Nonsplitting F-quasigroups

STEPHEN GAGOLA III

Abstract. T. Kepka, M.K. Kinyon and J.D. Phillips [*The structure of F-quasi-groups*, J. Algebra **317** (2007), no. 2, 435–461] developed a connection between F-quasigroups and NK-loops. Since NK-loops are contained in the variety generated by groups and commutative Moufang loops, a question that arises is whether or not there exists a nonsplit NK-loop and likewise a nonsplit F-quasigroup. Here we prove that there do indeed exist nonsplit F-quasigroups and show that there are exactly four corresponding nonsplit NK-loops of minimal order 3^6 .

Keywords: F-quasigroup, NK-loop, Moufang loop Classification: Primary 20E10; Secondary 20N05

1. Introduction

A quasigroup (Q, \cdot) is a nonempty set Q together with a binary operation such that the equation $x \cdot y = z$ has a unique solution in Q whenever two of the three elements $x, y, z \in Q$ are given. An element e_x of a quasigroup Q is called the right local identity for $x \in Q$ if $xe_x = x$. Similarly, if $f_x x = x$ for $f_x \in Q$ then f_x is called the left local identity for $x \in Q$.

A quasigroup Q is called an F-quasigroup if

$$x(yz) = (xy)(e_x z)$$
$$(yz)x = (yf_x)(zx)$$

are satisfied for all $x, y, z \in Q$ where e_x and f_x are the right and left local identities of x respectively. F-quasigroups were first studied by D.C. Murdoch [10] back in 1939. It was then V.D. Belousov [1] who first called these quasigroups 'F-quasigroups' as he showed that a distributive quasigroup is isotopic to a commutative Moufang loop. V.D. Belousov also noted that an F-quasigroup is a quasigroup in which the solutions x and y of the equations

$$a(bx) = (ab)c$$
$$(yb)a = c(ba)$$

depend only on the elements a and b. In this way, F-quasigroups form a nontrivial generalization of groups.

A quasigroup Q is called a *loop* if there exists an identity element $1 \in Q$ with 1x = x = x1 for every $x \in Q$. A *Moufang loop* is a loop that satisfies the following

(equivalent) Moufang identities:

$$\begin{aligned} &((xy)x)z = x(y(xz)),\\ &((zx)y)x = z(x(yx)),\\ &x((yz)x) = (xy)(zx),\\ &(x(yz))x = (xy)(zx). \end{aligned}$$

Such loops were first introduced by R. Moufang back in 1934. By Moufang's Theorem, if L is a Moufang loop such that $x, y, z \in L$ associate in some order then they associate in any order.

The *nucleus* of a loop L is defined by

$$\operatorname{Nuc}\left(L\right) = \left\{ a \in L \mid \begin{array}{c} a(xy) = (ax)y, \ x(ay) = (xa)y, \\ \text{and} \ x(ya) = (xy)a \text{ for all } x, y \in L \end{array} \right\}.$$

By Moufang's Theorem, if L is a Moufang loop then

Nuc
$$(L) = \{a \in L \mid a(xy) = (ax)y \text{ for all } x, y \in L\}$$

The *commutant* of a loop L, sometimes called the Moufang center, is the set

$$\mathbf{C}(L) = \{ a \in L \mid ax = xa \text{ for all } x \in L \}.$$

In any Moufang loop, both the nucleus and the commutant are normal subloops [4]. The *center* of a loop L, denoted by Z(L), is defined to be the intersection between the nucleus and the commutant.

An *NK-loop* is a loop *L* such that L = NK where N = Nuc(L) and $K = \mathbf{C}(L)$. It was proven in [8] that every NK-loop is a Moufang loop. Thus any minimal nonassociative NK-loop would be a commutative Moufang loop of order 81. There are exactly two such Moufang loops. The nonassociative commutative Moufang loop of order 81 and exponent 3 was constructed by H. Zassenhaus [2] and the other nonassociative commutative Moufang loop of order 81 with exponent 9 was constructed by T. Kepka and P. Němec [9].

It was T. Kepka, M.K. Kinyon and J.D. Phillips [8] who solved an open problem, proposed by V.D. Belousov in 1967, by developing the following connection between F-quasigroups and NK-loops.

