On generalized *f*-harmonic morphisms

A. MOHAMMED CHERIF, DJAA MUSTAPHA

Abstract. In this paper, we study the characterization of generalized *f*-harmonic morphisms between Riemannian manifolds. We prove that a map between Riemannian manifolds is an *f*-harmonic morphism if and only if it is a horizontally weakly conformal map satisfying some further conditions. We present new properties generalizing Fuglede-Ishihara characterization for harmonic morphisms ([Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) **28** (1978), 107–144], [Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. **19** (1979), no. 2, 215–229]).

Keywords: f-harmonic morphisms; f-harmonic maps

Classification: 53C43, 58E20

1. Introduction

Consider a smooth map $\varphi : (M, g) \longrightarrow (N, h)$ between Riemannian manifolds and let $f : M \times N \longrightarrow (0, +\infty)$ be a smooth positive function. The map φ is said to be *f*-harmonic (in a generalized sense) if it is a critical point of the *f*-energy functional

(1.1)
$$E_f(\varphi) = \frac{1}{2} \int_M f(x,\varphi(x)) |d\varphi|^2 v_g,$$

The Euler-Lagrange equation associated to the f-energy functional is

(1.2)
$$\tau_f(\varphi) \equiv f_{\varphi}\tau(\varphi) + d\varphi(\operatorname{grad}^M f_{\varphi}) - e(\varphi)(\operatorname{grad}^N f) \circ \varphi = 0,$$

where $f_{\varphi}: M \longrightarrow (0, +\infty)$ is a smooth positive function defined by

(1.3)
$$f_{\varphi}(x) = f(x, \varphi(x)), \quad \forall x \in M,$$

 $\tau(\varphi) = \operatorname{trace}_g \nabla d\varphi$ is the tension field of φ , and $e(\varphi) = \frac{1}{2} |d\varphi|^2$ is the energy density of φ . $\tau_f(\varphi)$ is called the *f*-tension field of φ ([4]).

In particular, if $\varphi : M \longrightarrow N$ has no critical points, i.e. $|d_x \varphi| \neq 0$, then harmonic maps, *p*-harmonic maps and *F*-harmonic maps ([1]) are *f*-harmonic maps with f = 1, $f = |d\varphi|^{p-2}$ and $f = F'(\frac{|d\varphi|^2}{2})$ respectively. Let $f_1 : M \longrightarrow (0, \infty)$ be a smooth function. If $f(x, y) = f_1(x)$ for all $(x, y) \in$

Let $f_1: M \longrightarrow (0, \infty)$ be a smooth function. If $f(x, y) = f_1(x)$ for all $(x, y) \in M \times N$, then $\tau_f(\varphi) = \tau_{f_1}(\varphi) = f_1\tau(\varphi) + d\varphi(\operatorname{grad}^M f_1)$. Moreover, $\varphi: M \longrightarrow N$

is f-harmonic if and only if it is f_1 -harmonic in the sense of A. Lichnerowicz [9] and N. Course [3].

The identity map $Id: (\mathbb{R}^m, \langle \cdot, \cdot \rangle_{\mathbb{R}^m}) \longrightarrow (\mathbb{R}^m, \langle \cdot, \cdot \rangle_{\mathbb{R}^m})$ is *f*-harmonic if it satisfies the system of differential equation

(1.4)
$$\frac{\partial f}{\partial x^i} + \frac{2-m}{2}\frac{\partial f}{\partial y^i} = 0,$$

for all i = 1, ..., m, where $f \in C^{\infty}(\mathbb{R}^m \times \mathbb{R}^m)$ be a smooth positive function. Let $F \in C^{\infty}(\mathbb{R}^m)$ be a smooth positive function, then the function of type $f(x^1, ..., x^m, y^1, ..., y^m) = F(y^1 - \frac{2-m}{2}x^1, ..., y^m - \frac{2-m}{2}x^m)$ satisfies the system of differential equation (1.4).

For more details and examples of f-harmonic maps (in a generalized sense), we can refer to [4] and [5].

