Quasigroups arisen by right nuclear extension

PÉTER T. NAGY, IZABELLA STUHL

Abstract. The aim of this paper is to prove that a quasigroup Q with right unit is isomorphic to an f-extension of a right nuclear normal subgroup G by the factor quasigroup Q/G if and only if there exists a normalized left transversal $\Sigma \subset Q$ to G in Q such that the right translations by elements of Σ commute with all right translations by elements of the subgroup G. Moreover, a loop Qis isomorphic to an f-extension of a right nuclear normal subgroup G by a loop if and only if G is middle-nuclear, and there exists a normalized left transversal to G in Q contained in the commutant of G.

Keywords: extension of quasigroups, right nucleus, quasigroup with right unit, transversal

Classification: 20N05

1. Introduction

A loop extension is called (right) nuclear, if the kernel of the corresponding homomorphism is contained in the (right) nucleus of the extension. In our previous paper [2] we made a systematic study of right nuclei of quasigroups obtained by an extension process in the category of quasigroups with right unit. The investigated extensions of quasigroups are defined by a slight modification of nonassociative Schreier-type extensions of groups or loops (cf. [1]). These extensions will be determined by a triple (K, G, f), where K is a quasigroup, G is a loop and $f: K \times K \to G$ is a function, called the factor system of the extension. The main result of this paper gives a characterization of quasigroups which are isomorphic to an f-extension of a right nuclear normal subgroup by the factor quasigroup. They are precisely the quasigroups Q with a right nuclear normal subgroup Gsuch that there exists a normalized left transversal $\Sigma \subset Q$ to G in Q such that the right translations by elements of Σ commute with all right translations by elements of the subgroup G. As an application we prove that a loop Q is isomorphic to an f-extension of a right nuclear normal subgroup G by the loop K = Q/Gif and only if G is also a middle-nuclear subgroup, and there exists a normalized left transversal Σ to G in Q contained in the commutant $C_Q(G)$ of G.

2. Preliminaries

A quasigroup Q is a set with a binary operation $(x, y) \mapsto x \cdot y$ such that the equations $a \cdot y = b$ and $x \cdot a = b$ are uniquely solvable in Q. The solutions are

denoted by $y = a \setminus b$ and x = b/a. The element e_r is called the *right unit* of the quasigroup Q if $x \cdot e_r = x$ for all $x \in Q$. A *loop* is a quasigroup with unit element.

The *left, right* respectively *middle nucleus* of a quasigroup Q are the subgroups of Q defined by

$$N_{l}(Q) = \{u; \ (u \cdot x) \cdot y = u \cdot (x \cdot y), \ x, y \in Q\},\$$

$$N_{r}(Q) = \{u; \ (x \cdot y) \cdot u = x \cdot (y \cdot u), \ x, y \in Q\},\$$

$$N_{m}(Q) = \{u; \ (x \cdot u) \cdot y = x \cdot (u \cdot y), \ x, y \in Q\}.$$

The intersection $N(Q) = N_l(Q) \cap N_r(Q) \cap N_m(Q)$ is the nucleus of Q. A subgroup $G \subset Q$ of the quasigroup Q is called (*left, right, respectively middle*) nuclear if it is contained in the (left, right, respectively middle) nucleus of Q. If the right nucleus $N_r(Q)$ of a quasigroup Q is non-empty and e is the unit of the group $N_r(Q)$, then $xe \cdot n = x \cdot en = xn$ for any $x \in Q$, $n \in N_r(Q)$, hence e is the right unit of Q.

The commutant $C_Q(G)$ of a subgroup G in Q is the subset consisting of all elements $c \in Q$ such that $c \cdot x = x \cdot c$ for all $x \in G$. The centralizer $Z_Q(G)$ of the subgroup in Q consists of elements $z \in N(Q)$ such that zx = xz, for all $x \in G$. The center Z(Q) of Q is the centralizer $Z_Q(Q)$ of Q in Q.

For any $x \in Q$ the maps $\lambda_x : y \mapsto x \cdot y$ and $\rho_x : y \mapsto y \cdot x$ are the *left* and the *right translations*, respectively.

A subloop N of a quasigroup Q with right unit e_r is a normal subloop if there exists a homomorphism $\phi: Q \to Q'$ of Q onto the quasigroup Q' with right unit e'_r such that $\phi^{-1}(e'_r) = N$. In this case e_r is the unit element of N and for any $q \in Q$ one has $qN = \phi^{-1}(q')$, where $\phi(q) = q'$. Hence the map $qN \mapsto \phi(q) : Q/N \to Q'$ is bijective.

The set of left cosets $\{qN \in Q/N; q \in Q\}$ equipped with the quasigroup structure isomorphic to Q' is called the *factor quasigroup* of Q by the normal subloop N.

A subset $\Sigma \subset Q$ of a quasigroup Q with right unit e_r is said to be a *left* transversal to a normal subloop N in Q if it contains exactly one element from each coset of qN, $q \in Q$. If Σ contains the right unit e_r then we say that Σ is a normalized left transversal (cf. [3, Chapter 2]).