Theorem 1. A quasigroup (Q, \cdot) is an F-quasigroup if and only if there exists an NK-loop (Q, +) with automorphisms $f, g \in Aut(Q, +)$ and an element $e \in Q$ such that the following conditions are satisfied:

(i)
$$x + f(x) \in Nuc(Q, +)$$
 for all $x \in Q$;
(ii) $-x + f(x) \in \mathbf{C}(Q, +)$ for all $x \in Q$;
(iii) $x + g(x) \in Nuc(Q, +)$ for all $x \in Q$;
(iv) $-x + g(x) \in \mathbf{C}(Q, +)$ for all $x \in Q$;
(v) $fg = gf$;
(vi) $x \cdot y = f(x) + e + g(y)$ for all $x, y \in Q$.

So from Theorem 1, the class of Moufang loops that can occur as loop isotopes of F-quasigroups are characterized as NK-loops. In [7], Theorem 1 was also used to establish an equivalence between the equational class of (pointed) F-quasigroups and the equational class corresponding to a certain notion of generalized module (with noncommutative, nonassociative addition) for an associative ring.

We say that an F-quasigroup (Q, \cdot) is *split* if its corresponding NK-loop (Q, +) is split and can be written as the direct product between a group and a commutative Moufang loop. Here we not only use Theorem 1 to prove the existence of nonsplit F-quasigroups but also show that there are exactly four NK-loops that can occur as loop isotopes of such F-quasigroups of minimal order. By better understanding NK-loops we reveal more about the structure of F-quasigroups which include distributive Steiner quasigroups and medial quasigroups.

2. Splitting NK-loops

In this section we show that an F-quasigroup is split if and only if it is isotopic to an NK-loop that can be written as the direct product between a group and a loop-isotope of a commutative Moufang loop.

Two quasigroups (Q_1, \cdot) and (Q_2, \circ) are *isotopic* if there are bijections α , β , and γ from Q_1 to Q_2 such that $\alpha(x) \circ \beta(y) = \gamma(x \cdot y)$ for any $x, y \in Q_1$. Here Q_2 is called an *isotope* of Q_1 .

If a loop is isotopic to a group then it is actually isomorphic to that group [11]. It should also be noted that every loop-isotope of a Moufang loop is again a Moufang loop.

Let L be a Moufang loop with a fixed element $\kappa \in L$. The κ -isotope of L, denoted by (L, \circ_{κ}) , is a loop isotopic to L where

$$a \circ_{\kappa} b = (a\kappa)(\kappa^{-1}b)$$

for any $a, b \in L$. The following is a useful proposition which was originally proven by H.O. Pflugfelder [11].

Proposition 2. A loop-isotope of a Moufang loop L is isomorphic to a κ -isotope of L.

Corollary 3. If L is a Moufang loop then the nucleus of any loop-isotope of L is just Nuc(L).

Theorem 4. An NK-loop is splitting and therefore the direct product between a group and a commutative Moufang loop if and only if it is a loop-isotope of a splitting NK-loop.

PROOF: Suppose that L is an NK-loop that can be written as the direct product between a group and a loop-isotope, say (K, \circ_x) , of a commutative Moufang loop K. In order for L to be an NK-loop, (K, \circ_x) itself must be an NK-loop.

S. Gagola III

Let C be the commutant of (K, \circ_x) . If a is in C then

$$(x^{-1}b)(ax) = (ax)(x^{-1}b) = a \circ_x b = b \circ_x a = (bx)(x^{-1}a) = (ax^{-1})(xx^{-1}bx) = (a(x^{-1}b))x = ((x^{-1}b)a)x$$

for any $b \in K$. Thus if $a \in C$ then for any $b \in K$ the elements x, a, and b associate in K.

Now let (n_1a_1) and (n_2a_2) be arbitrary elements of K where $n_1, n_2 \in Nuc(K)$ and $a_1, a_2 \in C$. Since

$$(x(n_1a_1))(n_2a_2) = ((x(n_1a_1))n_2)a_2$$

= $(x(n_1a_1n_2))a_2$
= $x((n_1a_1n_2)a_2)$
= $x((n_1a_1)(n_2a_2))$

x lies in the nucleus of K. Hence, (K, \circ_x) is commutative and L is the direct product between a group and a commutative Moufang loop.

