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On the exterior problem in 2D for stationary
ows of 
uids with shear dependent vis
osityM. Bildhauer, M. Fu
hsAbstra
t. On the 
omplement of the unit disk B we 
onsider solutions of theequations des
ribing the stationary 
ow of an in
ompressible 
uid with sheardependent vis
osity. We show that the velo
ity �eld u is equal to zero provideduj�B = 0 and limjxj!1 jxj1=3ju(x)j = 0 uniformly. For slow 
ows the latter
ondition 
an be repla
ed by limjxj!1 ju(x)j = 0 uniformly. In parti
ular, theseresults hold for the 
lassi
al Navier-Stokes 
ase.Keywords: equations of Navier-Stokes type, stationary 
ase, exterior problemin 2DClassi�
ation: 76D05, 35Q301. Introdu
tionIn our note we investigate the following exterior problem for the stationary
ow of a generalized Newtonian 
uid: let B denote the open unit disk in R2 andsuppose that the velo
ity �eld u: R2 n B ! R2 and the pressure �: R2 n B ! Rsatisfy the equations(1.1) � div [DH ("(u))℄ + uk�ku+r� = 0and(1.2) div u = 0on R2 nB together with the boundary 
ondition(1.3) u = 0 on �B:Here "(u) denotes the symmetri
 gradient of the �eld u, uk�ku represents the
onve
tive term (the 
onvention of summation is used throughout this paper) andwe assume that the stress tensor T is generated by a given potential H in thesense that TD = DH , where TD is the deviatori
 part of T .We further assume the stru
tural 
ondition(1.4) H(") = h (j"j)
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hswith pres
ribed fun
tion h : [0;1)! [0;1) of 
lass C2. From (1.4) it followsDH(") = � (j"j) "with vis
osity fun
tion �(t) := h0(t)t and, together with (1.2), this means that we
onsider stationary 
ows of in
ompressible generalized Newtonian 
uids being ofshear thi
kening type if � is an in
reasing fun
tion, and of shear thinning type ifthe vis
osity de
reases.For further mathemati
al and also physi
al explanations the reader is referredto the monographs of Ladyzhenskaya [La℄, Galdi [Ga1℄,[Ga2℄ and M�alek, Ne�
as,Rokyta, R�u�zi�
ka [MNRR℄ (see also [FuSe℄).In the parti
ular 
ase h(t) = t2=2, the equations (1.1){(1.3) redu
e to theexterior problem for the stationary Navier-Stokes equations, and it is a 
hallengingtask to prove (or disprove) that(1.5) �(R) := supjxj�R ju(x)j ! 0 as R!1;implies that the velo
ity �eld u is identi
ally zero. Further details in
ludingthe histori
al ba
kground and related problems are presented in Chapter X.3 ofGaldi's book [Ga2℄ and in his paper [Ga3℄.Of 
ourse we will not give an answer to this open question: our goal is toshow that with the help of rather elementary energy estimates one 
an obtain thefollowing results.Suppose that the 
uid is shear thi
kening or shear thinning. Let u denote asolution of (1.1){(1.3). Then we have u = 0 if(i) (1.5) holds and the 
onve
tive term is negle
ted (\slow 
ows")or if(ii) (1.5) is repla
ed by the stronger 
ondition(1.6) limR!1R1=3�(R) = 0:In order to make these statements pre
ise, we �rst have to introdu
e a reason-able 
lass of solutions.De�nition 1.1. A fun
tion u 2 C1(R2 n B), i.e. u and ru are 
ontinuous upto �B, is a solution of (1.1){(1.3), if (1.2) and (1.3) hold in the 
lassi
al sense andif(1.7) ZR2nB DH ("(u)) : "(') dx + ZR2nB uk�kui'i dx = 0holds for all ' 2 C10 (R2 nB) satisfying div' = 0.
