Remarks on sequence-covering maps

LUONG QUOC TUYEN

Abstract. In this paper, we prove that each sequence-covering and boundarycompact map on g-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [9].

Keywords: g-metrizable space, weak base, sn-network, compact map, boundarycompact map, sequence-covering map, 1-sequence-covering map, weak-open map, closed map

Classification: 54C10, 54D65, 54E40, 54E99

1. Introduction

A study of images of topological spaces under certain sequence-covering maps is an important question in general topology ([1], [2], [8]–[11], [13], [16], [21], for example). In 2000, P. Yan, S. Lin and S.L. Jiang proved that each closed sequencecovering map on metric spaces is 1-sequence-covering ([21]). Furthermore, in 2001, S. Lin and P. Yan proved that each sequence-covering and compact map on metric spaces is 1-sequence-covering ([13]). After that, T.V. An and L.Q. Tuyen proved that each sequence-covering π and s-map on metric spaces is 1-sequence-covering ([1]). Recently, F.C. Lin and S. Lin proved that each sequence-covering and boundary-compact map on metric spaces is 1-sequence-covering ([8]). Also, the authors posed the following question in [9].

Question 1.1 ([9, Question 4.6]). Let $f : X \longrightarrow Y$ be a sequence-covering and boundary-compact map. If X is g-metrizable, then is f an 1-sequence-covering map?

In this paper, we prove that each sequence-covering and boundary-compact map on g-metrizable spaces is 1-sequence-covering. Then, we give some relationships between sequence-covering maps and 1-sequence-covering maps or weak-open maps, and give an affirmative answer to the problem posed by F.C. Lin and S. Lin in [9].

Throughout this paper, all spaces are assumed to be Hausdorff, all maps are continuous and onto, \mathbb{N} denotes the set of all natural numbers, ω denotes $\mathbb{N} \cup \{0\}$, and convergent sequence includes its limit point. Let $f: X \to Y$ be a map and \mathcal{P} be a collection of subsets of X, we denote $\bigcup \mathcal{P} = \bigcup \{P : P \in \mathcal{P}\}, \ \bigcap \mathcal{P} = \bigcap \{P : P \in \mathcal{P}\}, \ f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}.$

Definition 1.2. Let X be a space, and $P \subset X$.

- (1) A sequence $\{x_n\}$ in X is called *eventually* in P, if $\{x_n\}$ converges to x, and there exists $m \in \mathbb{N}$ such that $\{x\} \bigcup \{x_n : n \ge m\} \subset P$.
- (2) P is called a sequential neighborhood of x in X [5], if whenever $\{x_n\}$ is a sequence converging to x in X, then $\{x_n\}$ is eventually in P.

Definition 1.3. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X. Assume that \mathcal{P} satisfies the following conditions (a) and (b) for every $x \in X$.

- (a) \mathcal{P}_x is a network at x.
- (b) If $P_1, P_2 \in \mathcal{P}_x$, then there exists $P \in \mathcal{P}_x$ such that $P \subset P_1 \cap P_2$.
- (1) \mathcal{P} is a *weak base* of X [3], if for $G \subset X$, G is open in X and every $x \in G$, there exists $P \in \mathcal{P}_x$ such that $P \subset G$; \mathcal{P}_x is said to be a weak neighborhood base at x.
- (2) \mathcal{P} is an *sn-network* for X [10], if each element of \mathcal{P}_x is a sequential neighborhood of x for all $x \in X$; \mathcal{P}_x is said to be an *sn*-network at x.

Definition 1.4. Let X be a space. Then

- (1) X is gf-countable [3] (resp., snf-countable [6]), if X has a weak base (resp., sn-network) $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that each \mathcal{P}_x is countable;
- (2) X is g-metrizable [17], if X is regular and has a σ -locally finite weak base;
- (3) X is sequential [5], if whenever A is a non-closed subset of X, then there is a sequence in A converging to a point not in A.

Remark 1.5. (1) Each g-metrizable space or gf-countable space is sequential. (2) A space X is gf-countable if and only if it is sequential and snf-countable.

Definition 1.6. Let $f: X \longrightarrow Y$ be a map. Then

- (1) f is a compact map [4], if each $f^{-1}(y)$ is compact in X;
- (2) f is a boundary-compact map [4], if each $\partial f^{-1}(y)$ is compact in X;
- (3) f is a weak-open map [18], if there exists a weak base $\mathcal{P} = \bigcup \{\mathcal{P}_y : y \in Y\}$ for Y, and for $y \in Y$, there exists $x_y \in f^{-1}(y)$ such that for each open neighborhood U of $x_y, P_y \subset f(U)$ for some $P_y \in \mathcal{P}_y$;
- (4) f is an 1-sequence-covering map [10], if for each $y \in Y$, there is $x_y \in f^{-1}(y)$ such that whenever $\{y_n\}$ is a sequence converging to y in Y, there is a sequence $\{x_n\}$ converging to x_y in X with $x_n \in f^{-1}(y_n)$ for every $n \in \mathbb{N}$;
- (5) f is a sequence-covering map [16], if every convergent sequence of Y is the image of some convergent sequence of X;
- (6) f is a quotient map [4], if whenever $f^{-1}(U)$ is open in X, then U is open in Y.

