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The free ommutative automorphi2-generated loop of nilpoteny lass 3Dylene Agda Souza de Barros,Alexander Grishkov, Petr Vojt�ehovsk�yAbstrat. A loop is automorphi if all its inner mappings are automorphisms.We onstrut the free ommutative automorphi 2-generated loop of nilpotenylass 3. It has dimension 8 over the integers.Keywords: free ommutative automorphi loop, automorphi loop, assoiatoralulusClassi�ation: 20N051. IntrodutionA loop is a nonempty set Q with a binary operation � suh that for every a 2 Qthe left and right translations La, Ra : Q ! Q, bLa = a � b, bRa = b � a arebijetions of Q, and there is an identity element 1 2 Q satisfying 1 � a = a � 1 = afor all a 2 Q. We will also write the multipliation � as juxtaposition, and wewill use � to indiate the priority of multipliations. For instane, a(b � d) meansa � ((b � ) � d).The multipliation group of Q is the permutation group Mlt(Q) = hLa; Ra; a 2Qi generated by all left and right translations. The stabilizer of 1 in Mlt(Q)is the inner mapping group Inn(Q). It is well known, f. [3℄, that Inn(Q) =hLa;b; Ra;b; Ta; a; b 2 Qi, where La;b = LaLbL�1ba , Ra;b = RaRbR�1ab , Ta =RaL�1a .A loop Q is automorphi if Inn(Q) � Aut(Q), that is, if every inner mappingof Q is an automorphism of Q. Note that groups are automorphi loops.Automorphi loops were �rst studied in [4℄, where it was proved, among otherresults, that automorphi loops form a variety and are power-assoiative, thatis, every element generates a group. It was shown in [9℄ that automorphiloops have the antiautomorphi inverse property (ab)�1 = b�1a�1. In parti-ular, ommutative automorphi loops have the automorphi inverse property , orDylene Agda Souza de Barros supported by FAPESP - proess number 2010/16112-4.Alexander Grishkov supported by FAPESP and CNPq (Brazil). The researh stay of Dy-lene Agda Souza de Barros and Alexander Grishkov at the University of Denver was partiallysupported by the Simons Foundation Collaboration Grant 210176 to Petr Vojt�ehovsk�y.



322 D. Barros, A. Grishkov, P. Vojt�ehovsk�yAIP , (ab)�1 = a�1b�1. For an introdution to the strutural theory and the his-tory of automorphi loops, see [11℄. For an introdution to the strutural theoryof ommutative automorphi loops, see [6℄, [7℄.This paper is onerned with free objets in the variety of ommutative auto-morphi loops, in partiular with the free ommutative automorphi 2-generatedloop of nilpoteny lass 3.The enter of a loop Q is the assoiative subloop Z(Q) = fa 2 Q; a' = a forevery ' 2 Inn(Q)g. Thus Z(Q) onsists of all elements a 2 Q that ommute andassoiate with all other elements of Q. De�ne Z0(Q) = 1, Z1(Q) = Z(Q), and fori � 1 let Zi+1(Q) be the preimage of Z(Q=Zi(Q)) under the anonial projetionQ! Q=Zi(Q). Then a loop Q is nilpotent of lass n if Zn�1(Q) 6= Q = Zn(Q).It was shown independently in [5℄ and [8℄ that for an odd prime p every om-mutative automorphi loop of order pk is nilpotent. By [8℄, a ommutative auto-morphi loop of order p2 is a ommutative group, but there exist nonassoiativeommutative automorphi loops of order p3|these were onstruted in [7℄ andlassi�ed up to isomorphism in [2℄.One of the main tools used in the lassi�ation [2℄ was the desription of the freeommutative automorphi 2-generated loop of nilpoteny lass 2. This paper antherefore be seen as a natural ontinuation of the program begun in [2℄. A relatedprojet is [10℄, where heavy assoiator alulus was used to determine the basesand orders of free ommutative Moufang loops with up to seven generators.For n � 2, let Fn(x; y) be the free ommutative automorphi loop of nilpotenylass n on free generators x, y.For elements a, b,  of a loop Q denote by (a; b; ) the assoiator of a, b, , thatis, the unique element satisfying the equation ab �  = (a � b)(a; b; ).We obtained the following desription of F2(x; y) in [2℄:Theorem 1.1 ([2, Theorem 2.3℄). Let F2(x; y) be the free ommutative automor-phi loop of nilpoteny lass 2with free generators x, y, and let u1 = (x; x; y), u2 =(x; y; y). Then every element of F2(x; y) an be written uniquely as xa1ya2ua31 ua42for some a1; a2; a3; a4 2 Z, and the multipliation in F2(x; y) is given by(xa1ya2ua31 ua42 )(xb1yb2ub31 ub42 ) = xa1+b1ya2+b2ua3+b3�a1b1(a2+b2)1 ua4+b4+a2b2(a1+b1)2 :As we are going to see, to desribe F3(x; y) is onsiderably more diÆult.Let us all an assoiator ompounded if it is of the form (a; b; ) where at leastone of a, b,  is again an assoiator (u; v; w). It is easy to see, f. Proposition 2.1,that a ommutative loop is of nilpoteny lass at most 3 if and only if all om-pounded assoiators are entral.Ultimately we prove in Theorem 5.4 that every element of F3(x; y) is of theanonial form (xa1ya2 � ua31 ua42 )va51 va62 va73 va84 ;