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ows of 
uids 223Remark 1.1. Obviously (1.7) is the weak form of (1.1) and in the shear thi
kening
ase we 
an repla
e De�nition 1.1 just by the requirement that u is an element ofa suitable lo
al energy spa
e having �nite energy on the annulus 1 < jxj < r.In the shear thinning 
ase the situation be
omes more deli
ate and we de
idedto work with De�nition 1.1.From the various hypotheses 
on
erning h and the 
al
ulations presented belowthe reader a
tually 
an dedu
e the minimal requirements 
on
erning the �eld uin the 
ases under investigation. However we emphasize that we do not assumethe validity of global energy bounds like RR2nB h(j"(u)j) dx < 1 for our 
lass ofsolutions.Next we formulate our hypotheses imposed on the density h o

urring in thestru
tural 
ondition (1.4). We suppose that h satis�es:(A1) h is stri
tly in
reasing and 
onvex; we have h00(0) > 0 and limt!0 h(t)t = 0.There is a 
onstant a > 0 su
h that h(2t) � ah(t) for all t � 0(A2) (doubling property).(A3I) In the shear thi
kening 
ase we have h0(t)t � h00(t) for all t > 0.(A3II) In the shear thinning 
ase we have h00(t) � h0(t)t for all t > 0:Remark 1.2. (i) From (A1) it immediately follows that h(0) = h0(0) andh0(t) > 0 for any t > 0.(ii) By 
onsidering ddt h0(t)t it is immediate that (A3I) and (A3II) express thefa
t that the 
uid is shear thi
kening and shear thinning, respe
tively.(iii) (A1) together with (A2) implies the balan
ing 
ondition(1.8) 
 th0(t) � h(t) � th0(t) for all t � 0and for a suitable positive 
onstant 
. In fa
t, 0 = h(0) � h(t) � th0(t)holds by 
onvexity, whereas by (A2) and the monotoni
ity of h0h(t) � 1ah(2t) = 1a Z 2t0 h0(s) ds � 1a Z 2tt h0(s) ds � 1ath0(t):(iv) It is easy to see that from (A2) it followsh(t) � h(1)ta for all t � 1;
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hsthus(1.9) h(t) � 
 [ta + 1℄ for all t � 0:(v) If we are in the shear thi
kening 
ase (A3I), then h0(t)t � lims!0 h0(s)s =h00(0) gives(1.10) h(t) � 12h00(0)t2 for all t � 0;and (A1) implies on a

ount of h00(0) > 0 that our energy is of at leastquadrati
 growth.(vi) In the shear thinning 
ase we have(1.11) h(t) � 12h00(0)t2and(1.12) h0(t)2 � 
h(t)for any t � 0. For (1.12) we observe h0(t) � th00(0), whi
h is an immediate
onsequen
e of h0(t)=t � lims!0 h0(s)=s, thush0(t)2 � th00(0)h0(t) (1.8)� 
h00(0)h(t):Note that a

ording to (1.11) the 
ondition (A3II) implies that the energyhas subquadrati
 growth.A
tually, even the 
ase of linear growth is 
overed, whi
h means thatwe 
an easily give examples of densities h satisfying (A1){(A3II) for whi
hlimt!1 h(t)=t 2 (0;1).(vii) It is not hard to show that (A1) and (A3II) already imply (A2), we referto the Appendix of [BF℄.After these preparations we 
an state our main theorem:Theorem 1.1. Suppose that u is a solution of (1.1){(1.3) in the sense of De�-nition 1.1 with H from (1.4), where h satis�es (A1,2), (A3I) or (A1,2), (A3II).Then u is identi
ally zero, if(i) ju(x)j ! 0 uniformly as jxj ! 1, i.e. (1.5) holds, and if uk�ku is negle
