is a 
ozero-set and hen
e every ultra�lter of regular F�-subsetsis an ultra�lter of 
ozero-sets and 
onversely. But S
hommer [15℄ proved that inD, there exists an ultra�lter of 
ozero-sets with 

ip having empty interse
tion.Hen
e there exists an ultra�lter of regular F�-subsets in D with 

ip and emptyinterse
tion. Therefore D is not r-real
ompa
t.We now wish to sear
h for the 
ondition under whi
h an almost real
ompa
tspa
e be
omes r-real
ompa
t.De�nition 11. X is said to be regular 
ountably para
ompa
t if for every de-
reasing sequen
e fFn : n 2 Ng of 
losed sets with Tn2N Fn = ;, there exists ade
reasing sequen
e fHn : n 2 Ng of regular F�-subsets with Fn � Hn for ea
h n,and Tn2NClX Hn = ;.Note 12. If X is regular 
ountably para
ompa
t, then X is 
ountably para
om-pa
t. If X is normal and 
ountably para
ompa
t, then X is regular 
ountablypara
ompa
t. Further if X is r-weak 
b and regular 
ountably para
ompa
t, thenX is a 
b spa
e.Theorem 13. If X is almost real
ompa
t and regular 
ountably para
ompa
t,then X is r-real
ompa
t.Proof: Following the usual te
hnique letH be an ultra�lter of regular F�-subsetswith T �H = ;. Let R = fU : U is open and there exists H 2 H with H � Ug.Clearly H is a subfamily of R and T �R � T �H = ;, i.e., T �R = ;. Also R isa �lter of open sets. Let G be an open ultra�lter 
ontaining R. Next we showthat T �G = ; indeed. Let p 2 X . Then p =2 ClX H , i.e., p 2 X � ClX H forsome H 2 H. Sin
e X is Ty
hono� and hen
e regular, there exists an open setV su
h that p 2 V � ClX V � X � ClX H . Thus ClX H � X � ClX V , i.e.,H � X �ClX V and so X �ClX V 2 R � G. Also p =2 X �ClX V , as p 2 ClX V .Further p 2 V has empty interse
tion with X�ClX V , hen
e p =2 ClX (X�ClX V ).So p =2 T �G. Sin
e p 2 X is arbitrary, we 
on
lude that T �G = ;.Sin
e X is almost real
ompa
t and T �G = ;, �G does not have 
ip. So thereexists a 
olle
tion fVn : n 2 Ng � G with Tn2NClX Vn = ;. Let Gn = TfVi :i � ng. Then fGn : n 2 Ng � G is a de
reasing sequen
e of open sets withTn2NClX Gn = ;. Sin
e X is regular 
ountably para
ompa
t, there exists ade
reasing sequen
e fFn : n 2 Ng of regular F�-subsets with ClX Gn � Fn forea
h n, and Tn2NClX Fn = ;. We now show that ea
h Fn meets every member
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harya, L. Deyof H. If not, there exists a set H 2 H for whi
h H \ Fn = ; for some n. ThenH � X � ClX Fn and so X � ClX Fn 2 R � G. Now Gn \ (X � ClX Fn) = ;,
ontradi
ting the fa
t that G is a �lter. Therefore Fn 2 H for ea
h n, and hen
e�H does not have 
ip. Hen
e X is r-real
ompa
t. �Here is an example to show that an r-real
ompa
t spa
e need not be almostreal
ompa
t.Example 14. The Fringed plank is r-real
ompa
t, but not almost real
ompa
t.For this we 
onsider the Fringed plank [15℄. The Fringed plank X is de�ned byX = T [ fxj;n : j; n 2 Ng, where T = [0; !1℄� [0; !℄� f(!1; !)g is the Ty
hono�plank. Here we added a 
onvergent sequen
e fxj;n : n 2 Ng to ea
h point (!1; j)on the right edge of T . In the topology of X all the adjoined points are isolatedand the points (!1; j), j 2 N on the right edge, have their usual neighborhoodsplus enough tails of these sequen
es, i.e., V [ fxj;n : n > m;n 2 Ng, for ea
hm 2 N, is a neighborhood of (!1; j) in X , where V is the usual neighborhood of(!1; j) in T .S
hommer [15℄ proved that X is almost* real
ompa