Remark 1.7. (1) Each compact map is a compact-boundary map.

- (2) Each 1-sequence-covering map is a sequence-covering map.
- (3) Each closed map is a quotient map.

Definition 1.8 ([7]). A function $g : \mathbb{N} \times X \longrightarrow \mathcal{P}(X)$ is a CWC-map, if it satisfies the following conditions:

- (1) $x \in g(n, x)$ for all $x \in X$ and $n \in \mathbb{N}$;
- (2) $g(n+1,x) \subset g(n,x)$ for all $n \in \mathbb{N}$;
- (3) $\{g(n, x) : n \in \mathbb{N}\}\$ is a weak neighborhood base at x for all $x \in X$.

2. Main results

Theorem 2.1. Each sequence-covering and boundary-compact map on *g*-metrizable spaces is 1-sequence-covering.

PROOF: Let $f: X \longrightarrow Y$ be a sequence-covering and boundary-compact map and X be a g-metrizable space. Firstly, we prove that Y is snf-countable. In fact, since X is g-metrizable, it follows from Theorem 2.6 in [20] that there exists a CWC-map g on X satisfying that $y_n \to x$ whenever $\{x_n\}, \{y_n\}$ are two sequences in X such that $x_n \to x$ and $y_n \in g(n, x_n)$ for all $n \in \mathbb{N}$. For each $y \in Y$ and $n \in \mathbb{N}$, we put

$$P_{y,n} = f\left(\bigcup\{g(n,x) : x \in \partial f^{-1}(y)\}\right), \text{ and } \mathcal{P}_y = \{P_{y,n} : n \in \mathbb{N}\}$$

Then each \mathcal{P}_y is countable and $P_{y,n+1} \subset P_{y,n}$ for all $y \in Y$ and $n \in \mathbb{N}$. Furthermore, we have

(1) \mathcal{P}_y is a network at y. Indeed, let $y \in U$ with U open in Y. Then there exists $n \in \mathbb{N}$ such that

$$\bigcup \{g(n,x): x \in \partial f^{-1}(y)\} \subset f^{-1}(U).$$

If not, for each $n \in \mathbb{N}$, there exist $x_n \in \partial f^{-1}(y)$ and $z_n \in X$ such that $z_n \in g(n, x_n) - f^{-1}(U)$. Since X is g-metrizable, it follows that each compact subset of X is metrizable. Since $\{x_n\} \subset \partial f^{-1}(y)$ and f is a boundary-compact map, there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $x_{n_k} \to x \in \partial f^{-1}(y)$. Now, for each $i \in \mathbb{N}$, we put

$$a_{i} = \begin{cases} x_{n_{1}} & \text{if } i \leq n_{1} \\ x_{n_{k+1}} & \text{if } n_{k} < i \leq n_{k+1}; \end{cases}$$
$$b_{i} = \begin{cases} z_{n_{1}} & \text{if } i \leq n_{1} \\ z_{n_{k+1}} & \text{if } n_{k} < i \leq n_{k+1}. \end{cases}$$

Then $a_i \to x$. Because $g(n+1,x) \subset g(n,x)$ for all $x \in X$ and $n \in \mathbb{N}$, it implies that $b_i \in g(i,a_i)$ for all $i \in \mathbb{N}$. By the property of g, it implies that $b_i \to x$. Thus, $z_{n_k} \to x$. This contradicts that $f^{-1}(U)$ is a neighborhood of x and $z_{n_k} \notin f^{-1}(U)$ for all $k \in \mathbb{N}$. Therefore, $P_{y,n} \subset U$, and \mathcal{P}_y is a network at y.

(2) Let $P_{y,m}$, $P_{y,n} \in \mathcal{P}_y$. If we take $k = \max\{m, n\}$, then $P_{y,k} \subset P_{y,m} \cap P_{y,n}$.

(3) Each element of \mathcal{P}_y is a sequential neighborhood of y. Let $P_{y,n} \in \mathcal{P}_y$ and $\{y_n\}$ be a sequence converging to y in Y. Since f is sequence-covering, $\{y_n\}$ is an image of some sequence converging to $x \in \partial f^{-1}(y)$. On the other hand, since g(n, x) is a weak neighborhood of x, $\{y_n\}$ is eventually in g(n, x). This implies that $\{y_n\}$ is eventually in $P_{y,n}$. Therefore, $P_{y,n}$ is a sequential neighborhood of y.