Free ommutative automorphi loop 323where u1 = (x; x; y); u2 = (x; y; y); v1 = (x; x; u1);v2 = (x; x; u2); v3 = (y; y; u1); v4 = (y; y; u2);and where the multipliation formula is as in Lemma 5.3. (The anonial forman be parsed unequivoally beause the ompounded assoiators v1, v2, v3, v4are entral.) This is aomplished in a series of steps:In Setion 2 we study symmetries and linear properties of the assoiator map( ; ; ) in ommutative automorphi loops of nilpoteny lass 3. We onlude thatin F3(x; y) it suÆes to look at ompounded assoiators of the form (a; b; (; d; e))where eah a, b, , d, e is either x or y. In Setion 3 we study powers withinassoiators and derive a formula for (ai; bj ; k). In Setion 4 we disover sev-eral nontrivial relations among ompounded assoiators of F3(x; y), reduing allompounded assoiators to just v1, v2, v3, v4.The multipliation formula for F3(x; y) is derived in Lemma 5.3. A ritial stepin proving the main result, Theorem 5.4, onsists of showing that the multiplia-tion formula of Lemma 5.3 atually yields an automorphi loop. This follows bystraightforward alulation (one merely needs to verify that the generators La;b ofthe inner mapping group are automorphisms), but the alulation is extremely te-dious and error-prone and we have therefore deided to delegate it to a omputer.The Mathematia [12℄ ode that aomplishes the alulation an be downloadedfrom the website of the third-named author, www.math.du.edu/~petr. One weknow that the formula of Lemma 5.3 yields an automorphi loop Q, it is easy toshow that F3(x; y) is free and isomorphi to Q.Reall that the assoiator subloop A(Q) of Q is the least normal subloop of Qontaining all assoiators (so Q=A(Q) is a group). The left nuleus N�(Q), middlenuleus N�(Q) and right nuleus N�(Q) onsist of all elements a 2 Q suh that(a; b; ) = 1, (b; a; ) = 1, (b; ; a) = 1 for every b,  2 Q, respetively. Then thenuleus N(Q) is de�ned by N(Q) = N�(Q) \N�(Q) \N�(Q). We onlude thepaper by alulating the assoiator subloop, nulei and the enter of Q = F3(x; y).Remark 1.2. In the beginning of this paper the proofs we o�er give all the details,but later on we gradually rely more and more on the reader to provide intermediatesteps in alulations. All suh steps an be obtained in a straightforward fashion,albeit sometimes with onsiderable time ommitment. More details will be foundin the dissertation [1℄ of the �rst-named author.2. Symmetry and linearity in assoiatorsReall that the assoiator in any loop Q is well-de�ned modulo Z(Q), thatis, (a; b; ) = (az1; bz2; z3) for any a, b,  2 Q and z1; z2; z3 2 Z(Q). In anyommutative loop the identity(2.1) (a; b; a) = 1



324 D. Barros, A. Grishkov, P. Vojt�ehovsk�yholds beause ab �a = a �ab = a �ba. It is well known that in any ommutative loopof nilpoteny lass 2 we have (a; b; ) = (; b; a)�1, (a; b; )(b; ; a)(; a; b) = 1. Wewill use all these observations and the following well-known proposition withoutreferene.Proposition 2.1. Let Q be a ommutative loop.(i) Q has nilpoteny lass at most 2 if and only if all assoiators are entral.(ii) Q has nilpoteny lass at most 3 if and only if all ompounded assoiators((a; b; ); d; e), (a; (b; ; d); e), (a; b; (; d; e)) are entral.Proof: Suppose that Q has nilpoteny lass at most 2. Then Q=Z(Q) is anabelian group. Sine A(Q) is the least normal subloop S suh that Q=S is anabelian group, it follows that A(Q) � Z(Q). The onverse is proved by reversingthe argument.Let us write a for aZ(Q) 2 Q=Z(Q). Suppose that Q has nilpoteny lassat most 3. Then Q=Z(Q) has nilpoteny lass at most 2 and thus (a; b; ) 2Z(Q=Z(Q)) for every a; b;  2 Q by (i). This is equivalent to ((a; b; ); d; e) =(d; (a; b; ); e) = (d; e; (a; b; )) = 1Q=Z(Q) and thus to ((a; b; ); d; e), (d; (a; b; ); e),(d; e; (a; b; )) 2 Z(Q). The onverse is again proved by reversing the argument.�We proeed to show that in a ommutative automorphi loop of nilpotenylass 2 the assoiator is linear in all oordinates.Lemma 2.2. Let Q be a loop and let a; b;  2 Q be suh that (a; b; ) 2 Z(Q).Then Lb;a = (a; b; )�1, aRb; = a(a; b; ), and bLaRL�1a R�1 = b(a; b; ).Proof: Sine (a; b; ) is entral, we have ab�(a; b; )�1 = (ab�)(a; b; )�1 = a�b,or LbLa = ((a; b; )�1)Lab, or Lb;a = (a; b; )�1. Also, ab �  = a(a; b; ) � b, oraRbR = (a(a; b; ))Rb, or aRb; = a(a; b; ). Finally, ab �  = a � (b(a; b; )) yieldsthe last equality. �Proposition 2.3. Let Q be an automorphi loop of nilpoteny lass 2. Then(ab; ; d) = (a; ; d)(b; ; d), (a; b; d) = (a; b; d)(a; ; d), (a; b; d) = (a; b; )(a; b; d)for every a; b; ; d 2 Q.Proof: Sine Q is automorphi, the inner mapping R;d is an automorphism.By Lemma 2.2, ab(ab; ; d) = (ab)R;d = aR;d � bR;d = a(a; ; d) � b(b; ; d) =ab(a; ; d)(b; ; d) and (ab; ; d) = (a; ; d)(b; ; d) follows. Consequently, (a; b; d) =(d; b; a)�1 = ((; b; a)(d; b; a))�1 = (; b; a)�1(d; b; a)�1 = (a; b; )(a; b; d). Finally,1LaRdL�1a R�1d = 1 shows that LaRdL�1a R�1d is also an inner mapping, so Lemma2.2 implies b(a; b; d) = (b)LaRdL�1a R�1d = bLaRdL�1a R�1d � LaRdL�1a R�1d =b(a; b; d) � (a; ; d) = b(a; b; d)(a; ; d), and we are done upon aneling b. �Here is a loal version of Proposition 2.3:Lemma 2.4. Let Q be an automorphi loop of nilpoteny lass 3, and leta; b; ; d 2 Q.