t, but not almost real
om-pa
t. Now in T , every regular F� (open F�) is a 
ozero-set [7℄. Also the set of theadded points P , say, is regular F�-subsets and also 
ozero in X , sin
e 
ountableunion of regular F�-subsets (resp. 
ozero-sets) is regular F� (resp. 
ozero). Nowlet H be a regular F�-subset of X , then H \ T and H \ P are regular F�-subsetsof T and P respe
tively (Theorem 28), and hen
e 
ozero-sets of T and P respe
-tively. It 
an be easily seen that H \ T and H \ P are also 
ozero-sets of X .Hen
e H = (H \T )[ (H \P ) is a 
ozero-set of X . Thus every regular F�-subsetof X is a 
ozero-set. So in X , almost* real
ompa
tness and r-real
ompa
tness areidenti
al. Therefore X is r-real
ompa
t.Is there any property that 
an be added to r-real
ompa
t spa
e to 
onvert itinto almost real
ompa
t spa
e? Yes, regular Oz is one su
h property and it isde�ned as follows:De�nition 15. X is said to be regular Oz if whenever A is an ultra�lter of opensets of X , then F = fF : F is regular F� and F 2 Ag is an ultra�lter of regularF�-subsets of X .Theorem 16. If X is r-real
ompa
t and regular Oz, then X is almost real
om-pa
t.Proof: Let A is an ultra�lter of open sets of X with T �A = ;. Now sin
e X isregular Oz, the family F = fF : F is regular F� and F 2 Ag is an ultra�lter ofregular F�-subsets of X and F � A. As in Theorem 9, we 
an show that T �F = ;.Again sin
e X is r-real
ompa
t and T �F = ;, there is a 
olle
tion fFn : n 2Ng � F su
h that Tn2NClX Fn = ;. But ea
h Fn 2 A, so �A does not have the
ip. Thus X is almost real
ompa
t. �Next we show that a weaker form of Oz spa
e [3℄ possesses the regular Ozproperty.
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es 259De�nition 17. A spa
e X is almost Oz if the 
losure of every regular F�-subsetis a zero-set.Remark 18. Clearly every Oz spa
e is almost Oz and every almost Oz spa
e isweak Oz. (Re
all that a spa
e is Oz [3℄ if every regular 
losed set is a zero-setand the spa
e is weak Oz [12℄ if the 
losure of every 
ozero-set is a zero-set.)Theorem 19. Every almost Oz spa
e is regular Oz.Proof: Let X be an almost Oz spa
e. To prove the theorem let us suppose the
ontrary. Then there is an ultra�lter A of open sets of X su
h that F = fP : P isregular F� and P 2 Ag is not an ultra�lter of regular F�-subsets of X . Clearly Fis a �lter of regular F�-subsets of X . Let B be an ultra�lter of regular F�-subsetsof X 
ontaining F . Thus there exists a regular F�-subset U 2 B with P \ U 6= ;for every P 2 F , but U =2 F . Now U \ F = ;, for some F 2 A and hen
eClX U \ F = ;. Thus F � X � ClX U . Sin
e X is almost Oz, so ClX U is azero-set. Then V = X�ClX U is a 
ozero-set, i.e., a regular F�-subset 
ontainingF . This implies that V 2 A and sin
e V is a regular F�-subset, V 2 F andhen
e V 2 B. But it 
ontradi
ts the fa
t that U and V are two members of theultra�lter B su
h that U \ V = ;. This shows that X is regular Oz. �To study the relationship between almost* real
ompa
tness and r-real
ompa
t-ness we de�ne the following:De�nition 20. A spa
e X is said to have the property RC if whenever F is anultra�lter of regular F�-subsets of X , then G = fP : P is 
ozero and P 2 Fg isan ultra�lter of 
ozero-sets.Theorem 21. If X is almost* real
ompa
t spa
e with the property RC, then Xis r-real
ompa
t.Proof: Let F be an ultra�lter of regular F�-subsets of X with 