L.Q. Tuyen

Therefore, $\bigcup \{ \mathcal{P}_y : y \in Y \}$ is an *sn*-network for X, and Y is an *snf*-countable space.

Next, let $\mathcal{B} = \bigcup \{ \mathcal{B}_x : x \in X \}$ be a σ -locally finite weak base for X. We prove that for each non-isolated point $y \in Y$, there exists $x_y \in \partial f^{-1}(y)$ such that for each $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Otherwise, there exists a non-isolated point $y \in Y$ so that for each $x \in \partial f^{-1}(y)$, there exists $B_x \in \mathcal{B}_x$ such that $P \not\subset f(B_x)$ for all $P \in \mathcal{P}_y$. Since \mathcal{B} is a σ -locally finite weak base and $\partial f^{-1}(y)$ is compact, it follows that $\{B_x : x \in \partial f^{-1}(y)\}$ is countable. Assume that $\{B_x : x \in \partial f^{-1}(y)\} = \{B_m : m \in \mathbb{N}\}$. Hence, for each $m, n \in \mathbb{N}$, there exists $x_{n,m} \in P_{y,n} - f(B_m)$. For $n \geq m$, we denote $y_k = x_{n,m}$ with k = m + n(n-1)/2. Since \mathcal{P}_y is a network at y and $P_{y,n+1} \subset P_{y,n}$ for all $n \in \mathbb{N}$, $\{y_k\}$ is a sequence converging to y in Y. On the other hand, because f is a sequence-covering map, $\{y_k\}$ is an image of some sequence $\{x_n\}$ converging to $x \in \partial f^{-1}(y)$ in X. Furthermore, since $B_x \in \{B_m : m \in \mathbb{N}\}$, there exists $m_0 \in \mathbb{N}$ such that $B_x = B_{m_0}$. Because B_{m_0} is a weak neighborhood of x, $\{x\} \bigcup \{x_k : k \ge k_0\} \subset B_{m_0} \text{ for some } k_0 \in \mathbb{N}. \text{ Thus, } \{y\} \bigcup \{y_k : k \ge k_0\} \subset f(B_{m_0}).$ But if we take $k \geq k_0$, then there exists $n \geq m_0$ such that $y_k = x_{n,m_0}$, and it implies that $x_{n,m_0} \in f(B_{m_0})$. This contradicts to $x_{n,m_0} \in P_{y,n} - f(B_{m_0})$.

We now prove that f is an 1-sequence-covering map. Suppose $y \in Y$. By the above proof there is $x_y \in \partial f^{-1}(y)$ such that whenever $B \in \mathcal{B}_{x_y}$, there exists $P \in \mathcal{P}_y$ satisfying $P \subset f(B)$. Let $\{y_n\}$ be a sequence in Y, which converges to y. Since \mathcal{B}_{x_y} is a weak neighborhood base at x_y , we can choose a decreasing countable network $\{B_{y,n} : n \in \mathbb{N}\} \subset \mathcal{B}_{x_y}$ at x_y . We choose a sequence $\{z_n\}$ in Xas follows.

Since $B_{y,n} \in \mathcal{B}_{x_y}$, by the above argument, there exists $P_{y,k_n} \in \mathcal{P}_y$ satisfying $P_{y,k_n} \subset f(B_{y,n})$ for all $n \in \mathbb{N}$. On the other hand, since each element of \mathcal{P}_y is a sequential neighborhood of y, it follows that for each $n \in \mathbb{N}$, $f(B_{y,n})$ is a sequential neighborhood of y in Y. Hence, for each $n \in \mathbb{N}$, there exists $i_n \in \mathbb{N}$ such that $y_i \in f(B_{y,n})$ for every $i \geq i_n$. Assume that $1 < i_n < i_{n+1}$ for each $n \in \mathbb{N}$. Then for each $j \in \mathbb{N}$, we take

$$z_j = \begin{cases} z_j \in f^{-1}(y_j) & \text{if } j < i_1 \\ z_{j,n} \in f^{-1}(y_j) \cap B_{y,n} & \text{if } i_n \le j < i_{n+1}. \end{cases}$$

If we put $S = \{z_j : j \ge 1\}$, then S converges to x_y in X, and $f(S) = \{y_n\}$. Therefore, f is 1-sequence-covering.

Remark 2.2. By Theorem 2.1, we get an affirmative answer to Question 1.1.

Corollary 2.3. Each sequence-covering quotient and boundary-compact map on *g*-metrizable spaces is weak-open.