ted(ii) or if jxj1=3ju(x)j ! 0 uniformly as jxj ! 1, i.e. we have (1.6).In the subsequent se
tions we will present the proof of Theorem 1.1 distin-guishing the 
ases of in
reasing and de
reasing vis
osity.However, in both 
ases we apply energy estimates originating in the papers[Fu℄ and [FuZha℄ dealing with entire solutions of equations (1.1) and (1.2).We �nally remark that our arguments immediately extend to the exterior prob-lem in Rn leading to appropriate bounds in part a) and b) of Theorem 1.1. The
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ows of 
uids 225details are left to the reader. Moreover, it should be noted that Theorem 1.1 in-
ludes the exterior problem for the stationary Navier-Stokes equations as a spe
ial
ase.2. Some te
hni
al preliminariesOur �rst tool is a slight extension (presented in [FuZha℄) of the \"-Lemma"due to Giaquinta and Modi
a (see Lemma 0.5 in [GM℄):Lemma 2.1. Let Q := QR(z) := fx 2 R2 : jxi � zij < R; i = 1; 2g denote anarbitrary square. Suppose that we are given non-negative fun
tions f , f1, . . . , flfrom the spa
e L1(Q) and exponents �1, . . . , �l > 0. Then we 
an �nd a number"0 > 0 depending on �1, . . . , �l as follows: if for " 2 (0; "0) it is possible to
al
ulate a 
onstant 
(") > 0 su
h that the inequalityZQr(y) f dx � " ZQ2r(y) f dx+ 
(") lXj=1 r��j ZQ2r(y) fj dxholds for all squares Q2r(y) b Q, then there is a 
onstant 
 > 0 (independentof Q) with the propertyZQr(y) f dx � 
 lXj=1 r��j ZQ2r(y) fj dxagain for all squares Q2r(y) b Q.In order to 
onstru
t solenoidal testfun
tions, we will make use of the followingbasi
 lemma (see, e.g. [Ga1, Chapter III, Se
tion 3℄).Lemma 2.2. Suppose that we are given numbers 1 < p1 � p � p2 < 1. Thenthere is a 
onstant 
 = 
(p1; p2) with the following property: if f 2 Lp(BR(x0)),BR(x0) := fx 2 R2 : jx� x0j < Rg, satis�es RBR(x0) f dx = 0, then there exists a�eld v in the Sobolev 
lass ÆW 1p(BR(x0)) su
h that div v = f on the disk BR(x0)together with the estimate(2.1) ZBR(x0) jrvjs dx � 
 ZBR(x0) jf js dxfor any exponent s 2 [p1; p℄. The same is true if the disk is repla
ed by a squareQR(x0) or an annulus B2R(x0) nBR(x0).For handling the shear thi
kening 
ase we need the following result stated inLemma 2.5 of [Fu℄ and being a 
onsequen
e of (1.8) and (1.9).Lemma 2.3. Let h satisfy (A1), (A2) and (A3I). Then there exists a number� 2 (1; 2℄ su
h that(2.2) h0(t) � 
�h(t)1=� + t� for all t � 0;
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hswhere 
 denotes a suitable positive 
onstant.3. Shear thinning 
aseLet h satisfy (A1), (A2), (A3II) and suppose that we have a solution u in thesense of De�nition 1.1 satisfying at least (1.5). Note that in this 
ase u is anelement of the spa
e L1(R2 ). We �x a square Q having positive distan
e to theunit disk B and 
onsider subsquares Q2r(z) b Q.Our �rst goal is to obtain an estimate (see (3.8)) for the energyRQr(z) h(j"(u)j) dx. To this purpose we let in equation (1.7) ' = �2u � v, where� 2 C10 (Q2r(z)), 0 � � � 1, � = 1 on Qr(z), jr�j � 
=r.The �eld v is de�ned a

ording to Lemma 2.2 with the 
hoi
es s = p1 = p2 = 2,f = div(�2u) (1.2)= r�2 � u and with BR(x0) repla