Let L be a loop, K a quasigroup and let f be a function $f: K \times K \to L$. The set $K \times L = \{(a, \alpha), a \in K, \alpha \in L\}$ with the operation

(1)
$$(a, \alpha) \cdot (b, \beta) := (ab, f(a, b) \cdot \alpha\beta),$$

is a quasigroup Q_f called the *f*-extension of the loop *L* by the quasigroup *K*. The function $f: K \times K \to L$ is the factor system of the extension Q_f and the map $\pi: Q_f \longrightarrow K: (a, \alpha) \mapsto a$ is the related homomorphism of the extension Q_f .

Assume that the right nucleus $N_r(Q_f)$ of an f-extension Q_f is a non-empty subgroup of Q_f . Then its unit $E_r \in N_r(Q_f)$ is the right unit of Q_f and its homomorphic image $e_r = \pi(E_r) \in K$ is the right unit of K. The quasigroup Q_f is called a *right nuclear f-extension* if $\{e_r\} \times G = \{(e_r, g); g \in G\}$ is a right nuclear subgroup of Q_f . In this case Q_f is an *f*-extension of a group by a quasigroup with right unit.

In the following we focus our attention on right nuclear f-extensions of groups by quasigroups with right unit element (cf. [2, Theorem 11]).

3. Characterization

Let Q be a quasigroup with right unit and let G be a right nuclear normal subgroup of Q.

Lemma 1. A quasigroup Q is isomorphic to an f-extension of a right nuclear normal subgroup G by the factor quasigroup Q/G with right unit if and only if Q is isomorphic to an f-extension Q_f of G by a quasigroup K with right unit e_r such that the factor system $f: K \times K \to G$ satisfies $f(x, e_r) = f(e_r, e_r) = \epsilon$, where ϵ is the unit of G.

PROOF: According to Theorem 11 in [2] an f-extension Q_f of a group G by a quasigroup K is right nuclear if and only if the factor system satisfies $f(x, e_r) = f(e_r, e_r) \in Z(G)$ for all $x \in K$. In this case for the f*-extension Q_{f^*} of G by K defined by the factor system $f^*(x, y) = f(x, y)f(e_r, e_r)^{-1}$ the map $(x, \xi) \mapsto (x, f(e_r, e_r)\xi) : Q_f \to Q_{f^*}$ is an isomorphism. \Box

Lemma 2. Let G be a group with unit ϵ , K a quasigroup with right unit e_r and let Q_f be an f-extension of G by K with factor system $f: K \times K \to G$ satisfying $f(x, e_r) = f(e_r, e_r) = \epsilon$. The subset $\Sigma = \{(x, \epsilon); x \in K\} \subset K \times G$ is a normalized left transversal to the normal subgroup $\overline{G} = \{(e_r, \xi); \xi \in G\} \subset K \times G$ of Q_f . The factor system satisfies

(2)
$$(e_r, f(x, y)) = \sigma(xy) \setminus (\sigma(x)\sigma(y)),$$

where σ is the map $x \mapsto (x, \epsilon) : K \to K \times G$. The right translation by any element of Σ commutes with all right translations by elements of \overline{G} , i.e.

(3)
$$\rho_{t\eta} = \rho_t \rho_\eta = \rho_\eta \rho_t \text{ for all } t \in \Sigma, \ \eta \in G.$$

PROOF: Clearly, $(x, \xi) = (x, \epsilon)(e_r, \xi)$ for any element $(x, \xi) \in K \times G$. Hence the subset $\Sigma = \{(x, \epsilon); x \in K\} \subset K \times G$ is a normalized left transversal to the subgroup \overline{G} . We have

$$(e_r, f(x, y)) = (xy, \epsilon) \setminus ((x, \epsilon)(y, \epsilon)) = \sigma(xy) \setminus (\sigma(x)\sigma(y)),$$

which is the equation (2). For any $(x,\xi) \in K \times G$ the right translation $\rho_{(y,\eta)}$ yields

$$\rho_{(y,\eta)}(x,\xi) = (xy, f(x,y)\xi\eta) = \rho_{(y,\epsilon)}\rho_{(e_r,\eta)}(x,\xi) = \rho_{(e_r,\eta)}\rho_{(y,\epsilon)}(x,\xi)$$

giving the commutation relations (3).

Theorem 3. If a quasigroup Q with right unit is isomorphic to an f-extension Q_f of a right nuclear normal subgroup G by the factor quasigroup Q/G then there exists a normalized left transversal Σ to G in Q satisfying the commutation relations (3).

Conversely, if Σ is a normalized left transversal to the right nuclear normal subgroup G of Q satisfying the commutation relations (3) then Q is isomorphic to the f-extension Q_f on $Q/G \times G$ determined by the factor system

(4)
$$f(pG, qG) = \sigma(pqG) \setminus (\sigma(pG)\sigma(qG)), \quad pG, qG \in Q/G,$$

where $\sigma: Q/G \to Q$ is the map determined by $\sigma(qG) \in qG \cap \Sigma$ for any $q \in G$.