Free ommutative automorphi loop 325(i) If (a; ; d), (b; ; d) 2 Z(Q) then (ab; ; d) = (a; ; d)(b; ; d).(ii) If (a; b; d), (a; ; d) 2 Z(Q) then (a; b; d) = (a; b; d)(a; ; d).(iii) If (a; b; ), (a; b; d) 2 Z(Q) then (a; b; d) = (a; b; )(a; b; d).Proof: Let us prove (ii). Sine Q=Z(Q) is automorphi of nilpoteny lass 2,Proposition 2.3 implies (a; b; d) = (a; b; d)(a; ; d)z for some z 2 Z(Q). Thismeans that (a; b; d) is entral, too. Then the alulation at the end of the proofof Proposition 2.3 is still valid (sine all assoiators involved in the alulation areentral). The proofs for (i) and (iii) are similar. �Lemma 2.5. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then ((a; b; ); d; e)�1 = (e; d; (a; b; ));(2.2) (a; (b; ; d); e) = (a; e; (b; ; d))((b; ; d); a; e):(2.3)for every a; b; ; d; e 2 Q.Proof: Note that z = ((a; b; ); d; e) 2 Z(Q) beause Q has nilpoteny lass3. The identity (a; b; )d � e = ((a; b; ) � de)z hene yields ((a; b; )d � e)z�1 =(a; b; ) � de, and we get ((a; b; )d � e)z�1 = (a; b; ) � de = ed � (a; b; ) = (e �d(a; b; ))(e; d; (a; b; )) = ((a; b; )d � e)(e; d; (a; b; )), whih implies (2.2). We al-ulate(ae � (b; ; d))(a; e; (b; ; d))�1 = a � e(b; ; d) = a � (b; ; d)e= (a(b; ; d) � e)(a; (b; ; d); e)�1 = ((b; ; d) � ae)((b; ; d); a; e)(a; (b; ; d); e)�1= (ae � (b; ; d))((b; ; d); a; e)(a; (b; ; d); e)�1;whih implies (a; e; (b; ; d))�1 = ((b; ; d); a; e)(a; (b; ; d); e)�1, or (2.3). �Lemma 2.6. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then(2.4) (a; (b; ; d); (e; f; g)) = ((a; b; ); d; (e; f; g)) = ((a; b; ); (d; e; f); g) = 1for every a; b; ; d; e; f; g 2 Q.Proof: SineQ=Z(Q) is of nilpoteny lass 2, we have (ef �g)(e�fg)�1 = (e; f; g)zfor some z 2 Z(Q). Then(a; (b; ; d); (e; f; g)) = (a; (b; ; d); (ef � g)(e � fg)�1):The automorphi inverse property and Lemma 2.4 yield (a; (b; ; d); (e; f; g)) =1. The identity ((a; b; ); (d; e; f); g) = 1 follows by (2.2). The argument for((a; b; ); d; (e; f; g)) = 1 is similar. �



326 D. Barros, A. Grishkov, P. Vojt�ehovsk�yLemma 2.7. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then (a; b; ) = (; b; a)�1;(2.5) (a; b; ) = (a; ; b)(b; a; )(2.6)for every a; b;  2 Q.Proof: We have ab � = (a �b)(a; b; ) = (b �a)(a; b; ) = ( �ba)(; b; a) �(a; b; ) =(ab �)(; b; a) �(a; b; ), and the last term an be rewritten as (ab �) �(; b; a)(a; b; )by (2.4), so (2.5) follows. Similarly, ab� = (a�b)(a; b; ) = (b�a)(b; ; a)�(a; b; ) =(( �ab)(; a; b) �(b; ; a))(a; b; ), the last term equals (ab �)((; a; b)(b; ; a) �(a; b; ))by (2.4) and Lemma 2.4, so we have (; a; b)(b; ; a) � (a; b; ) = 1. By Lemma 2.6,the AIP and (2.5), we get (a; b; ) = ((; a; b)(b; ; a))�1 = (; a; b)�1(b; ; a)�1 =(b; a; )(a; ; b), whih is (2.6). �Note that in any ommutative loop of nilpoteny lass 3 we have(2.7) aLb; = a(a; b; )(b; a; (a; b; ));beauseaLb; = ( � ba)L�1b = (ab � )L�1b = ((a � b)(a; b; ))L�1b = ((b � a)(a; b; ))L�1b= (b � a(a; b; )(b; a; (a; b; )))L�1b = a(a; b; )(b; a; (a; b; )):Proposition 2.8. Let Q be a ommutative automorphi loop of nilpotenylass 3. Then(ab; ; d) = (a; ; d)(b; ; d)((a; ; d); a; b)((b; ; d); b; a)� ((a; ; d); b; )((b; ; d); a; )((a; ; d); b; d)((b; ; d); a; d);(a; b; d) = (a; b; )(a; b; d)((a; b; ); ; d)((a; b; d); d; )� ((a; b; ); d; b)((a; b; d); ; b)((a; b; ); d; a)((a; b; d); ; a);(a; b; d) = (a; b; d)(a; ; d)((a; b; d); b; )((a; ; d); ; b)� ((a; b; d); ; a)((a; ; d); b; a)((a; b; d); ; d)((a; ; d); b; d):Proof: By (2.7), the identity (ab)L;d = aL;d � bL;d an be rewritten asab � (ab; ; d)(d; ab; (ab; ; d)) = a(a; ; d)(d; a; (a; ; d)) � b(b; ; d)(d; b; (b; ; d))= (a(a; ; d) � b(b; ; d))(d; a; (a; ; d))(d; b; (b; ; d)):By Lemma 2.4 and (2.4), (2.5), we havea(a; ; d) � b(b; ; d) = (a(a; ; d) � b)(b; ; d)(a(a; ; d); b; (b; ; d))�1= (a(a; ; d) � b)(b; ; d)(a; b; (b; ; d))�1((a; ; d); b; (b; ; d))�1= (a(a; ; d) � b)(b; ; d)((b; ; d); b; a)