ed by Q2r(z). We obtainfrom (1.7)
(3.1) ZQ2r(z) �2DH ("(u)) : "(u) dx+ 2 ZQ2r(z) �H�"i� ("(u)) ��� �ui dx� ZQ2r(z)DH ("(u)) : "(v) dx+ ZQ2r(z) uk�kuiui�2 dx� ZQ2r(z) uk�kuivi dx= T1 + T2 � T3 + T4 � T5 = 0:From (1.4) and (1.8) it follows(3.2) T1 = ZQ2r(z) �2h0 (j"(u)j) "(u)j"(u)j : "(u) dx � 
 ZQ2r(z) �2h (j"(u)j) dx:By Young's inequality and again (1.8) we havejT2j � 
 ZQ2r(z) h0 (j"(u)j) �jr�jjuj dx= 
 ZQ2r(z) �h0 (j"(u)j)j"(u)j � 12 jr�jjuj��h0 (j"(u)j) j"(u)j� 12 dx� Æ ZQ2r(z) �2h (j"(u)j) dx+ 
(Æ) ZQ2r(z) h0 (j"(u)j)j"(u)j jr�j2juj2 dx:If Æ is 
hosen suÆ
iently small, we dedu
e from the above estimate in 
ombinationwith (3.1) and (3.2) and by re
alling the inequality stated after (1.12)(3.3) ZQ2r(z) �2h (j"(u)j) dx � 
"r�2 ZQ2r(z) juj2 dx+ jT3j+ jT4j+ jT5j# :
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ows of 
uids 227For any Æ > 0 it holds on a

ount of (2.1) and (1.12)jT3j � Æ ZQ2r(z) h0 (j"(u)j)2 dx+ Æ�1 ZQ2r(z) jrvj2 dx� 
"Æ ZQ2r(z) h (j"(u)j) dx+ Æ�1r�2 ZQ2r(z) juj2 dx# ;and if we repla
e 
 Æ by Æ we get from this estimate in 
ombination with (3.3)(3.4) ZQr(z) h (j"(u)j) dx� Æ ZQ2r(z) h (j"(u)j) dx+ 
"Æ�1r�2 ZQ2r(z) juj2 dx+ jT4j+ jT5j# :We further haveT4 = 12 ZQ2r(z) uk�kjuj2�2 dx (1.2)= �12 ZQ2r(z) u � r�2juj2 dx;hen
e(3.5) jT4j � 1r ZQ2r(z) juj3 dx;moreover it holds
(3.6) jT5j (1.2)= �����ZQ2r(z) ukui�kvi dx������ "ZQ2r(z) juj4 dx# 12 "ZQ2r(z) jrvj2 dx# 12(2.1)� 
 r�1 "ZQ2r(z) juj4 dx ZQ2r(z) juj2 dx# 12� 
 r�1 "ZQ2r(z) juj4 dx+ ZQ2r(z) juj2 dx# :From (3.4){(3.6) we �nally obtain(3.7) ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ 
"Æ�1r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx#
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hsbeing valid for any Æ > 0 and all squares Q2r(z) � Q. Inequality (3.7) shows thatwe 
an apply Lemma 2.1 with the result(3.8) ZQr(z) h (j"(u)j) dx� 
"r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx# ;whi
h holds for all squares Q2r(z) � Q. Let us 
onsider a square Q = QR(x0)with side length R > 1. Choosing r = R=4, z = x0 in (3.8) and re
alling theboundedness of u we get(3.9) ZQR4 (x0) h (j"(u)j) dx � 
R�1 ZQR2 (x0) juj2 dx:With (3.9) we return to the derivation of (3.7) with the 
hoi
es r = R=8, z = x0,but this time we estimate jT5j through the quantity
 r�1[RQ2r(z) juj4 dx RQ2r(z) juj2 dx℄1=2 (
ompare (3.6)) and again we make use ofthe boundedness of u, whi
h means that in (3.5) we repla
e juj3 by 
onstjuj2.This yields for any Æ > 0:ZQR8 (x0) h (j"(u)j) dx � 
24ÆR�1 ZQR2 (x0) juj2 dx+ Æ�1R�2 ZQR4 (x0) juj2 dx+R�1 24ZQR4 (x0) juj4 dx ZQR4 (x0) juj2 dx35 12375 :If we 
hoose Æ = R�1=2, this inequality implies(3.10) ZQR8 (x0) h (j"(u)j) dx � 
24R� 32 ZQR2 (x0) juj2 dx+R�1 24ZQR2 (x0) juj4 dx ZQR2 (x0) juj2 dx35 12375 :Next we �x an annulus TR := B2R(0) nBR(0) of very large radius R and 
overits 
losure with a �nite number N of squares QR8 (xi) having 
enters xi in TR.Note that N 
an be 
hosen independent of the radius R. We apply (3.10) to thesesquares and estimate juj on QR2 (xi) just through �(R=4) being de�ned in (1.5).