ip, i.e., �F has
ip. Now by the property RC of X , G = fP : P is 
ozero and P 2 Fg is anultra�lter of 
ozero-sets and G � F . Sin
e X is almost* real
ompa
t and �G hasthe 
ip, we must have T �G 6= ;.Now we shall show that T �F 6= ;. Let us assume the 
ontrary, i.e., T �F = ;. Asin Theorem 9, we 
an easily show that T �G = ;, and we arrive at a 
ontradi
tion.Hen
e T �F 6= ; and X is r-real
ompa
t. �One will be naturally interested to inquire the 
onditions under whi
h r-real
ompa
tness implies almost* real
ompa
tness. In this dire
tion we have atheorem (Theorem 23). Before this we re
all the following de�nition.De�nition 22. X is said to be super 
ountably para
ompa
t [15℄ if for everyde
reasing sequen
e fFn : n 2 Ng of 
losed sets with Tn2N Fn = ;, there existsa de
reasing sequen
e fPn : n 2 Ng of 
ozero-sets with Fn � Pn for ea
h n, andTn2NClX Pn = ;.Theorem 23. If X is r-real
ompa
t, super 
ountably para
ompa
t and weakOz, then X is almost* real
ompa
t.
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harya, L. DeyProof: Let F be an ultra�lter of 
ozero-sets with T �F = ;. Let A = fU : Uis regular F�-subset and there exists F 2 F with F � Ug. Clearly A is a �lterof regular F�-subsets of X . Let G be an ultra�lter of regular F�-subsets of X
ontaining A. As before (Theorem 9) we 
an verify that T �G = ;.Again X is r-real
ompa
t and T �G = ;, so there must exist a 
olle
tionfGn : n 2 Ng � G with Tn2NClX Gn = ;. Now let Vn = TfGi : i � ng.Then fVn : n 2 Ng � G is a de
reasing sequen
e of regular F�-subsets of Xwith Tn2NClX Vn � Tn2NClX Gn = ; and hen
e Tn2NClX Vn = ;. By super
ountable para
ompa
tness of the spa
e X , there exists a 
olle
tion fPn : n 2 Ngof 
ozero-sets with ClX Vn � Pn for ea
h n, and Tn2NClX Pn = ;.Next our aim is to show that Pn 2 F for ea
h n 2 N. To show this we need toprove that Pn \ F 6= ; for ea
h F 2 F . Let us suppose the 
ontrary, i.e., thereexists a set F 2 F with Pn \F = ; for some n. Then F � X �ClX Pn. By weakOz property of X , ClX Pn is a zero-set. Hen
e X � ClX Pn is a 
ozero-set andso a regular F�-subset of X whi
h 
ontains F 2 F . Thus X � ClX Pn 2 A � G.Again ClX Vn � Pn � ClX Pn and so ClX Vn \ (X � ClX Pn) = ;. ThereforeVn \ (X � ClX Pn) = ;. But it 
ontradi
ts the fa
t that Vn and X � ClX Pn aretwo members of G. Therefore Pn 2 F for ea
h n 2 N, and Tn2NClX Pn = ;.This shows that X is almost* real
ompa
t. �From Theorem 21 and Theorem 23, it appears that the two 
on
epts of almost*real
ompa
tness and r-real
ompa
tness are independent. However, for 
on�rma-tion we are in sear
h for an example. So far in examples 
onsidered every regularF� is a 
ozero. Our aim is to �nd a spa
e (of 
ourse 
ompletely regular) whereinnot all regular F� are 
ozero-sets.Next we study some properties of r-real
ompa
t spa
es.That r-real
ompa