2. *f*-harmonic morphisms

Let $\varphi : (M^m, g) \longrightarrow (N^n, h)$ be a smooth mapping between Riemannian manifolds. The critical set of φ is the set $C_{\varphi} = \{x \in M \mid d_x \varphi = 0\}$. The map φ is said to be horizontally weakly conformal or semi-conformal if for each $x \in M \setminus C_{\varphi}$, the restriction of $d_x \varphi$ to \mathcal{H}_x is surjective and conformal, where the horizontal space \mathcal{H}_x is the orthogonal complement of $\mathcal{V}_x = Ker d_x \varphi$. The horizontal conformality of φ implies that there exists a function $\lambda : M \setminus C_{\varphi} \longrightarrow \mathbb{R}_+$ such that for all $x \in M \setminus C_{\varphi}$ and $X, Y \in \mathcal{H}_x$

(2.1)
$$h(d_x\varphi(X), d_x\varphi(Y)) = \lambda(x)^2 g(X, Y).$$

The map φ is horizontally weakly conformal at x with dilation $\lambda(x)$ if and only if in any local coordinates (y^{α}) on a neighbourhood of $\varphi(x)$,

(2.2)
$$g(\operatorname{grad}^M \varphi^{\alpha}, \operatorname{grad}^M \varphi^{\beta}) = \lambda^2(h^{\alpha\beta} \circ \varphi) \qquad (\alpha, \beta = 1, \dots, n).$$

Let $f: M \times \mathbb{R} \longrightarrow (0, +\infty), (x, t) \longmapsto f(x, t)$ be a smooth function.

Definition 2.1. A C^2 -function $u: U \longrightarrow \mathbb{R}$ defined on an open subset U of M is called f-harmonic if

(2.3)
$$\Delta_f^M u \equiv f_u \,\Delta^M u + du(\operatorname{grad}^M f_u) - e(u) \,(f')_u = 0,$$

where $f_u: M \longrightarrow (0, +\infty)$ is a smooth function defined by

(2.4)
$$f_u(x) = f(x, u(x)), \quad x \in U,$$

 $(f')_u: M \longrightarrow (0, +\infty)$ is a smooth function defined by

(2.5)
$$(f')_u(x) = \frac{\partial f}{\partial t}(x, u(x)), \quad x \in U.$$

Definition 2.2. The map $\varphi : (M, g) \longrightarrow (N, h)$ is called a *f*-harmonic morphism if, for every harmonic function $v : V \longrightarrow \mathbb{R}$ defined on an open subset V of N with $\varphi^{-1}(V)$ non-empty, the composition $v \circ \varphi$ is *f*-harmonic on $\varphi^{-1}(V)$.

Theorem 2.1. Let $\varphi : (M^m, g) \longrightarrow (N^n, h)$ be a smooth map. Let $f : M \times \mathbb{R} \longrightarrow (0, +\infty)$ be a smooth function. Then, the following are equivalent:

- (1) φ is an *f*-harmonic morphism;
- (2) φ is a horizontally weakly conformal with dilation λ satisfying

(2.6)
$$f_{\varphi^{\alpha}} \tau(\varphi)^{\alpha} + g(\operatorname{grad}^{M} f_{\varphi^{\alpha}}, \operatorname{grad}^{M} \varphi^{\alpha}) - \frac{1}{2} \lambda^{2} (f')_{\varphi^{\alpha}} (h^{\alpha \alpha} \circ \varphi) = 0,$$

for all $\alpha = 1, ..., n$ and in any local coordinates (y^{α}) on N;

(3) there exists a smooth positive function λ on M such that

$$\Delta_f^M(v \circ \varphi) = f_{v \circ \varphi} \,\lambda^2 \,(\Delta^N v) \circ \varphi,$$

for every smooth function $v: V \longrightarrow \mathbb{R}$ defined on an open subset V of N.

We will need the following lemma to prove the theorem.

Lemma 2.1 ([8]). Let y_0 be a point in N^n , let (y^{γ}) be normal coordinates on N centered at y_0 and let $\{c_{\gamma}, c_{\alpha\beta}\}_{\alpha,\beta,\gamma=1}^n$ be constants with $c_{\alpha\beta} = c_{\beta\alpha}$ and $\sum_{\alpha} c_{\alpha\alpha} = 0$. Then there exists a neighborhood V of y_0 in N and a harmonic function $v: V \longrightarrow \mathbb{R}$ such that

(2.7)
$$\frac{\partial v}{\partial y^{\alpha}}(y_0) = c_{\alpha}, \quad \frac{\partial^2 v}{\partial y^{\alpha} \partial y^{\beta}}(y_0) = c_{\alpha\beta},$$

for all $\alpha, \beta, \gamma = 1, \ldots, n$.