Free ommutative automorphi loop 327= (ba � (a; ; d))(b; ; d)(b; a; (a; ; d))�1((b; ; d); b; a)= (ba � (a; ; d))(b; ; d)((a; ; d); a; b)((b; ; d); b; a):Sine (ab; ; d) = (a; ; d)(b; ; d)z for some z 2 Z(Q), Lemma 2.4 yields(d; ab; (ab; ; d)) = (d; ab; (a; ; d)(b; ; d)) = (d; ab; (a; ; d))(d; ab; (b; ; d))= (d; a; (a; ; d))(d; b; (a; ; d))(d; a; (b; ; d))(d; b; (b; ; d)):Upon substituting and aneling ab and like assoiators, the identity (ab)L;d =aL;d � bL;d therefore beomes(ab; ; d)(d; b; (a; ; d))(d; a; (b; ; d)) = (a; ; d)(b; ; d)((a; ; d); a; b)((b; ; d); b; a):The formula for (ab; ; d) now follows by Lemma 2.4 and (2.5).Note that Lemma 2.4 and (2.5) imply ((a; b; ); d; e)�1 = ((a; b; )�1; d; e) =((; b; a); d; e). This observation and (2.5) applied to the formula for (ab; ; d)yield the formula for (a; b; d).Using (2.6), we alulate(a; b; d) = (a; d; b)(b; a; d) = (a; d; b)(a; d; ) � (b; a; d)(; a; d)� ((a; d; b); b; )((a; d; ); ; b)((a; d; b); ; d)((a; d; ); b; d)((a; d; b); ; a)((a; d; ); b; a)� ((b; a; d); b; )((; a; d); ; b)((b; a; d); ; a)((; a; d); b; a)((b; a; d); ; d)((; a; d); b; d):The �rst four assoiators assoiate by (2.4), so (a; d; b)(a; d; ) � (b; a; d)(; a; d) =(a; d; b)(b; a; d) � (a; d; )(; a; d) = (a; b; d)(a; ; d). We an similarly pair the om-pounded assoiators, using Lemma 2.4. For instane, ((a; d; b); b; )((b; a; d); b; ) =((a; d; b)(b; a; d); b; ) = ((a; b; d); b; ). The formula for (a; b; d) follows. �We an now deal with produts in all arguments of a ompounded assoia-tor. For produts of the form (ab; ; (d; e; f)) we an use Lemma 2.4 (or Proposi-tion 2.8), and for produts (a; b; (d; e; f)) we note that (d; e; f)= (; e; f)(d; e; f)zfor some entral element z (the expliit form of z follows from Proposition 2.8)and alulate (a; b; (; e; f)(d; e; f)) = (a; b; (; e; f))(a; b; (d; e; f)) by Lemma 2.4.From now on, we will use these and similar identities, often without expliit refe-rene.3. Powers within assoiatorsUsing Proposition 2.8, we proeed to derive formulae for powers within assoi-ators. De�ne � : Z! Z, � : Z! Z by(3.1) �(n) = (n3 � n)=3; �(n) = n2 � n:Note that �(0) = �(0) = 0, �(n + 1) = �(n) + n2 + n, �(n + 1) = �(n) + 2n,��(�n) = �(n) and 2n2 � �(�n) = �(n) for every n 2 Z.



328 D. Barros, A. Grishkov, P. Vojt�ehovsk�yLemma 3.1. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then (an; b; ) = (a; b; )n((a; b; ); a; a)�(n)((a; b; ); a; b)�(n)((a; b; ); a; )�(n);(3.2) (a; bn; ) = (a; b; )n((a; b; ); b; b)�(n)((a; b; ); b; a)�(n)((a; b; ); b; )�(n);(3.3) (a; b; n) = (a; b; )n((a; b; ); ; )�(n)((a; b; ); ; a)�(n)((a; b; ); ; b)�(n)(3.4)for every a; b;  2 Q and every n 2 Z.Proof: We prove (3.2); the equations (3.3), (3.4) are proven analogously. Ifn = 0, (3.2) holds. Suppose that (3.2) holds for some n � 0. Note that((ai; b; ); aj ; d) = ((a; b; )i; aj ; d) = ((a; b; ); a; d)ij for every i, j � 0, by Lem-ma 2.4, using our usual trik (ai; b; ) = (a; b; )iz for some z 2 Z(Q). By Propo-sition 2.8 we then have(an+1; b; ) = (aan; b; )= (a; b; )(an; b; )((a; b; ); a; an)((an; b; ); an; a)� ((a; b; ); an; b)((an; b; ); a; b)((a; b; ); an; )((an; b; ); a; )= (a; b; )(an; b; )((a; b; ); a; a)n2+n((a; b; ); a; b)2n((a; b; ); a; )2n= (a; b; )n+1((a; b; ); a; a)�(n)+n2+n((a; b; ); a; b)�(n)+2n((a; b; ); a; )�(n)+2n= (a; b; )n+1((a; b; ); a; a)�(n+1)((a; b; ); a; b)�(n+1)((a; b; ); a; )�(n+1):As for negative powers, �rst note that Proposition 2.8 gives1 = (1; b; ) = (aa�1; b; ) = (a; b; )(a�1; b; )((a; b; ); a; a�1)((a�1; b; ); a�1; a)� ((a; b; ); a�1; b)((a�1; b; ); a; b)((a; b; ); a�1; )((a�1; b; ); a; )= (a; b; )(a�1; b; )((a; b; ); a; b)�2((a; b; ); a; )�2:Sine assoiators assoiate with one another by (2.4), we dedue(a�1; b; ) = (a; b; )�1((a; b; ); a; b)2((a; b; ); a; )2:Then for every n > 0 we have(a�n; b; ) = ((an)�1; b; ) = (an; b; )�1((an; b; ); an; b)2((an; b; ); an; )2= (a; b; )�n((a; b; ); a; a)��(n)((a; b; ); a; b)2n2��(n)((a; b; ); a; )2n2��(n)= (a; b; )�n((a; b; ); a; a)�(�n)((a; b; ); a; b)�(�n)((a; b; ); a; )�(�n);�nishing the proof of (3.2). �Lemma 3.2. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then(ai; bj ; k) =(a; b; )ijk((a; b; ); a; a)�(i)jk((a; b; ); a; b)�(i)j2k((a; b; ); a; )�(i)jk2



Free ommutative automorphi loop 329� ((a; b; ); b; a)i�(j)k((a; b; ); b; b)i�(j)k((a; b; ); b; )i�(j)k2� ((a; b; ); ; a)ij�(k)((a; b; ); ; b)ij�(k)((a; b; ); ; )ij�(k)for every a; b;  2 Q and i; j; k 2 Z.Proof: By Lemmas 2.4, 3.1 and Proposition 2.8, (ai; bj ; k) is equal to(a; bj ; k)i((a; bj ; k); a; a)�(i)((a; bj ; k); a; bj)�(i)((a; bj ; k)a; k)�(i)= (a; bj ; k)i((a; b; ); a; a)�(i)jk((a; b; ); a; b)�(i)j2k((a; b; ); a; )�(i)jk2 ;the term (a; bj ; k)i is equal to[(a; b; k)j((a; b; k); b; b)�(j)((a; b; k); b; a)�(j)((a; b; k); b; k)�(j)℄i= (a; b; k)ij((a; b; ); b; b)i�(j)k((a; b; ); b; a)i�(j)k((a; b; ); b; )i�(j)k2 ;and the term (a; b; k)ij is equal to[(a; b; )k((a; b; ); ; )�(k)((a; b; ); ; a)�(k)((a; b; ); ; b)�(k)℄ij= (a; b; )ijk((a; b; ); ; )ij�(k)((a; b; ); ; a)ij�(k)((a; b; ); ; b)ij�(k):�4. RedutionSine we ultimately want to desribe the free loop F3(x; y), we will from now onstart fousing on formulae that involve only two variables x, y. For �xed elementsx, y (not neessarily the generators of F3(x; y)), letu1 = (x; x; y); u2 = (x; y; y);z1 = (x; x; u1); z2 = (x; x; u2); z3 = (x; y; u1); z4 = (x; y; u2);z5 = (y; x; u1); z6 = (y; x; u2); z7 = (y; y; u1); z8 = (y; y; u2):No additional assoiators will be needed sine (x; y; x) = (y; x; y) = 1 by (2.1),ompounded assoiators of the form (( ; ; ); ; ) and ( ; ( ; ; ); ) an be rewrittenas produts of ompounded assoiators of the form ( ; ; ( ; ; )) by (2.2) and (2.3),ompounded assoiators with assoiators in two omponents vanish by (2.4), andproduts within assoiators an be handled by Proposition 2.8.The reader might have notied that in our produt formulas (suh as in Propo-sition 2.8) we aumulate assoiators on the left, but we hose the anonialompounded assoiators with aumulated assoiators on the right. It is easy toonvert between these two formats, sine(a; b; (; d; e)) = ((; d; e); b; a)�1 = ((e; d; )�1; b; a)�1 = ((e; d; ); b; a);



330 D. Barros, A. Grishkov, P. Vojt�ehovsk�yby (2.5) and Lemma 2.4. Also note that(a; b; (; d; e)) = (a; b; (e; d; )�1) = (a; b; (e; d; ))�1thanks to (2.5) and Lemma 2.4.Lemma 4.1. Let Q be a ommutative automorphi loop of nilpoteny lass 3.Then for every x; y 2 Q we have z2 = z3 = z5 and z4 = z6 = z7.Proof: Fousing �rst on the produt in the third oordinate, we alulate, start-ing with (2.1):1 = (xy; x; xy) = (xy; x; x)(xy; x; y)((xy; x; x); x; y)((xy; x; y); y; x)� ((xy; x; x); y; x)((xy; x; y); x; x)((xy; x; x); y; xy)((xy; x; y); x; xy)= (xy; x; x)(xy; x; y)z5z�13 z3z�11 z3z7z�11 z�15 = (xy; x; x)(xy; x; y)z�21 z3z7= (y; x; x)((y; x; x); y; x)((y; x; x); x; x)((y; x; x); x; x)� (x; x; y)((x; x; y); x; y)((x; x; y); y; x)((x; x; y); y; y)z�21 z3z7= (y; x; x)(x; x; y)z3z1z1z�15 z�13 z�17 z�21 z3z7 = 1 � z3z�15 :Hene z3 = z5, or (x; y; (x; x; y)) = (y; x; (x; x; y)). Interhanging x and y in thisidentity yields (y; x; (y; y; x)) = (x; y; (y; y; x)), whih is equivalent to z6 = z4.In the following alulation we will also use (2.7) and Lemma 3.1. As Q isautomorphi, yLx;x � (xy)Lx;x = (y �xy)Lx;x. On the left hand side of this identitywe have