3. Minimal nonsplit NK-loops

To classify the minimal nonsplit NK-loops we first note that every NK-loop is contained in the variety, say V, generated by all groups and commutative Moufang loops. One can see this from the fact that an NK-loop Q with a nucleus N = Nuc(Q) and a commutant $K = \mathbf{C}(Q)$ would be isomorphic to the quotient $N \oplus K \swarrow_{\text{ker}(\varphi)}$ where φ is the usual map

$$\begin{array}{ccc} \varphi : N \oplus K \longrightarrow Q, \\ (g, x) \longmapsto gx. \end{array}$$

Theorem 5. There exist nonsplit NK-loops with an order equal to 3^6 .

PROOF: Let K be a nonassociative commutative Moufang loop of order 81 and let $Z(K) = \langle c \rangle$ be its center of order three. Now define L to be the following set:

$$L = \{ (x, n, m) \mid x \in K, \ n, m \in \mathbb{Z}_3 \}.$$

It follows that L together with the binary operation

$$(x, n, m) \cdot (y, k, l) = (c^{nl}xy, n+k, m+l)$$

378

forms a Moufang loop of order 3^6 . Here the nucleus of L is

Nuc
$$(L) = \{(a, n, m) \in L \mid a \in Z(K)\}$$

and the commutant of L is

$$\mathbf{C}(L) = \{(x, 0, 0) \in L\}$$

By definition, L is an NK-loop. Furthermore, L is nonsplit since the nontrivial commutator subgroup of Nuc (L) coincides with the associator subloop of $\mathbf{C}(L)$.

Let N be a noncommutative group of order 27 with $Z(N) = \langle b \rangle$ and K be a nonassociative commutative Moufang loop of order 81 with $Z(K) = \langle c \rangle$. To picture nonsplit NK-loops of order 3⁶ as quotients in the variety V let Q be the quotient $N \oplus K/H$ where $H = \langle (b, c) \rangle \leq N \oplus K$. Since there are exactly two noncommutative groups of order 27, one of exponent 3 and one of exponent 9, there are exactly four such Moufang loops, Q. These are in fact the only nonsplit NK-loops of order 3⁶ since the commutant must have an order of 81 in order to be nonassociative and the nucleus must have an order of 27 in order to be nonabelian.

Corollary 6. There exist nonsplit F-quasigroups that have an order equal to 3^6 .

PROOF: From Theorem 1, there exists a nonsplit F-quasigroup (Q, \cdot) if there exist automorphisms f and g of a nonsplit NK-loop (Q, +) that satisfy conditions (i)-(v). Here it is enough to show that there exists an automorphism f of the loop (Q, +) that satisfies conditions (i) and (ii) since f commutes with itself. In each of the four nonsplit NK-loops of order 3^6 the commutant, say K, is a commutative nonassociative Moufang loop of order 81 and the nucleus, say N, is a nonabelian group of order 27. Furthermore, $Z(K) = \langle c \rangle = Z(N)$ and is of order three.

From conditions (i) and (ii), f must stabilize both N and K. Note that for any $x \in K$, $x + f(x) \in N \cap K = Z(Q, +)$. Likewise, for any $g \in N$, $-g + f(g) \in$ $N \cap K = Z(Q, +)$. Since Z(Q, +) = [N, N], f must fix all of the elements of Z(Q, +). Hence, if $x, y, z \in K$ are generators of K and $g, h \in N$ are generators of N then the map $f : Q \longrightarrow Q$ defined by

$$f(nc + (m_1x + m_2y) + m_3z + k_1g + k_2h)$$

= $nc + (m_1x + m_1a_x + m_2y + m_2a_y) + m_3z + m_3a_z$
+ $k_1g + k_1a_g + k_2h + k_2a_h$
= $m_1a_x + m_2a_y + m_3a_z + k_1a_g + k_2a_h$
+ $nc + (m_1x + m_2y) + m_3z + k_1g + k_2h$

forms an automorphism of (Q, +) satisfying conditions (i) and (ii) where a_x, a_y, a_z, a_g , and a_h are any fixed elements of Z(Q, +).