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ows of 
uids 229After summation with respe
t to i we dedu
e(3.11) ZTR h (j"(u)j) dx � 
"R 12��R4 �2 +R��R4 �3# :Note that assumption (1.6) immediately implies the vanishing of RTR h(j"(u)j) dxpassing to the limit R!1.In the absen
e of the 
onve
tive term this is already true under the weakerhypothesis (1.5): under the assumption uk�ku � 0 inequality (3.8) redu
es toZQr(z) h (j"(u)j) dx � 
 r�2 ZQ2r(z) juj2 dx;and (3.11) has to be repla
ed byZTR h (j"(u)j) dx � 
��R4 �2 :In a next step we show that (1.6) implies(3.12) Zjxj>1 h (j"(u)j) dx = 0;whi
h for
es u to be a rigid motion, hen
e u = 0 on a

ount of the boundary
ondition (1.3).For proving (3.12) it just remains to verify the validity of(3.13) limR!1 Z1<jxj<R h (j"(u)j) dx = 0under the hypothesis (1.6) (or (1.5) in 
ase uk�ku = 0).To this purpose we �x a radius R� 1 and 
hoose' := (u if 1 � jxj � R;�2u� v if R � jxj � 2Ras testfun
tion in equation (1.7) with � = 1 on 1 � jxj � R, 0 � � � 1 in1 � jxj � 2R, � = 0 outside of jxj � 2R and jr�j � 
=R.The �eld v is de�ned a

ording to Lemma 2.2 with the 
hoi
es s = p1 = p2 = 2,f = div(�2u) and for the domain TR, i.e. v 2 ÆW 12(TR), div v = f on TR and vsatis�es (2.1). Note (re
all (1.3)) that ' vanishes on jxj = 1, moreover we have(3.14) ZTR f dx = 0;
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hswhi
h justi�es the appli
ation of Lemma 2.2: in fa
t, by the 
hoi
e of � it holdsZTR f dx = Z�TR �2uNTRdH1 = � Z�BR u � N�BRdH1(1.3)= � Z�(BRnB) u � N�(BRnB)dH1= � ZBRnB div u dx = 0and (3.14) follows. Here N denotes the exterior normal of the domains under
onsideration and H1 denotes the one-dimensional Hausdor� measure.Equation (1.7) then yields0 = Z1<jxj<RDH ("(u)) : "(u) dx+ ZTR DH ("(u)) : "(�2u) dx� ZTR DH ("(u)) : "(v) dx + Z1<jxj<2R uk�kui'i dxor equivalently(3.15) Z1<jxj<2R �2DH("(u)) : "(u) dx= � ZTR DH ("(u)) : �r�2 
 u� dx+ ZTR DH ("(u)) : "(v) dx� Z1<jxj<2R uk�kui'i dx:We have����ZTR DH ("(u)) : �r�2 
 u� dx���� � ZTR h0 (j"(u)j) jr�jjuj dx� 
 �ZTR h0 (j"(u)j)2 dx+R�2 ZTR juj2 dx�(1.12)� 
 �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx�as well as����ZTR DH ("(u)) : "(v) dx���� � ZTR h0 (j"(u)j) j"(v)j dx� 
 �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx� ;
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uids 231where we used Young's inequality and the de�nition of v. Returning to (3.15) we�nd (re
all (1.8))(3.16) Z1<jxj<R h (j"(u)j) dx � 
 �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx+ jSj� ;S := Z1<jxj<2R uk�kui'i dx:With (3.11) we immediately see that (3.16) implies our 
laim (3.13), i.e. �nishesthe proof in the presen
e of the 
onve
tive term, as soon as we 
an show that(3.17) limR!1S = 0:It holds(3.18) S = � Z1<jxj<2R ukui�k'i dx= � Z1<jxj<2R ukui�k(�2ui) dx + ZTR ukui�kvi dx=: �T1 + T2;and for T2 we havejT2j � ZTR juj2jrvj dx� �ZTR juj4 dx� 12 �ZTR jrvj2 dx� 12� 
R�1 �ZTR juj4 dx� 12 �ZTR juj2 dx� 12 � 
R�(R)3;thus by (1.6)(3.19) limR!1 T2 = 0:For T1 we observe the identity (re
alling (1.3))T1 = Z1<jxj<2R �k(ukui�2ui) dx� Z1<jxj<2R �k(ukui)�2ui dx= � Z1<jxj<2R �k(ukui)�2ui dx = �12 Z1<jxj<2R uk�kjuj2�2 dx= 12 Z1<jxj<2R ukjuj2�k�2 dx;
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hsand this immediately shows(3.20) limR!1 T1 = 0:With (3.19) and (3.20) we obtain (3.17), and as outlined before this 
ompletesthe proof of Theorem 1.1 in the shear thinning 
ase. �4. Shear thi
kening 
aseWith h satisfying (A1), (A2) and (A3I) we 
onsider a solution u of the exteriorproblem (1.1){(1.3) as explained in De�nition 1.1. We further assume the validityof (1.6) (or of (1.5) in the 
ase that uk�ku = 0). The 
al
ulations follow the sameideas as in the previous se
tion, for the ne
essary adjustments we bene�t from[Fu, Se
tion 4℄.Let p := ���1 � 2 with exponent � being de�ned in Lemma 2.3. For l 2 NsuÆ
iently large we let ' := �2lu�v with � as introdu
ed in front of equation (3.1),but now we 
hoose v 2 ÆW 1p(Q2r(z)) su
h that div v = div(�2lu)(= r�2l � u) onQ2r(z) together with(4.1) krvkLp(Q2r(z)) � 
kr�2l � ukLp(Q2r(z)) andkrvkL2(Q2r(z)) � 
kr�2l � ukL2(Q2r(z)):Repla
ing �2 by �2l in (3.1) we obtain for the terms Ti, i = 1; : : : ; 5
(4.2) T1 � 
 ZQ2r(z) �2lh (j"(u)j) dx;jT2j � 
 ZQ2r(z) h0 (j"(u)j) �2l�1jr�jjuj dx(2.2)� 
 ZQ2r(z) �2l�1jr�jjuj hh (j"(u)j) 1� + j"(u)ji dx� Æ ZQ2r(z) �(2l�1)�h (j"(u)j) dx+ 
(Æ) ZQ2r(z) jr�jpjujp dx+ Æ ZQ2r(z) �(2l�1)2j"(u)j2 dx+ 
(Æ) ZQ2r(z) jr�j2juj2 dx;where we have used Young's inequality with arbitrary Æ > 0. Observing (1.10)and sele
ting l so large that (2l � 1)� � 2l, we see that after suitable 
hoi
e of Æ
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ows of 
uids 233it follows from (4.2)(4.3) ZQ2r(z) �2lh (j"(u)j) dx � 
"r�p ZQ2r(z) jujp dx+r�2 ZQ2r(z) juj2 dx+ jT3j+ jT4j+ jT5j# :From (2.2) and Young's inequality we getjT3j � 
 ZQ2r(z) h0 (j"(u)j) j"(v)j dx� 
 ZQ2r(z) hh(j"(u)j) 1� + j"(u)ji j"(v)j dx� Æ ZQ2r(z) h (j"(u)j) dx+ 
Æ1�p ZQ2r(z) j"(v)jp dx+Æ ZQ2r(z) j"(u)j2 dx+ 