PROOF: Let $f: X \longrightarrow Y$ be a sequence-covering quotient and boundary-compact map and X be a g-metrizable space. By Theorem 2.1, f is 1-sequence-covering. Since f is quotient and X is sequential, f is weak-open by Corollary 3.5 in [18]. \Box

By Theorem 2.1 and Remark 1.7(1), the following corollaries hold.

Corollary 2.4. Each sequence-covering and compact map on *g*-metrizable spaces is 1-sequence-covering.

Corollary 2.5 ([8, Theorem 2.1]). Each sequence-covering and boundary-compact map on metric spaces is 1-sequence-covering.

Corollary 2.6 ([9, Theorem 4.5]). Each closed sequence-covering map on *g*-metrizable spaces is 1-sequence-covering.

PROOF: Let $f : X \longrightarrow Y$ be a closed sequence-covering map and X be a gmetrizable space. By Lemma 3.1 in [15], Y is gf-countable. Furthermore, since Y is gf-countable and f is a closed map, it follows from Corollary 8 in [14] and Corollary 10 in [19] that Y contains no closed copy of S_{ω} . By Lemma 3.2 in [15], f is a boundary-compact map. Therefore, f is 1-sequence-covering by Theorem 2.1.

By Corollary 2.6, we have the following corollary.

Corollary 2.7 ([11, Theorem 3.4.6]). Each closed sequence-covering map on metric spaces is 1-sequence-covering.

Corollary 2.8. Each closed sequence-covering map on g-metrizable spaces is weak-open.

PROOF: Let $f : X \longrightarrow Y$ be a closed sequence-covering map and X be a gmetrizable space. It follows from Corollary 2.6 that f is 1-sequence-covering. Since f is closed and X is sequential, f is weak-open by Corollary 3.5 in [18]. \Box

Acknowledgment. The author would like to express their thanks to referee for his/her helpful comments and valuable suggestions.

References

- An T.V., Tuyen L.Q., Further properties of 1-sequence-covering maps, Comment. Math. Univ. Carolin. 49 (2008), no. 3, 477–484.
- [2] An T.V., Tuyen L.Q., On π-images of separable metric spaces and a problem of Shou Lin, Mat. Vesnik, (2011), to appear.
- [3] Arhangel'skii A.V., Mappings and spaces, Russian Math. Surveys 21 (1966), no. 4, 115–162.
- [4] Engelking R., General Topology (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [5] Franklin S.P., Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115.
- [6] Ge Y., Characterizations of sn-metrizable spaces, Publ. Inst. Math. (Beograd) (N.S) 74 (88) (2003), 121–128.
- [7] Lee K.B., On certain g-first countable spaces, Pacific J. Math. 65 (1976), no. 1, 113–118.
- [8] Lin F.C., Lin S., On sequence-covering boundary compact maps of metric spaces, Adv. Math. (China) 39 (2010), no. 1, 71–78.
- [9] Lin F.C., Lin S., Sequence-covering maps on generalized metric spaces, arXiv: 1106.3806.
- [10] Lin S., On sequence-covering s-mappings, Adv. Math. (China) 25 (1996), no. 6, 548–551.
- [11] Lin S., Point-Countable Covers and Sequence-Covering Mappings, Chinese Science Press, Beijing, 2002.

L.Q. Tuyen

- [12] Lin S., Liu C., On spaces with point-countable cs-networks, Topology Appl. 74 (1996), 51–60.
- [13] Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109 (2001), 301–314.
- [14] Lin S., Tanaka Y., Point-countable k-networks, closed maps, and related results, Topology Appl. 59 (1994), 79–86.
- [15] Liu C., On weak bases, Topology Appl. 150 (2005), 91-99.
- [16] Siwiec F., Sequence-covering and countably bi-quotient maps, General Topology Appl. 1 (1971), 143–154.
- [17] Siwiec F., On defining a space by a weak base, Pacific J. Math. 52 (1974), 233-245.
- [18] Xia S., Characterizations of certain g-first countable spaces, Adv. Math. 29 (2000), 61–64.
- [19] Yan P., Lin S., Point-countable k-networks, cs*-network and α₄-spaces, Topology Proc. 24 (1999), 345–354.
- [20] Yan P., Lin S., CWC-mappings and metrization theorems, Adv. Math. (China) 36 (2007), no. 2, 153–158.
- [21] Yan P.F., Lin S., Jiang S.L., Metrizability is preserved by closed sequence-covering maps, Acta Math. Sinica 47 (2004), no. 1, 87–90.

DEPARTMENT OF MATHEMATICS, DA NANG UNIVERSITY, VIETNAM

E-mail: luongtuyench12@yahoo.com

(Received February 11, 2012)