PROOF OF THEOREM 2.1: Suppose $\varphi : (M^m, g) \longrightarrow (N^n, h)$ is a *f*-harmonic morphism. If $x_0 \in M$, consider systems of local coordinates (x^i) and (y^{α}) around $x_0, y_0 = \varphi(x_0)$, respectively, where we assume that (y^{α}) are normal, centered at y_0 . To prove the horizontal conformality of φ , we apply Lemma 2.1, that is, we may for every sequence $(c_{\alpha\beta})^n_{\alpha,\beta=1}$ with $c_{\alpha\beta} = c_{\beta\alpha}$ and $\sum_{\alpha} c_{\alpha\alpha} = 0$ choose a harmonic function v such that

(2.8)
$$\frac{\partial v}{\partial y^{\alpha}}(y_0) = 0, \quad \frac{\partial^2 v}{\partial y^{\alpha} \partial y^{\beta}}(y_0) = c_{\alpha\beta},$$

for all $\alpha, \beta = 1, ..., n$. By assumption, the function $v \circ \varphi$ is *f*-harmonic in a neighbourhood of x_0 , so by Definition 2.1

(2.9)
$$\begin{array}{l} 0 = \Delta_f^M(v \circ \varphi) \\ = f_{v \circ \varphi} \, \Delta^M(v \circ \varphi) + dv (d\varphi (\operatorname{grad}^M f_{v \circ \varphi})) - e(v \circ \varphi) \, (f')_{v \circ \varphi}. \end{array}$$

In particular, since at x_0 we have

(2.10)
$$dv(d\varphi(\operatorname{grad}^M f_{v\circ\varphi})) = 0,$$

we get

(2.11)
$$e(v \circ \varphi) = 0.$$

By (2.9), (2.10) and (2.11) we have

(2.12)
$$0 = \Delta^{M}(v \circ \varphi)$$
$$= dv(\tau(\varphi)) + \operatorname{trace}_{g} \nabla dv(d\varphi, d\varphi)$$
$$= \operatorname{trace}_{g} \nabla dv(d\varphi, d\varphi).$$

Since at x_0 we have

(2.13)
$$\nabla dv = \sum_{\alpha,\beta} \frac{\partial^2 v}{\partial y^{\alpha} \partial y^{\beta}} dy^{\alpha} \otimes dy^{\beta} = \sum_{\alpha,\beta} c_{\alpha\beta} dy^{\alpha} \otimes dy^{\beta},$$

by (2.8), (2.12) and (2.13), we obtain

(2.14)
$$0 = \sum_{\alpha,\beta} g(\operatorname{grad}^{M} \varphi^{\alpha}, \operatorname{grad}^{M} \varphi^{\beta}) c_{\alpha\beta}$$
$$= \sum_{\alpha} g(\operatorname{grad}^{M} \varphi^{\alpha}, \operatorname{grad}^{M} \varphi^{\alpha}) c_{\alpha\alpha} + \sum_{\alpha \neq \beta} g(\operatorname{grad}^{M} \varphi^{\alpha}, \operatorname{grad}^{M} \varphi^{\beta}) c_{\alpha\beta}.$$

We subtract

(2.15)
$$0 = \sum_{\alpha} g(\operatorname{grad}^{M} \varphi^{1}, \operatorname{grad}^{M} \varphi^{1}) c_{\alpha\alpha}.$$

By (2.14) and (2.15), we obtain

(2.16)
$$0 = \sum_{\alpha} \left[g(\operatorname{grad}^{M} \varphi^{\alpha}, \operatorname{grad}^{M} \varphi^{\alpha}) - g(\operatorname{grad}^{M} \varphi^{1}, \operatorname{grad}^{M} \varphi^{1}) \right] c_{\alpha\alpha} + \sum_{\alpha \neq \beta} g(\operatorname{grad}^{M} \varphi^{\alpha}, \operatorname{grad}^{M} \varphi^{\beta}) c_{\alpha\beta}.$$

Let $\alpha_0 \neq 1$ and let

$$c_{\alpha\beta} = \begin{cases} 1, & \text{if } \alpha = \beta = 1; \\ -1, & \text{if } \alpha = \beta = \alpha_0; \\ 0, & \text{if } \alpha = \beta \neq 1, \alpha_0; \\ 0, & \text{if } \alpha \neq \beta. \end{cases}$$