yLx;x = y(y; x; x)(x2; y; (y; x; x)) = y(y; x; x)z�23and(xy)Lx;x = (xy)(xy; x; x)(x2 ; xy; (xy; x; x)) = (xy)(xy; x; x)(x2 ; xy; (y; x; x))= (xy)(y; x; x)((y; x; x); y; x)((y; x; x); x; x)2z�21 z�23= (xy)(y; x; x)z3z21z�21 z�23 = (xy)(y; x; x)z�13 ;while on the right hand side we have(y � xy)Lx;x = (y � xy)(y � xy; x; x)(x2; y � xy; (y � xy; x; x))= (y � xy)(y2x � (y; y; x)�1; x; x)(x2; y2x; (y2; x; x))= (y � xy) � (y2x; x; x)((x; y; y); x; x)z�83 z�41= (xy2 � (x; y; y)) � (xy2; x; x)z�12 z�83 z�41= (xy2 � (x; y; y)) � (y2; x; x)((y2; x; x); y2; x)((y2; x; x); x; x)2z�12 z�83 z�41= (xy2 � (x; y; y))(y; x; x)2((y; x; x); y; y)2((y; x; x); y; x)4z43z41z�12 z�83 z�41= xy2 � (x; y; y)(y; x; x)2z27z43z�43 z�12 = xy2 � (x; y; y)(y; x; x)2z27z�12 :



Free ommutative automorphi loop 331Returning to the left hand side, we rewrite it asy(y; x; x) � (xy)(y; x; x)z�33 = (y(y; x; x) � xy)(y; x; x)(y(y; x; x); xy; (y; x; x))�1z�33= (xy � y(y; x; x))(y; x; x)(y; xy; (y; x; x))�1z�33= (xy � y)(y; x; x)(xy; y; (y; x; x))�1 � (y; x; x)z5z7z�33= (xy � y)(y; x; x)2z3z7z5z7z�33= (xy2)(x; y; y) � (y; x; x)2z�23 z5z27 = xy2 � (x; y; y)(y; x; x)2z�23 z5z27 :Comparing the two sides now yields z�12 = z�23 z5. But z�23 z5 = z�13 by the �rstpart of this lemma, and hene z2 = z3. Swithing x and y in the identity z2 = z3gives z7 = z6. �With the redution of Lemma 4.1 in mind, we set for any �xed x, yu1 = (x; x; y); u2 = (x; y; y); v1 = (x; x; u1);v2 = (x; x; u2); v3 = (y; y; u1); v4 = (y; y; u2):We are now ready to desribe anonial elements of the free loop F3(x; y).Lemma 4.2. Every element of F3(x; y) an be written in the anonial form(xa1ya2 � ua31 ua42 )va51 va62 va73 va84 ;where ai 2 Z.Proof: Let X = fx; x�1; y; y�1g. We �rst note that any assoiator an bewritten as ub11 ub22 Q vii . Indeed, sine F3(x; y) has nilpoteny lass three, noompounded assoiators appear within assoiators. Using Lemma 2.4, Proposi-tion 2.8 and their onsequenes, every assoiator an be written as a produt ofompounded assoiators and ordinary assoiators with all variables in X . In fat,equations (2.4), (2.1), (2.2) and (2.3) imply that every assoiator is a produt ofu1, u2, the zis and their inverses. Sine assoiators assoiate among themselvesby (2.4), this produt is of the form ub11 ub22 Q zdii for suitable exponents in Z, andhene of the form ub11 ub22 Q vii by Lemma 4.1.To establish the lemma, it suÆes to show that a produt of two anonialwords is also anonial. First, [xa1ya2 � ua31 ua42 Q vii ℄ � [xb1yb2 � ub31 ub42 Q vdii ℄ =(xa1ya2 � ua31 ua42 )(xb1yb2 � ub31 ub42 )Q vi+dii , so it suÆes to show that the produt(xa1ya2 � ua31 ua42 )(xb1yb2 � ub31 ub42 ) has the desired form. We an rewrite this wordas ((xa1ya2 � xb1yb2) � ua31 ua42 ) � ub31 ub42 w with some produt w of ompoundedassoiators, and further to (xa1ya2 �xb1yb2) �ua3+b31 ua4+b42 w, using Lemma 2.4 and(2.4). Now, xa1ya2 �xb1yb2 an be written as (� � � ((xa1+b1ya2+b2)t1)t2 � � � )tk, whereeah ti is an assoiator. Using Lemma 2.4 and (2.4) again, we further rewrite thisas (xa1+b1ya2+b2)(t1t2 � � � tk). The rest is easy. �



332 D. Barros, A. Grishkov, P. Vojt�ehovsk�y5. The main resultThe alulation desribed in the proof of Lemma 4.1 is straightforward butrather tedious. Before we attempt it, we note:Lemma 5.1. In the loop F3(x; y) all assoiators are in the middle nuleus.Proof: Thanks to (2.1), (2.5) and Lemmas 2.4, 4.2 and Proposition 2.8, it suf-�es to show that (x; u1; y) = (x; u2; y) = 1. By (2.3) and (2.5), (x; u1; y) =(x; y; u1)(u1; x; y) = (x; y; u1)(y; x; u1)�1 = z3z�15 = 1, and also (x; u2; y) =(x; y; u2)(u2; x; y) = (x; y; u2)(y; x; u2)�1 = z4z�16 = 1, where we used Lemma 4.1.