tness is not 
losed hereditary is shown in the following ex-ample.Example 24. We 
onsider the Fringed plank X whi
h is r-real
ompa
t (Ex-ample 14). But Ty
hono� plank T is a 
losed subspa
e of X whi
h is not r-real
ompa
t (Example 38).However, the 
losure of regular F�-subset in an r-real
ompa
t spa
e is r-real
ompa
t. For this we require a few results that we prove �rst.Lemma 25. If Y � X and F is 
losed in X , then IntX F \ Y � IntY (F \ Y ).Proof: The proof is straightforward. �For the reverse in
lusion we have the following theorem:Theorem 26. If F is 
losed inX and Y is dense inX , then IntY (F\Y ) � IntX F .Proof: Let p 2 IntY (F \ Y ), then there exists an open set Up in Y su
h thatp 2 Up � F \ Y . Let U 0P be open in X su
h that U 0P \ Y = UP . Thereforep 2 U 0P \Y � F \ Y . We now show that U 0P � F . If not, then U 0P �F is an openset of X lying in Y �X , whi
h 
ontradi
ts the fa
t that Y is dense in X . Hen
eU 0P � F , i.e., U 0P � IntX F . Thus p 2 U 0P � IntX F . Hen
e the result follows. �
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ompa
t spa
es 261The above result may not hold if Y is not dense in X .Example 27. Let X = [0; 1℄ and Y = (0; 1) � f 12g. X and Y have their usualtopologies and re�ned so that f 12g is an isolated point in X . Now F = [0; 12 ℄is 
losed in X . Then F \ Y = (0; 12 ) and so IntY (F \ Y ) = (0; 12 ). AgainIntX F = (0; 12 ℄. Thus IntY (F \ Y ) 6= IntX F .Theorem 28. If G is a regular F�-subset of a spa
e X and Y � X , then G \ Yis a regular F�-subset of Y .Proof: Let G = Sn Fn = Sn IntX Fn, where ea
h Fn is 
losed in X . LetFn \ Y = Kn; then ea
h Kn is 
losed in Y . Now we de�ne V = SnKn. Nextwe show that V is indeed a regular F�-subset, i.e., we prove that V = SnKn =Sn IntY Kn. Sin
e IntY Kn � Kn, we always have Sn IntY Kn � SnKn.To prove the reverse in
lusion, let p 2 SnKn. Then p 2 Kn for some n, andhen
e p 2 Fn for some n. This implies that p 2 Sn Fn = Sn IntX Fn and hen
ep 2 IntX Fn for some n. Thus p 2 IntX Fn \ Y � IntY (Fn \ Y ) = IntY Kn(Lemma 25), i.e., p 2 IntY Kn and hen
e p 2 Sn IntY Kn. Thus SnKn �Sn IntY Kn. Therefore V = SnKn = Sn IntY Kn and it is a regular F�-subsetof Y su
h that V = G \ Y . Hen
e, the theorem follows. �The 
onverse of the above theorem is not always true as we have the followingexample:Example 29. LetX = fa; b; 
; d; eg and � = fX; ;; fag; fa; bg; fa; 
; eg; fa; b; 
; egg.Then � -
losed sets of X are f
; d; eg, fb; 
; d; eg, fdg and fb; dg. Now we 
onsidera subspa
e Y = fb; 
; eg of X . Then open sets of Y are ;, Y , fbg, f
; eg, fb; 
; egand so 
losed sets of Y are ;, Y , f
; eg and fbg. Clearly B = f
; eg is an open, aswell as, 
losed subset of Y and hen
e a regular F�-subset of Y . The subsets of Xthat have B as the interse
tion with Y , are given by fa; 
; eg, f
; eg, f