Lemma 7. Every finite nonassociative commutative Moufang loop has a nontrivial center with an order divisible by three. PROOF: Let L be a finite nonassociative commutative Moufang loop. From [3] there exists a group N and a commutative 3-loop K such that $L \cong N \oplus K$. Since L is nonassociative, K is nontrivial. Let G(K) be a minimal triality group corresponding to K. By [5], G(K) is a 3-group. Thus G(K) has a nontrivial center which is also a triality group. By minimality of G(K), the center of G(K) contains nontrivial elements of K otherwise G(K)/Z(G(K)) would be a smaller triality group corresponding to K. The elements of $K \cap Z(G(K))$ both commute and associate with all of the elements in K. Hence K, and therefore L, has a nontrivial center with an order divisible by three.

Theorem 8. There does not exist a nonsplit NK-loop with an order less than 3^6 .

PROOF: Suppose L is a nonsplit NK-loop with an order less than 3^6 . Since L is nonsplit, L is both nonabelian and nonassociative. Thus $K = \mathbf{C}(L)$ contains a nonassociative subloop with an order divisible by 81. Thus, if N is the nucleus of L then N has an order less than 27. By Lemma 7, the loop K, and therefore the loop L, has a nontrivial center with an order divisible by three. Thus N/Z(N)has an order less than nine. The only possible nonabelian groups that satisfy these conditions are isomorphic to $S_3 \oplus \mathbb{Z}_3$ or $H \oplus \mathbb{Z}_3$ where H is a nonabelian group of order 8. In each of these cases the associator subloop of K intersects the commutator subgroup of N trivially. Hence, L is isomorphic to either $S_3 \oplus Q$ or $H \oplus Q$ where Q is a nonassociative commutative Moufang loop of order 81. This contradicts the fact that L is a nonsplit NK-loop.

Corollary 9. Minimal nonsplit F-quasigroups have an order of 3^6 .

It was shown in [6] that non-medial trimedial quasigroups have a minimal order of 81 with exactly 35 such isomorphism classes. So from Corollary 9 it follows that if (Q, \cdot) is a minimal F-quasigroup that is not trimedial and not isotopic to a group then (Q, +) would have to split into N and K where K is not isotopic to a group and therefore of order 81 and $N \cong S_3$. Thus minimal F-quasigroups that are not trimedial and not isotopic to a group have an order of $2 \cdot 3^5$.

References

- Belousov V.D., About one quasigroup class, Uchenye Zapiski Beltskogo Gospedinstituta im. A. Russo, 5 (1960), 29-44 (in Russian).
- [2] Bol G., Gewebe und Gruppen, Math. Ann. 114 (1937), no. 1, 414-431.
- [3] Bruck R.H., A Survey of Binary Systems, Springer, New York, 1971.
- [4] Gagola S.M. III, A Moufang loop's commutant, Proc. Cambridge Phil. Soc. 152 (2012), no. 2, 193–206.
- [5] Gagola S.M. III, The number of Sylow p-subloops in finite Moufang loops, Comm. Algebra 38 (2010), no. 4, 1436–1448.
- [6] Kepka T., Bénéteau L., Lacaze J., Small finite trimedial quasigroups, Comm. Algebra 14 (1986), no. 6, 1067-1090.
- [7] Kepka T., Kinyon M.K., Phillips J.D., F-quasigroups and generalized modules, Comment. Math. Univ. Carolin. 49 (2008), no. 2, 249-257.

380

- [8] Kepka T., Kinyon M.K., Phillips J.D., The structure of F-quasigroups, J. Algebra 317 (2007), no. 2, 435-461.
- [9] Kepka T., Němec P., Commutative Moufang loops and distributive groupoids of small orders, Czechoslovak Math. J. **31 (106)** (1981), no. 4, 633-669.
- [10] Murdoch D.C., Quasi-groups which satisfy certain generalized associative laws, Amer. J. Math. 61 (1939), 509-522.
- [11] Pflugfelder H.O., Quasigroups and Loops: Introduction, Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990.

CHARLES UNIVERSITY, FACULTY OF MATHEMATICS AND PHYSICS, DEPARTMENT OF ALGEBRA, SOKOLOVSKÁ 83, 186 75 PRAGUE 8, CZECH REPUBLIC

E-mail: gagola@karlin.mff.cuni.cz

(Received January 25, 2012, revised May 10, 2012)