PROOF: The first assertion follows from the previous lemma.

Now, we assume that Σ is a normalized left transversal to the right nuclear normal subgroup G of the quasigroup Q satisfying the commutation relations (3) and consider the f-extension Q_f on $Q/G \times G$ given by the factor system

$$f(pG, qG) = \sigma(pqG) \setminus (\sigma(pG)\sigma(qG)), \quad pG, qG \in Q/G$$

Since Σ is normalized we have $f(pG,G) = \epsilon$ for any $p \in G$. We show that the bijection $\phi : Q \to Q_f$ given by $q \mapsto (qG, \sigma(qG) \setminus q)$ is an isomorphism. The elements $\sigma(pG) \setminus p$ and $\sigma(qG) \setminus q$ belong to the right nuclear subgroup G of Q, hence

$$pq = (\sigma(pG) \cdot \sigma(pG) \setminus p) \cdot (\sigma(qG) \cdot \sigma(qG) \setminus q)$$
$$= [(\sigma(pG) \cdot \sigma(pG) \setminus p) \cdot \sigma(qG)] \cdot \sigma(qG) \setminus q.$$

It follows from the relations (3) and from the right nuclear property of G that

$$(\sigma(pG) \cdot \sigma(pG) \setminus p) \cdot \sigma(qG) = \sigma(pG) \cdot (\sigma(qG) \cdot \sigma(pG) \setminus p).$$

Once more using the right nuclear property we get

$$pq = \sigma(pG)\sigma(qG) \cdot (\sigma(pG)\backslash p \cdot \sigma(qG)\backslash q).$$

Hence

$$\phi(pq) = (pqG, \sigma(pqG) \setminus [\sigma(pG)\sigma(qG) \cdot (\sigma(pG) \setminus p \cdot \sigma(qG) \setminus q)]).$$

We have

$$\phi(p)\phi(q) = (pqG, f(pG, qG) \cdot [\sigma(pG) \setminus p \cdot \sigma(qG) \setminus q])$$

where f(pG, qG) is defined by (4). Hence, using the right nuclear property of G we get $\phi(pq) = \phi(p)\phi(q)$ for any $p, q \in Q$, which proves the assertion.

For loops the previous theorem yields the following:

Theorem 4. A loop Q is isomorphic to an f-extension Q_f of a right nuclear normal subgroup G by the factor loop Q/G if and only if

Quasigroups arisen by right nuclear extension

- (a) G is a middle-nuclear subgroup,
- (b) there exists a normalized left transversal Σ to G in Q contained in the commutant C_Q(G) of G.

In this case Q is isomorphic to the f-extension Q_f on $Q/G \times G$ determined by the factor system (4).

PROOF: Let Σ be a normalized left transversal to G in the loop Q. According to Theorem 3 the assertion is true if and only if the commutation relations (3) are satisfied:

$$x \cdot t\eta = x\eta \cdot t = xt \cdot \eta$$
 for all $x \in Q, t \in \Sigma, \eta \in G$.

Putting x = e, where e is the unit of Q, we obtain that Σ is contained in the commutant $C_Q(G)$ of the subgroup G in Q. Since G is a right nuclear subgroup we have $x \cdot t\eta = xt \cdot \eta$ for any $x \in Q, t \in \Sigma, \eta \in G$. Now, multiplying the identity $x \cdot t\eta = x\eta \cdot t$ by $\xi \in G$ we get

$$x(\eta \cdot t\xi) = x(\eta t \cdot \xi) = x(t\eta \cdot \xi) = (x \cdot t\eta)\xi = (x\eta \cdot t)\xi = x\eta \cdot t\xi.$$

Denoting $y = t\xi$ we obtain the identity

$$x(\eta \cdot y) = x\eta \cdot y.$$

Hence G is a middle-nuclear subgroup and the properties (a) and (b) are proved. Conversely, the previous arguments yield that the conditions (a) and (b) are equivalent to the commutation relations (3). \Box

It is well known that a group Q is isomorphic to a central extension of an abelian normal subgroup G, (i.e. G is contained in the center Z(Q),) if and only if Q is isomorphic to an f-extension of G. The following assertion gives a direct generalization of this assertion to groups Q with non-necessarily abelian normal subgroup G:

Corollary 5. A group Q is isomorphic to an f-extension Q_f of a normal subgroup G by the group K = Q/G if and only if there exists a normalized left transversal Σ to G in Q contained in the centralizer $Z_Q(G)$ of the group G in Q.

References

- [1] Nagy P.T., Strambach K., Schreier loops, Czechoslovak Math. J. 58 (133) (2008), 759-786.
- [2] Nagy P.T., Stuhl I., Right nuclei of quasigroup extensions, Comm. Alg. 40 (2012), 1893-1900.
- [3] Smith J.D.H., Romanowska A.B., Post-modern algebra, Wiley, New York, 1999.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, 4010 DEBRECEN, HUNGARY

E-mail: petert.nagy@science.unideb.hu stuhl.izabella@inf.unideb.hu