�Reall the mappings �, � of (3.1).Lemma 5.2. In F3(x; y) we have for every a1; a2; b1; b2 2 Zxa1ya2 � xb1yb2 = xa1+b1ya2+b2 � u�a1b1(a2+b2)1 ua2b2(a1+b1)2� v(a2+b2)(b1�(a1)+a1�(b1))+a2(a1�(b1)+b21�(a1))+b2(b1�(a1)+a21�(b1))1� v2a1a2b1b2(a1+b1)+(a2+b2)(a1�(b1)+b1�(a1))+(�(a2)+�(b2))(a1b21+b1a21)�a2b2�(a1+b1)2� v�2a1a2b1b2(a2+b2)�(a1+b1)(a2�(b2)+b2�(a2))�(�(a1)+�(b1))(a2b22+b2a22)+a1b1�(a2+b2)3� v�(a1+b1)(a2�(b2)+b2�(a2))�a1(a2�(b2)+b22�(a2))�b1(b2�(a2)+a22�(b2))4 :Proof: Using (2.5), we alulatexa1ya2 � xb1yb2 = (xa1ya2 � xb1)yb2 � (yb2 ; xb1 ; xa1ya2)= ((xb1+a1 � ya2)(ya2 ; xa1 ; xb1) � yb2)(yb2 ; xb1 ; xa1ya2)= (xa1+b1ya2 � (ya2 ; xa1 ; xb1)yb2)(xa1+b1ya2 ; (ya2 ; xa1 ; xb1); yb2) � (yb2 ; xb1 ; xa1ya2):By Lemma 5.1, we an ignore the ompounded assoiator and ontinue[(xa1+b1ya2 � yb2)(ya2 ; xa1 ; xb1)℄((ya2 ; xa1 ; xb1); yb2 ; xa1+b1ya2) � (yb2 ; xb1 ; xa1ya2)= [(xa1+b1ya2+b2 � (xa1+b1 ; ya2 ; yb2))(ya2 ; xa1 ; xb1)℄� ((ya2 ; xa1 ; xb1); yb2 ; xa1+b1ya2) � (yb2 ; xb1 ; xa1ya2):Beause assoiators assoiate with one another, we an rewrite the formula asxa1ya2 � xb1yb2 = xa1+b1ya2+b2 � (xa1+b1 ; ya2 ; yb2)(ya2 ; xa1 ; xb1 )(yb2 ; xb1 ; xa1ya2)� ((ya2 ; xa1 ; xb1); yb2 ; xa1+b1ya2):Now, using Lemmas 2.4 and 4.1 freely,((ya2 ; xa1 ; xb1); yb2 ; xa1+b1ya2) = va1b1a2b2(a1+b1)2 va1b1a22b23 :



Free ommutative automorphi loop 333By Lemma 3.2,(xa1+b1 ; ya2 ; yb2) = u(a1+b1)a2b22 v��(a1+b1)a2b22 v��(a1+b1)a22b23 v��(a1+b1)a2b223� v�(a1+b1)�(a2)b23 v�(a1+b1)�(a2)b24 v�(a1+b1)�(a2)b224� v�(a1+b1)a2�(b2)3 v�(a1+b1)a2�(b2)4 v�(a1+b1)a2�(b2)4 ;and, similarly,(ya2 ; xa1 ; xb1) = u�a1b1a21 v�(a2)a1b13 v�(a2)a21b12 v�(a2)a1b212� va2�(a1)b12 va2�(a1)b11 va2�(a1)b211 va2a1�(b1)2 va2a1�(b1)1 va2a1�(b1)1 :Finally, by Proposition 2.8 and (2.3), we see that(yb2 ; xb1 ; xa1ya2) = (yb2 ; xb1 ; xa1)va21b1a2b22 va1b21a2b22 va1b1a2b223 :The assoiator (yb2 ; xb1 ; xa1) an be obtained from the already alulated assoi-ator (ya2 ; xa1 ; xb1). Putting all these assoiators together, we arrive atxa1ya2 � xb1yb2 = xa1+b1ya2+b2 � u�a1b1(a2+b2)1 ua2b2(a1+b1)2 v11 v22 v33 v44 ;where, after summing up the exponents of the respetive vis and simplifying,1 = (a2 + b2)(b1�(a1) + a1�(b1)) + a2(a1�(b1) + b21�(a1))+ b2(b1�(a1) + a21�(b1));2 = 2a1a2b1b2(a1 + b1) + (a2 + b2)(a1�(b1) + b1�(a1))+ (�(a2) + �(b2))(a1b21 + b1a21)� a2b2�(a1 + b1);3 = ��(a1 + b1)(a22b2 + a2b22)� (a1+b1)(�(a2)b2 + a2�(b2))+ a1b1(�(a2) + �(b2)) + a1b1a2b2(a2 + b2);4 = �(a1 + b1)�(a2)b2 � (a1 + b1)�(a2)b22� (a1 + b1)a2�(b2)� (a1 + b1)a2�(b2):The exponents 1, 2 already have the desired form. To math the exponents 3,4 with the formula of the lemma, note that �(a + b) = �(a) + �(b) + ab(a + b)while rewriting 3, and substitute �(a) = a2 � a into 4. �Lemma 5.3. In F3(x; y) we have((xa1ya2 � ua31 ua42 ) � va51 va62 va73 va84 ) � ((xb1yb2 � ub31 ub42 ) � vb51 vb62 vb73 vb84 )= (xa1+b1ya2+b2 � ua3+b3�a1b1(a2+b2)1 ua4+b4+a2b2(a1+b1)2 )� va5+b5+(a2+b2)(b1�(a1)+a1�(b1))+a2(a1�(b1)+b21�(a1))+b2(b1�(a1)+a21�(b1))�a1b1(a3+b3)1� va6+b6+2a1a2b1b2(a1+b1)+(a2+b2)(a1�(b1)+b1�(a1))+(�(a2)+�(b2))(a1b21+b1a21)2



334 D. Barros, A. Grishkov, P. Vojt�ehovsk�y�a2b2�(a1+b1)�a1b1(a4+b4)�(a3+b3)(a1b2+a2b1)� va7+b7�2a1a2b1b2(a2+b2)�(a1+b1)(a2�(b2)+b2�(a2))�(�(a1)+�(b1))(a2b22+b2a22)3+a1b1�(a2+b2)�a2b2(a3+b3)�(a4+b4)(a1b2+a2b1)� va8+b8�(a1+b1)(a2�(b2)+b2�(a2))�a1(a2�(b2)+b22�(a2))�b1(b2�(a2)+a22�(b2))�a2b2(a4+b4)4for every ai; bi 2 Z.Proof: Using Lemma 5.1 in the �rst step and (2.4) in the seond, we have(xa1ya2 � ua31 ua42 )(xb1yb2 � ub31 ub42 )= xa1ya2 � (ua31 ua42 � (xb1yb2 � ub31 ub42 ))= xa1ya2 � (xb1yb2 � ua3+b31 ua4+b42 )= (xa1ya2 � xb1yb2) � ua3+b31 ua4+b42 (xa1ya2 ; xb1yb2 ; ua3+b31 ua4+b42 )�1:Now note that Lemma 2.4 yields(xayb; xyd; ue1uf2 ) = vae1 vaf+ade+be2 vadf+bf+bde3 vbdf3 :We are therefore done