Then by (2.16), we have

(2.17)
$$g(\operatorname{grad}^M \varphi^{\alpha_0}, \operatorname{grad}^M \varphi^{\alpha_0}) = g(\operatorname{grad}^M \varphi^1, \operatorname{grad}^M \varphi^1).$$

Then

(2.18)
$$g(\operatorname{grad}^{M}\varphi^{\alpha}, \operatorname{grad}^{M}\varphi^{\alpha}) = g(\operatorname{grad}^{M}\varphi^{1}, \operatorname{grad}^{M}\varphi^{1}),$$

for all $\alpha = 1, \ldots, n$. Let $\alpha_0 \neq \beta_0$ and let

$$c_{\alpha\beta} = \begin{cases} 1, & \text{if } \alpha = \alpha_0 \text{ and } \beta = \beta_0; \\ 0, & \text{if } \alpha \neq \alpha_0 \text{ or } \beta \neq \beta_0; \\ 0, & \text{if } \alpha = \beta. \end{cases}$$

Then by (2.16), we have

(2.19)
$$g(\operatorname{grad}^M \varphi^{\alpha_0}, \operatorname{grad}^M \varphi^{\beta_0}) = 0$$

So we have

(2.20)
$$g(\operatorname{grad}^M \varphi^{\alpha}, \operatorname{grad}^M \varphi^{\beta}) = 0,$$

for all $\alpha \neq \beta = 1, ..., n$. It follows from (2.18) and (2.20) that the *f*-harmonic morphism φ is horizontally weakly conformal map

(2.21)
$$g(\operatorname{grad}^{M}\varphi^{\alpha}, \operatorname{grad}^{M}\varphi^{\beta}) = \lambda^{2} \,\delta_{\alpha\beta},$$

for all $\alpha, \beta = 1, \ldots, n$. For every C^2 -function $v : V \longrightarrow \mathbb{R}$ defined on an open subset V of N, we have

(2.22)
$$\Delta_{f}^{M}(v \circ \varphi) = f_{v \circ \varphi} \Delta^{M}(v \circ \varphi) + dv(d\varphi(\operatorname{grad}^{M} f_{v \circ \varphi})) - e(v \circ \varphi)(f')_{v \circ \varphi}$$
$$= f_{v \circ \varphi} dv(\tau(\varphi)) + f_{v \circ \varphi} \operatorname{trace}_{g} \nabla dv(d\varphi, d\varphi)$$
$$+ dv(d\varphi(\operatorname{grad}^{M} f_{v \circ \varphi})) - e(v \circ \varphi)(f')_{v \circ \varphi}.$$

Since φ is horizontally weakly conformal map, we obtain

(2.23)
$$\Delta_f^M(v \circ \varphi) = f_{v \circ \varphi} dv(\tau(\varphi)) + f_{v \circ \varphi} \lambda^2 (\Delta^N v) \circ \varphi + dv(d\varphi(\operatorname{grad}^M f_{v \circ \varphi})) - e(v \circ \varphi)(f')_{v \circ \varphi}$$

By choosing v to be a harmonic function and since φ is an f-harmonic morphism, we conclude that

$$f_{v\circ\varphi}dv(\tau(\varphi)) + dv(d\varphi(\operatorname{grad}^M f_{v\circ\varphi})) - e(v\circ\varphi)(f')_{v\circ\varphi} = 0,$$

i.e. in any local coordinates (y^{α}) on N, we have

$$f_{\varphi^{\alpha}} \tau(\varphi)^{\alpha} + g(\operatorname{grad}^{M} f_{\varphi^{\alpha}}, \operatorname{grad}^{M} \varphi^{\alpha}) - \frac{1}{2}\lambda^{2}(f')_{\varphi^{\alpha}}(h^{\alpha\alpha} \circ \varphi) = 0,$$

for all $\alpha = 1, \ldots, n$.

Thus, we obtain the implication $(1) \implies (2)$. Furthermore, the implication $(2) \implies (3)$ follows from the formula (2.23). The implication $(3) \implies (1)$ is trivial.