Æ�1 ZQ2r(z) j"(v)j2 dx;and if we use (4.1) and (1.10) we have shown(4.4) jT3j � Æ ZQ2r(z) h (j"(u)j) dx+ 
"Æ1�pr�p ZQ2r(z) jujp dx+ Æ�1r�2 ZQ2r(z) juj2 dx# :Returning to (4.3) and using (4.4) we obtain in pla
e of (3.4)ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ 
"Æ1�pr�p ZQ2r(z) jujp dx+Æ�1r�2 ZQ2r(z) juj2 dx+ jT4j+ jT5j#;and sin
e the estimates for T4 and T5 remain un
hanged we dedu
e in pla
e of (3.7)
(4.5) ZQr(z) h (j"(u)j) dx � Æ ZQ2r(z) h (j"(u)j) dx+ 
"Æ1�pr�p ZQ2r(z) jujp dx+ Æ�1r�2 ZQ2r(z) juj2 dx+ r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx#:
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hsInequality (4.5) enables us to use Lemma 2.1, hen
e(4.6) ZQr(z) h (j"(u)j) dx � 
"r�p ZQ2r(z) jujp dx + r�2 ZQ2r(z) juj2 dx+r�1 ZQ2r(z) �juj2 + juj3 + juj4� dx# :With the notation introdu
ed after (3.8) we see that (4.6) implies in a �rst stepthe inequality (3.9), that is we obtain(4.7) ZQR4 (x0) h (j"(u)j) dx � 
R�1 ZQR2 (x0) juj2 dx:With the help of (4.7) we then pro
eed exa
tly as done after (3.9) and get (forany Æ > 0)ZQR8 (x0) h (j"(u)j) dx � 
24ÆR�1 ZQR2 (x0) juj2 dx+ Æ1�pR�p ZQR4 (x0) jujp dx+Æ�1R�2 ZQR4 (x0) juj2 dx+R�1 24ZQR4 (x0) juj4 dx ZQR4 (x0) juj2 dx35 12375 :Let Æ = R�1=2. The above inequality implies (3.10) with the additional termR� 12� p2 ZQR2 (x0) jujp dxon the right-hand side. Therefore we get in pla
e of (3.11)ZTR h (j"(u)j) dx � 
"R 12��R4 �2 + R��R4 �3 +R 32� p2��R4 �p# ;but on a

ount of p � 2 and the vanishing of � it 
learly holdsR 12��R4 �2 � 
R 32� p2��R4 �p ;and as in Se
tion 3 we obtainlimR!1 ZTR h (j"(u)j) dx = 0
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ows of 
uids 235under the assumption (1.6) (or (1.5) for slow 
ows).It remains to verify (3.13). We use the same testfun
tion ' as introdu
ed after(3.13) observing that v satis�es(4.8) krvkLs(TR) � 
kr�2 � ukLs(TR)for s = 2 and s = p.Passing to (3.15) the �rst two terms on the right-hand side are now estimatedas follows:����ZTR DH ("(u)) : �r�2 
 u� dx���� (2.2)� 
 ZTR �h 1� (j"(u)j) + j"(u)j� jr�jjuj dx� 
 �ZTR h (j"(u)j) dx+R�p ZTR jujp dx+ ZTR j"(u)j2 dx+R�2 ZTR juj2 dx�(1.10)� 
 �ZTR h (j"(u)j) dx+R�2 ZTR juj2 dx�on a

ount of p � 2 and the boundedness of u. With (4.8) the same bound isseen to be true for RTR DH("(u)) : "(v) dx, hen
e we get (3.16) with S beingde�ned there. Clearly (3.17) remains valid, thus we get (3.13), and the proof ofTheorem 1.1 is 
omplete. �A
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