; d; eg andfa; 
; d; eg. But none of these is a regular F�-subset of X .Thus we have seen that if G is a regular F�-subset of a spa
e X and Y � X ,then G\Y is a regular F�-subset of Y . But the 
onverse of this result is not true.This prompts us to de�ne the following:De�nition 30. A subspa
e X of a spa
e T is said to be regular F�-embeddedin T if for ea
h regular F�-subset B of X there exists a regular F�-subset A of Tsu
h that B = A \X .The regular F�-embedded property of a subspa
e will be studied elsewhere.Theorem 31. Every regular F�-subset of a topologi
al spa
e is regular F�-embedded.Proof: Let Y be a regular F�-subspa
e of X and H be a regular F�-subset of Y .Then Y �H is a regular GÆ-subset of Y . Thus there exists a regular GÆ-subset Aof X su
h that Y �H = A\Y , [2℄. Hen
e H = Y �(A\Y ) = (X�A)\Y = B\Y ,
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harya, L. Deywhere B = X � A is a regular F�-subset of X . Therefore for ea
h regular F�-subset H of Y , there exists a regular F�-subset B in X su
h that H = B \ Y .Thus Y is regular F�-embedded in X . �Corollary 32. If Y is a regular F�-subset of a spa
e X , then every regularF�-subset of Y is also a regular F�-subset of X .Proof: Let H be a regular F�-subset of Y . Then by Theorem 28, there exists aregular F�-subset B of X su
h that H = B \ Y . Y being regular F� in X , B \ Yis also a regular F�-subset of X and hen
e H is also a regular F�-subset of X . �Corollary 33. If Y is a regular F�-subset of a spa
e X , then for ea
h ultra�lterF of regular F�-subsets of P = ClX Y , FjY is a �lter of regular F�-subsets of Y .Proof: To prove that FjY = fF \ Y : F 2 Fg is a �lter of regular F�-subsetsof Y , we observe the following:(i) Ea
h member F 2 F being open in P = ClX Y � X , there exists anopen subset G of X su
h that G \ P = F . Now G \ Y � G \ P = F and hen
eG\Y � F \Y . Now G\Y 6= ;, sin
e G is open in X and G\P = G\ClX Y = F .So F \ Y 6= ; and ; =2 FjY .(ii) Let A1; A2 2 FjY . Then A1 = F1 \Y and A2 = F2 \Y , where F1; F2 2 F .Now A1 \ A2 = (F1 \ Y ) \ (F2 \ Y ) = (F1 \ F2) \ Y 2 FjY .(iii) Let A 2 FjY and A1 be a regular F�-subset in Y su
h that A � A1. Sin
eY is regular F� in X , by Corollary 32, A and A1 are regular F�-subsets of Xand hen
e of P , as Y � P � X . Sin
e A 2 FjY , there exists B 2 F su
h thatA = B \ Y . Lastly, Y is a regular F�-subset of P and we 
laim that Y 2 F (anultra�lter). Otherwise, there will be some C 2 F su
h that C \ Y = ;, whi
his impossible. Hen
e A = B \ Y 2 F , whi
h in turn implies that A1(� A) mustbelong to F and hen
e A1 2 FjY . �Theorem 34. Let X be r-real
ompa
t and Y be a regular F�-subspa
e of X .Then ClX Y is r-real
ompa
t.Proof: Let F = ClX Y , where Y is a regular F�-subspa
e in X , and let F bean ultra�lter of all regular F�-subsets of F with 