Example 2.1. The identity map $Id : (\mathbb{R}^m, \langle \cdot, \cdot \rangle_{\mathbb{R}^m}) \longrightarrow (\mathbb{R}^m, \langle \cdot, \cdot \rangle_{\mathbb{R}^m})$ is *f*-harmonic morphism if *f* satisfies the system of differential equation

(2.24)
$$\frac{\partial f}{\partial x^i} + \frac{1}{2}\frac{\partial f}{\partial t} = 0,$$

for all i = 1, ..., m, where $f \in C^{\infty}(\mathbb{R}^m \times \mathbb{R})$ is a smooth positive function. Let $F \in C^{\infty}(\mathbb{R}^m)$ be a smooth positive function, then the function of the type $f(x^1, ..., x^m, t) = F(t - \frac{1}{2}x^1, ..., t - \frac{1}{2}x^m)$, satisfies the system of differential equation (2.24).

If f(x,t) = 1 for all $(x,t) \in M \times \mathbb{R}$, the condition (2.6) is equivalent to the condition $\tau(\varphi) = 0$ i.e. φ is harmonic. We arrive at the following corollary.

Corollary 2.1 ([6], [8]). A smooth map $\varphi : M \longrightarrow N$ between Riemannian manifolds is a harmonic morphism if and only if $\varphi : M \longrightarrow N$ is both harmonic and horizontally weakly conformal.

If $f(x,t) = f_1(x)$ for all $(x,t) \in M \times \mathbb{R}$, where $f_1 \in C^{\infty}(M)$ is a smooth positive function, the condition (2.6) is equivalent to the condition $f_1 \tau(\varphi) + d\varphi(\operatorname{grad}^M f_1) = 0$ i.e. φ is f_1 -harmonic. We arrive at the following corollary.

Corollary 2.2 ([10]). A smooth map $\varphi : M \longrightarrow N$ between Riemannian manifolds is a f_1 -harmonic morphism if and only if $\varphi : M \longrightarrow N$ is both f_1 -harmonic and horizontally weakly conformal with $f_1 \in C^{\infty}(M)$ being a smooth positive function.

Let $f: M \times \mathbb{R} \longrightarrow (0, +\infty), (x, t) \longmapsto f(x, t)$ be a smooth function.

Corollary 2.3. Let $\varphi : M \longrightarrow N$ be an *f*-harmonic morphism between Riemannian manifolds with dilation λ_1 and $\psi : N \longrightarrow P$ a harmonic morphism between Riemannian manifolds with dilation λ_2 . Then the composition $\psi \circ \varphi : M \longrightarrow P$ is an *f*-harmonic morphism with dilation $\lambda_1(\lambda_2 \circ \varphi)$.

PROOF: This follows from the fact that

$$\Delta_f^M(v \circ \varphi) = f_{v \circ \varphi} \,\lambda_1^2 \,(\Delta^N v) \circ \varphi,$$

for every smooth function $v: V \longrightarrow \mathbb{R}$ defined on an open subset V of N, and

$$\Delta^N(u \circ \psi) = \lambda_2^2 \left(\Delta^P u \right) \circ \psi,$$

for every smooth function $u: U \longrightarrow \mathbb{R}$ defined on an open subset U of P. So that

$$\begin{split} \Delta_f^M(u \circ \psi \circ \varphi) &= f_{u \circ \psi \circ \varphi} \lambda_1^2 \left(\Delta^N(u \circ \psi) \right) \circ \varphi \\ &= f_{u \circ \psi \circ \varphi} \lambda_1^2 \left(\lambda_2 \circ \varphi \right)^2 (\Delta^P u) \circ \psi \circ \varphi. \end{split}$$

Corollary 2.4. Let $\varphi : (M, g) \longrightarrow (N, h)$ be a smooth map of two Riemannian manifolds. If $f(x,t) = f_1(x) f_2(t)$ for all $(x,t) \in M \times \mathbb{R}$, where $f_1 \in C^{\infty}(M)$ is a smooth positive function and $f_2 \in C^{\infty}(\mathbb{R})$ is a smooth positive function. Then, the following are equivalent:

- (1) φ is an *f*-harmonic morphism;
- (2) φ is a horizontally weakly conformal with dilation λ satisfying

(2.25)
$$(f_2 \circ \varphi^{\alpha}) \tau_{f_1}(\varphi)^{\alpha} + \frac{1}{2} \lambda^2 f_1(f'_2 \circ \varphi^{\alpha})(h^{\alpha \alpha} \circ \varphi) = 0,$$

for all $\alpha = 1, ..., n$ and in any local coordinates (y^{α}) on N.