by Lemma 5.2. �In the proof of the main theorem we will use a Mathematia [12℄ ode to verifyertain properties of the multipliation formula of Lemma 5.3. The ode an bedownloaded from the website of the third-named author.Theorem 5.4. Let F3(x; y) be the free ommutative automorphi loop of nilpo-teny lass 3 on free generators x, y. Let u1 = (x; x; y), u2 = (x; y; y), v1 =(x; x; u1), v2 = (x; x; u2), v3 = (y; y; u1), v4 = (y; y; u2). Then eah element ofF3(x; y) an be written uniquely as (xa1ya2 � ua31 ua42 )va51 va62 va73 va84 , and F3(x; y) isisomorphi to (Z8; �), where the multipliation � of exponents is as in Lemma 5.3.Proof: Let F be de�ned on Z8 with multipliation aording to Lemma 5.3.Denote by ei the element of Z8 whose only non-zero oordinate is equal to 1and is loated in position i. Straightforward alulation in Mathematia showsthat F is a loop with identity element (0; 0; 0; 0; 0; 0; 0; 0) suh that (e1; e1; e2) =e3, (e1; e2; e2) = e4, (e1; e1; e3) = e5, (e1; e1; e4) = e6, (e2; e2; e3) = e7 and(e2; e2; e4) = e8. Moreover, F is a ommutative automorphi loop. (To verifythat F is automorphi, the ode merely needs to hek by symboli alulationthat the inner mappings La;b are automorphisms of F .)We laim that F3(x; y) is isomorphi to F . Let f : F3(x; y) ! F be the ho-momorphism determined by f(x) = e1, f(y) = e2. Beause homomorphismsbehave well on assoiators, namely f((a; b; )) = (f(a); f(b); f()), the alula-tion in the previous paragraph shows that f(u1) = e3, f(u2) = e4, f(v1) = e5,f(v2) = e6, f(v3) = e7 and f(v4) = e8. By Lemma 4.2, any element w of F3(x; y)an be written as w = (xa1ya2 � ua31 ua42 )va51 va62 va73 va84 , and it now follows that



Free ommutative automorphi loop 335f(w) = (a1; a2; a3; a4; a5; a6; a7; a8). This means that f is onto F , and also thatthe exponents ai in the deomposition of w are uniquely determined by w. Henef : F3(x; y)! F is an isomorphism. �We onlude the paper with some strutural information about F3(x; y).Proposition 5.5. Let Q = F3(x; y) be identi�ed with (Z8; �) as in Theorem 5.4.Then A(Q) = N�(Q) = 0 � 0 � Z6 and N�(Q) = N�(Q) = N(Q) = Z(Q) =0� 0� 0� 0�Z4.Proof: We already know from Lemma 5.1 that A(Q) � N�(Q). By Proposi-tion 2.8 and Lemmas 3.2, 4.1,(x; xa1ya2 ; y) = (x; xa1 ; y)(x; ya2 ; y)� ((x; xa1 ; y); xa1 ; ya2)((x; ya2 ; y); ya2 ; xa1)((x; xa1 ; y); ya2 ; x)� ((x; ya2 ; y); xa1 ; x)((x; xa1 ; y); ya2 ; y)((x; ya2 ; y); xa1 ; y)= (x; xa1 ; y)(x; ya2 ; y)v�a21a2�2a1a22 v�a1a22�2a1a23= ua11 (u1; x; x)�(a1)+�(a1)(u1; x; y)�(a1) � ua22 (u2; y; y)�(a2)+�(a2)(u2; y; x)�(a2)� v�a21a2�2a1a22 v�a1a22�2a1a23= ua11 ua22 v��(a1)��(a1)1 v��(a1)�a21a2�2a1a22 v��(a2)�a1a22�2a1a23 v��(a2)��(a2)4 :Thus, if either a1 6= 0 or a2 6= 0 then r = (x; xa1ya2 ; y) 6= 1. In other words, ifr 2 N�(Q) then r 2 0�0�Z6. We onlude, A(Q) � N�(Q) � 0�0�Z6 � A(Q),so N�(Q) = A(Q) = 0� 0�Z6.Sine Q has nilpoteny lass 3, we have 0� 0� 0� 0�Z4 � Z(Q) � N�(Q) =N�(Q). Now,(x; x; xa1ya2 � ua31 ua42 ) = (x; x; xa1ya2)(x; x; ua31 ua42 ) = (x; x; xa1ya2)va31 va42= [(x; x; ya2)((x; x; ya2 ); ya2 ; xa1)((x; x; ya2 ); xa1 ; x)((x; x; ya2 ); xa1 ; x)℄va31 va42= (x; x; ya2)va3�2a1a21 va4�a1a222= ua22 � (u2; y; y)�(a2)(u2; y; x)2�(a2)va3�2a1a21 va4�a1a222= ua22 va3�2a1a21 va4�a1a222 v2�(a2)3 v�(a2)4 :If (x; x; xa1ya2 � ua31 ua42 ) = 1, a2 must be zero. Then va31 va42 = 1 and thus a3 =a4 = 0. Therefore, if (x; x; xa1ya2 � wa3ta4) = 1 then a2 = a3 = a4 = 0. Finally,(y; x; xa1) = u�a11 (u�11 ; x; x)�(a1)+�(a1)(u�11 ; x; y)�(a1) = u�a11 v�(a1)+�(a1)1 v�(a1)2 :So, (y; x; xa1) = 1 implies a1 = 0. Summarizing, xa1ya2 � ua31 ua42 2 N�(Q) if andonly if a1 = a2 = a3 = a4 = 0. Hene N�(Q) = Z(Q) = 0� 0� 0� 0�Z4. �
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