ip. By Corollary 33, FjY isa �lter of regular F�-subsets of Y . Sin
e every regular F�-subset of Y is also aregular F�-subset of X , let us 
onsider an ultra�lter G of regular F�-subsets ofX su
h that FjY � G. Then G has 

ip. To prove this, let us 
onsider a regularF�-subset P 2 G. Now sin
e H \Y is a member of FjY for every H 2 F , we haveP\H\Y 6= ;. Thus P\H\Y 2 FjY and sin
e P\H\Y � P , FjY must be a basefor G. Now let fVn : n 2 Ng be a 
olle
tion of regular F�-subsets of G. Sin
e FjYis a base, there exists Un � Vn, for ea
h n 2 N with Un 2 FjY . For ea
h n 2 N,there exists a Hn 2 F su
h that Hn \ Y = Un. Sin
e F has 

ip, there exists ap 2 Tn2NClF (Hn \ Y ) = Tn2NClF Un � Tn2NClF (Vn \ Y ) � Tn2NClX Vn andso G has 

ip as well. Sin
e X is r-real
ompa
t and G has 

ip, T �G 6= ;. NowTP2G ClX P � TH2F ClX(H \ Y ) � TH2F ClX H and it follows that T �F 6= ;.Hen
e F = ClX Y must be r-real
ompa
t. �
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es 263Theorem 35. If Y is regular F�-embedded in X , then for ea
h ultra�lter F ofregular F�-subsets of X whi
h meets Y , FjY is an ultra�lter on Y .Proof: Let F be an ultra�lter of regular F�-subsets of X , whi
h meets Y � X .We show that FjY = fF \Y : F 2 Fg is an ultra�lter of regular F�-subsets of Y .We know that if F is a regular F�-subset of X and Y � X , then F \Y is a regularF�-subset of Y . Thus FjY = fF \ Y : F 2 Fg is a family of regular F�-subsetsof Y . Clearly FjY is a �lter. Be
ause ; =2 FjY , sin
e every regular F�-subsetof X whi
h belongs to F meets Y . Again let (F1 \ Y ) and (F2 \ Y ) 2 FjY forF1; F2 2 F . Then (F1 \ Y )\ (F2 \ Y ) = (F1 \ F2)\ Y 2 FjY , sin
e F1 \F2 2 F .Lastly, let F \ Y 2 FjY and V be a regular F�-subset of Y 
ontaining F \ Y .Let G be a regular F�-subset of X su
h that G \ Y = V , sin
e Y is regular F�-embedded in X . Now F [G is a regular F�-subset of X and hen
e (F [G) 2 F ,as F 2 F . Also (F [ G) \ Y = (F \ Y ) [ (G \ Y ) = (F \ Y ) [ V = V 2 FjY .Hen
e FjY is a �lter. Now we will show that FjY is indeed an ultra�lter. Let Kbe a regular F�-subset of Y that meets ea
h member of the �lter FjY . We wantto show that K 2 FjY . By our assumption, there exists a regular F�-subset K 0of X su
h that K 0 \ Y = K. As K meets ea
h member of FjY and K 0 
ontainsK, K 0 meets ea
h member of FjY and hen
e ea
h member of F . Sin
e F is anultra�lter it follows that K 0 2 F . Hen
e K = K 0 \ Y 2 FjY . Thus FjY is anultra�lter. �In the following, the relationship between r-real
ompa
tness and 
-real
om-pa
tness will be studied.De�nition 36. A spa
e X is 
-real
ompa
t [4℄ i� for every p 2 �X �X thereexists a normal lower semi 
ontinuous (nls
) fun
tion f on �X su
h that f(p) = 0and f is positive on X . Equivalently, a spa
e X is 
-real
ompa
t [8℄ i� for everypoint p 2 �X � X , there exists a de
reasing sequen
e fAng of regular 
losedsubsets of �X with p 2 Tn2NAn while Tn2N(An \X) = ;.Theorem 37. Every r-real
ompa
t spa
e is 
-real
ompa
t.Proof: Let us 
onsider a point p 2 �X � X . Let F be an ultra�lter of allregular F�-subsets of �X 
ontaining p. Now we 
laim that T �F = fpg. If possiblelet q 2 T �F , q 6= p. Now sin
e �X is Hausdor�, there exists disjoint open setsUp and Uq 
ontaining p and q respe
tively. Again in a 
ompletely regular spa
eevery neighborhood of a point 
ontains a zero-set neighborhood of the point, sowe 
an �nd two zero-sets Z1 and Z2 su
h that p 2 X � Z1 � Z2 � Up. ThenX � Z1 is a 
ozero-set and hen
e regular F�-subset 
ontaining p and is disjointfrom Uq. Thus X � Z1 2 F . Hen
e q =2 T �F , a 
ontradi
tion. Then G = FjX isan ultra�lter of regular F�-subsets of X with TClX G = ;. By hypothesis, thereexists a sequen
e (whi
h may be supposed to be de
reasing) fFi : i 2 Ng � Fsu
h that Ti2N ClX(Fi \ X) = ;. Now we de�ne fi(x) = 0 if x 2 ClX Fi andfi(x) = 1 otherwise, with 0 � fi � 1 for all i 2 N. Now let f = Pi2N fi2i . Thenf is nls
 fun
tion [4℄, su
h that f(p) = 0 and f is positive on X . Hen
e X is
-real
ompa
t. �



264 D. Bhatta
harya, L. DeyIn the following, the preservation of r-real
ompa
t under mappings will bestudied. First we show that r-real
ompa
tness is not preserved under perfe
tmap (
ontinuous, 
losed and 
ompa
t).Example 38. We re
all that the 'Fringed plank' X is r-real
ompa
t. Let f :X ! T (Ty
hono� plank) be the identity mapping on T � X , while all theadded points in ea
h sequen
e go to the point to whi
h the sequen
e 
onverges.S
hommer [15℄ observed that this map is perfe
t, X is almost* real
ompa
t whileT is not. Now in X , as well as in T , every regular F� is a 
ozero-set. Hen
e, thetwo 
on
epts of r-real
ompa
tness and almost* real
ompa
tness are identi
al inthese spa
es. Thus under the above perfe
t mapping f , r-real
ompa
tness is notpreserved. It may be mentioned here that the set P of all added points in X is aregular F�-subset of X . But under f , P is mapped to the right edge of T , whi
his not a regular F�-subset of T . This example also shows that under a perfe
tmap, the image of a regular F�-subset may not be regular F� .De�nition 39. A mapping from a spa
e X to a spa
e Y is said to be regularF�-preserving if the image of every regular F�-subset of X is regular F� in Y .Theorem 40. The image of an r-real
ompa
t spa
e under a 
ountably 
ompa
t,
ontinuous, onto and regular F�-preserving mapping is r-real
ompa
t.Proof: Let X be a r-real
ompa
t spa
e and f : X ! Y be a 
ountably 
ompa
t,
ontinuous, onto and regular F�-preserving mapping. Let F be an ultra�lter ofregular F�-subsets of Y with T �F = ;. Sin
e inverse image of a regular F�-subsetunder a 
ontinuous mapping is regular F� [11℄, f�1(F) = ff�1(F ) : F 2 Fg isa family of regular F�-subsets of X 
losed under �nite interse
tion and does not
ontain ;. Thus f�1(F) is a �lter base. Now there exists an ultra�lterA of regularF�-subsets of X 
ontaining f�1(F). It 
an be seen that T �A � TClX(f�1(F)) =;. Now let V 2 A. Sin
e f is regular F�-preserving, f(V ) is regular F� in Y . Iff(V ) =2 F , there exists a regular F�-subset F 0 of Y su
h that F 0 � Y � f(V ) andF 0 2 F . It follows that f�1(F 0) � f�1(Y �f(V )) = X�V , i.e., the two membersf�1(F 0) and V of A are disjoint, whi
h is impossible. Hen
e for V 2 A, f(V ) 2 F .Sin
e X is r-real
ompa
t, there exists a 
ountable sequen
e fVig of A su
h thatTi ClX Vi = ;. The sequen
e fVig 
an be supposed to be de
reasing. Again fbeing 
ountably 
ompa
t, for ea
h y 2 Y , the family ff�1(y) \ ClX Vig, i 2 N,does not have the �p. So there exists a k 2 N su
h that f�1(y) \ ClX Vk = ;,whi
h implies that y =2 f(Vk) 2 F . Thus ff(Vi)g is a 
ountable subfamily of Fsu
h that TiClY f(Vi) = ;. Hen
e Y is r-real
ompa
t. �Remark 41. Next we see that r-real
ompa
tness is neither inversely preservedby perfe
t maps f : X ! Y . For this, as in [15℄, we 
onstru
t the range spa
e Yto be the Fringed plank while the domain X 
onsists of the disjoint union of theTy
hono� plank together with ! many 
opies of the 
onvergent sequen
e. Letus 
onsider the mapping f : X ! Y whi
h is the identity map for the pointson Ty
hono� plank while under f ea
h point of the �rst 
opy of the 
onvergentsequen
e is mapped to the 
orresponding point of the sequen
e fxj;0 : j 2 Ng



r-Real
ompa
t spa
es 265of Y , points of the se
ond 
opy are mapped to the 
orresponding points of thesequen
e fxj;1 : j 2 Ng of Y and so on. This map between X and Y is perfe
t[15℄. But the Ty
hono� plank T is the 
losure of a 
ozero-set, say P of X , i.e.,T = ClX P (re
all that every 
ozero-set is regular F�). By Theorem 34, X is notr-real
ompa
t, sin
e T is not r-real
ompa
t.Before we 
on
lude, let us study the produ
tivity of r-real
ompa
tness. It isnot known whether r-real
ompa
t is produ
tive or not. However, under 
ertain
ondition on the fa
tor spa
es, an arbitrary produ
t be
omes r-real
ompa
t. Theproperty 
alled RFP is su
h a 
ondition de�ned as follows:De�nition 42. A topologi
al spa
e X is said to satisfy the property RFP if,whenever an ultra�lter F of regular F�-subsets of X 
ontains a prime �lter ofregular F�-subsets of X with 