PROOF: By Theorem 2.1, the map $\varphi : (M,g) \longrightarrow (N,h)$ is *f*-harmonic morphism if and only if $\varphi : (M,g) \longrightarrow (N,h)$ is a horizontally weakly conformal with dilation λ satisfying the condition

$$f_{\varphi^{\alpha}} \tau(\varphi)^{\alpha} + g(\operatorname{grad}^{M} f_{\varphi^{\alpha}}, \operatorname{grad}^{M} \varphi^{\alpha}) - \frac{1}{2}\lambda^{2}(f')_{\varphi^{\alpha}}(h^{\alpha\alpha} \circ \varphi) = 0,$$

for all $\alpha = 1, ..., n$, and in any local coordinates (y^{α}) on N, i.e.

(2.26)
$$\begin{aligned} f_1(f_2 \circ \varphi^{\alpha}) \, \tau(\varphi)^{\alpha} + f_1 g(\operatorname{grad}^M(f_2 \circ \varphi^{\alpha}), \operatorname{grad}^M \varphi^{\alpha}) \\ &+ (f_2 \circ \varphi^{\alpha}) g(\operatorname{grad}^M f_1, \operatorname{grad}^M \varphi^{\alpha}) - \frac{1}{2} \lambda^2 f_1(f_2' \circ \varphi^{\alpha}) (h^{\alpha \alpha} \circ \varphi) = 0, \end{aligned}$$

because $f_{\varphi^{\alpha}} = f_1(f_2 \circ \varphi^{\alpha}).$

Let $\tau_{f_1}(\varphi) = f_1 \tau(\varphi) + d\varphi(\operatorname{grad}^M f_1)$ be the f_1 -tension field of φ , then one has

(2.27)
$$\tau_{f_1}(\varphi)^{\alpha} = f_1 \tau(\varphi)^{\alpha} + g(\operatorname{grad}^M f_1, \operatorname{grad}^M \varphi^{\alpha}).$$

By (2.26) and (2.27), we obtain

(2.28)
$$(f_2 \circ \varphi^{\alpha}) \tau_{f_1}(\varphi)^{\alpha} + f_1 g(\operatorname{grad}^M(f_2 \circ \varphi^{\alpha}), \operatorname{grad}^M \varphi^{\alpha}) - \frac{1}{2} \lambda^2 f_1(f_2' \circ \varphi^{\alpha})(h^{\alpha \alpha} \circ \varphi) = 0,$$

the second term on the left-hand side of (2.28) is

$$f_1g(\operatorname{grad}^M(f_2 \circ \varphi^{\alpha}), \operatorname{grad}^M \varphi^{\alpha}) = f_1(f_2' \circ \varphi^{\alpha})g(\operatorname{grad}^M \varphi^{\alpha}, \operatorname{grad}^M \varphi^{\alpha})$$
$$= \lambda^2 f_1(f_2' \circ \varphi^{\alpha})(h^{\alpha \alpha} \circ \varphi).$$

In the case where $f_2 = 1$, we recover the result obtained by Y.L. Ou [10] of f_1 -harmonic morphisms (in the sense of A. Lichnerowicz [9] and N. Course [3]).

Proposition 2.1. Let (M, g) be a Riemannian manifold. A smooth map

$$\varphi: (M,g) \longrightarrow (\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbb{R}^n}), \quad x \longmapsto (\varphi^1(x), \dots, \varphi^n(x))$$

is an f-harmonic morphism if and only if its components φ^{α} are f-harmonic functions whose gradients are orthogonal and of the same norm at each point.

PROOF: Let us notice that the condition (2.6) of Theorem 2.1 becomes

$$f_{\varphi^{\alpha}} \Delta^{M} \varphi^{\alpha} + g(\operatorname{grad}^{M} f_{\varphi^{\alpha}}, \operatorname{grad}^{M} \varphi^{\alpha}) - e(\varphi^{\alpha})(f')_{\varphi^{\alpha}} = 0,$$

for all $\alpha = 1, \ldots, n$, i.e. the functions φ^{α} are *f*-harmonic.

Proposition 2.2. Let $\varphi : (M,g) \longrightarrow (\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbb{R}^n})$ be a harmonic morphism of two Riemannian manifolds. Then $\varphi : (M,g) \longrightarrow (\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbb{R}^n})$ is f-harmonic morphism with $f(x,t) = f_1(x) e^{t+c}$ for all $(x,t) \in M \times \mathbb{R}$ and $f_1 \in C^{\infty}(M)$ being a smooth positive function defined by the components of φ as follows

$$f_1 = e^{-\frac{1}{2}(\varphi^1 + \dots + \varphi^n)},$$

where $c \in \mathbb{R}_+$.

PROOF: The map $\varphi : (M, g) \longrightarrow (\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbb{R}^n})$ where $\varphi = (\varphi^1, \ldots, \varphi^n)$ is harmonic morphism if and only if it is harmonic horizontally and weakly conformal with dilation λ . Let $f_1 = e^{-\frac{1}{2}(\varphi^1 + \cdots + \varphi^n)}$, so that

$$\tau_{f_1}(\varphi)^{\alpha} = f_1 \tau(\varphi)^{\alpha} + g(\operatorname{grad}^M f_1, \operatorname{grad}^M \varphi^{\alpha}) = g(\operatorname{grad}^M f_1, \operatorname{grad}^M \varphi^{\alpha}),$$

because φ is harmonic. One has

$$\operatorname{grad}^{M} f_{1} = -\frac{1}{2} e^{-\frac{1}{2}(\varphi^{1} + \dots + \varphi^{n})} (\operatorname{grad}^{M} \varphi^{1} + \dots + \operatorname{grad}^{M} \varphi^{n}) \\ = -\frac{1}{2} f_{1} (\operatorname{grad}^{M} \varphi^{1} + \dots + \operatorname{grad}^{M} \varphi^{n}).$$

So we get

$$\tau_{f_1}(\varphi)^{\alpha} = -\frac{1}{2} f_1 \Big(g(\operatorname{grad}^M \varphi^1, \operatorname{grad}^M \varphi^{\alpha}) + \dots + g(\operatorname{grad}^M \varphi^n, \operatorname{grad}^M \varphi^{\alpha}) \Big).$$

Since φ is horizontally and weakly conformal with dilation λ , we obtain

(2.29)
$$\tau_{f_1}(\varphi)^{\alpha} = -\frac{1}{2}\lambda^2 f_1(\langle \cdot, \cdot \rangle_{\mathbb{R}^n})^{\alpha\alpha} \circ \varphi = -\frac{1}{2}\lambda^2 f_1.$$

Let $f(x,t) = f_1(x) e^{t+c}$ for all $(x,t) \in M \times \mathbb{R}$, where $c \in \mathbb{R}_+$. Then the condition (2.25) is equivalent to (2.29). Finally, by Corollary 2.4 the map φ is *f*-harmonic morphism.

Example 2.2. Let (M, g) be a Riemannian manifold, $\gamma : M \longrightarrow (0, \infty)$ be a smooth function and let $M \times_{\gamma^2} \mathbb{R}^n$ be the warped product equipped with the Riemannian metric $G_{\gamma} = g + \gamma^2 \langle \cdot, \cdot \rangle_{\mathbb{R}^n}$. The natural projection

$$\pi_2: (M \times_{\gamma^2} \mathbb{R}^n, G_\gamma) \longrightarrow (\mathbb{R}^n, \langle \cdot, \cdot \rangle_{\mathbb{R}^n}),$$

is harmonic morphism ([2]). According to Proposition 2.2 the natural projection π_2 is *f*-harmonic morphism with

$$f(x, y_1, \dots, y_n, t) = e^{-\frac{1}{2}(y^1 + \dots + y^n) + t + c}, \quad c \in \mathbb{R}_+$$

for all $(x, y_1, \ldots, y_n, t) \in M \times \mathbb{R}^n \times \mathbb{R}$.

Example 2.3. Let $H^m = (\mathbb{R}^{m-1} \times \mathbb{R}^*_+, \frac{1}{x_m^2} \langle \cdot, \cdot \rangle_{\mathbb{R}^m})$. The projection

$$\pi_1: H^m \longrightarrow (\mathbb{R}^{m-1}, \langle \cdot, \cdot \rangle_{\mathbb{R}^{m-1}}), \quad (x_1, \dots, x_{m-1}, x_m) \longmapsto a(x_1, \dots, x_{m-1}),$$

where $a \in \mathbb{R} \setminus \{0\}$ is harmonic morphism ([2]). According to Proposition 2.2 the projection π_1 is *f*-harmonic morphism with

$$f(x_1, \dots, x_{m-1}, x_m, t) = e^{-\frac{a}{2}(x_1 + \dots + x_{m-1}) + t + c}, \quad c \in \mathbb{R}_+$$

for all $(x_1, \ldots, x_{m-1}, x_m, t) \in H^m \times \mathbb{R}$.