ip, then F has 

ip.Before pro
eeding to the main theorem we �rst prove the following lemmas.Lemma 43. If f : X ! Y is 
ontinuous and F � Rf (X) is a prime �lter, thenthe family A = fA 2 Rf (Y ) : f�1(A) 2 Fg is also a prime �lter.Proof: Sin
e the inverse image of a regular F�-subset under a 
ontinuous map isregular F� , A is a family of regular F�-subsets of Y 
losed under �nite interse
tionand does not 
ontain ;. Thus A is a �lter base. Let A 2 A and B 2 Rf (Y ) su
hthat A � B. Then f�1(A) � f�1(B), f�1(A) 2 F and hen
e f�1(B) 2 F , whi
hin turn implies that B 2 A. Thus A is a �lter. To prove that the �lter A is indeedprime, let A1 [ A2 2 A and A1 =2 A. Sin
e A1 [ A2 2 A, f�1(A1 [A2) 2 F , i.e.,f�1(A1) [ f�1(A2) 2 F . Also f�1(A1) =2 F , so f�1(A2) 2 F and hen
e A2 2 A.Therefore A is prime. �Lemma 44. Let F be a prime �lter of regular F�-subsets of the produ
t spa
eX = Q�X�. Then the family �℄�F = fF� 2 Rf (X�) : ��1� (F�) 2 Fg is a prime�lter of regular F�-subsets of X�, where �� is the �-th proje
tion map from theprodu
t spa
e X to X�.Proof: The proof follows from Lemma 43, sin
e the proje
tion mappings are
ontinuous. �Lemma 45. Let F be an ultra�lter of regular F�-subsets on X = Q�X�. Ifevery prime �lter �℄�F is �xed, then F is also �xed.Proof: For ea
h �, we 
hoose x� 2 T�℄�F and let x = fx�g, then x 2 X .To prove the assertion it suÆ
es to show that x 2 TF . From the 
onstru
tionof x, x belongs to every member of F of the form ��1� (F�), where F� 2 �℄�F ,sin
e ��1� (x�) = ft 2 X : ��(t) = x�g � ��1� (F�). Again every 
ozero-set beingregular F� , x belongs to every member of F having the form ��1�k (X�k � Zk),where Zk is a zero-set in X�k . Further it is known that the 
olle
tion of all �niteinterse
tions like Tnk=1 ��1�k (X�k �Zk) of 
ozero-sets is a base for the open sets inX [7℄ and 
ontains x. Now an arbitrary member F of F is a union of membersof this base and hen
e it also 
ontains x. Sin
e F is arbitrary, x 2 TF . �
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harya, L. DeyTheorem 46. An arbitrary produ
t of r-real
ompa
t spa
es, where ea
h fa
torspa
e has RFP, is r-real
ompa
t.Proof: Let X = Q�X�, where ea
h X� is r-real
ompa
t. Now X is 
om-pletely regular. Let F be an ultra�lter of regular F�-subsets of X with 

ip. ByLemma 44, the family �℄�F = fG� 2 Rf (X�) : ��1� (G�) 2 Fg is a prime �lterof regular F�-subsets of X�, for ea
h �. Sin
e F has 

ip, so has �℄�F . Now bythe RFP property of X�, the ultra�lter 
ontaining the prime �lter �℄�F also has

ip. Now X� being r-real
ompa
t, T�℄�F is �xed. Hen
e by Lemma 45, F is�xed and the theorem follows. �To 
on
lude, the authors would like to examine the relationship of r-real
ompa
tspa
es with another 
lass of generalized real
ompa
t spa
es, namely, �1-ultra
om-pa
t spa
es introdu
ed by J. van der Slot [16℄. We re
all that a spa
e X is said tobe m-ultra
ompa
t for an in�nite 
ardinal m and relative to a 
losed subbase C ofX , i� ea
h ultra�lter F in X , for whi
h F\C satis�es them-interse
tion property,is 
onvergent. In parti
ular, for m = �1 we have �1-ultra
ompa
t spa
es. Nowin [6℄, Frol��k has shown that for regular spa
es �1-ultra
ompa
tness is equivalentto almost real
ompa
tness. But the r-real
ompa
tness and almost real
ompa
t-ness are independent in Ty
hono� spa
es (Examples 10 and 14). From theseit follows immediately that �1-ultra
ompa
tness is a property independent of r-real
ompa
tness in Ty
hono� spa
es.A
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