Example 2.4. (1) Let $\varphi : (\mathbb{R}^2 \setminus \{0\}, \langle \cdot, \cdot \rangle_{\mathbb{R}^2}) \longrightarrow (\mathbb{R}^2 \setminus \{0\}, \langle \cdot, \cdot \rangle_{\mathbb{R}^2})$ be defined by

$$\varphi(x,y) = \left(\frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2}\right)$$

Then φ is a horizontally and weakly conformal map with dilation $\lambda(x, y) = \frac{1}{x^2 + y^2}$, and φ is *f*-harmonic morphism with

$$f(x, y, t) = F\left(2t - \frac{x+y}{x^2+y^2}\right),$$

where $F: \mathbb{R} \longrightarrow (0, \infty)$ is a smooth function. Indeed, we have

$$\begin{split} \varphi^{1}(x,y) &= \frac{x}{x^{2} + y^{2}}, \quad \varphi^{2}(x,y) = \frac{y}{x^{2} + y^{2}}, \quad f_{\varphi^{1}}(x,y) = F\left(\frac{x - y}{x^{2} + y^{2}}\right), \\ f_{\varphi^{2}}(x,y) &= F\left(\frac{y - x}{x^{2} + y^{2}}\right), \quad \Delta^{\mathbb{R}^{2}}\varphi^{1} = \Delta^{\mathbb{R}^{2}}\varphi^{2} = 0, \\ \text{grad}^{\mathbb{R}^{2}}\varphi^{1} &= \left(\frac{y^{2} - x^{2}}{(x^{2} + y^{2})^{2}}, -\frac{2xy}{(x^{2} + y^{2})^{2}}\right), \\ \text{grad}^{\mathbb{R}^{2}}\varphi^{2} &= \left(-\frac{2xy}{(x^{2} + y^{2})^{2}}, \frac{x^{2} - y^{2}}{(x^{2} + y^{2})^{2}}\right), \\ \text{grad}^{\mathbb{R}^{2}}f_{\varphi^{1}} &= F'\left(\frac{x - y}{x^{2} + y^{2}}\right)\left(\frac{-x^{2} + y^{2} + 2xy}{(x^{2} + y^{2})^{2}}, -\frac{x^{2} - y^{2} + 2xy}{(x^{2} + y^{2})^{2}}\right), \\ \text{grad}^{\mathbb{R}^{2}}f_{\varphi^{2}} &= F'\left(\frac{y - x}{x^{2} + y^{2}}\right)\left(\frac{x^{2} - y^{2} - 2xy}{(x^{2} + y^{2})^{2}}, \frac{x^{2} - y^{2} + 2xy}{(x^{2} + y^{2})^{2}}\right), \end{split}$$

A.M. Cherif, D. Mustapha

$$\langle \operatorname{grad}^{\mathbb{R}^2} \varphi^1, \operatorname{grad}^{\mathbb{R}^2} f_{\varphi^1} \rangle_{\mathbb{R}^2} = \frac{F'\left(\frac{x-y}{x^2+y^2}\right)}{(x^2+y^2)^2},$$

$$\langle \operatorname{grad}^{\mathbb{R}^2} \varphi^2, \operatorname{grad}^{\mathbb{R}^2} f_{\varphi^2} \rangle_{\mathbb{R}^2} = \frac{F'\left(\frac{y-x}{x^2+y^2}\right)}{(x^2+y^2)^2},$$

$$= e(\varphi^2) = \frac{1}{2(x^2+y^2)^2}, \ (f')_{\varphi^1} = 2F'\left(\frac{x-y}{x^2+y^2}\right), \ (f')_{\varphi^2} = 2F'\left(\frac{y-x}{x^2+y^2}\right).$$

).

By (2.3) the functions φ^1 and φ^2 are *f*-harmonic and by Proposition 2.1 the map φ is *f*-harmonic morphism. With the same method we find that:

(2) Let
$$\psi : (\mathbb{R}^3 \setminus \{0\}, \langle \cdot, \cdot \rangle_{\mathbb{R}^3}) \longrightarrow (\mathbb{R}^3 \setminus \{0\}, \langle \cdot, \cdot \rangle_{\mathbb{R}^3})$$
 be defined by

$$\psi(x, y, z) = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

Then ψ is *f*-harmonic morphism with

$$f(x, y, z, t) = \frac{F\left(2t - \frac{x+y+z}{x^2+y^2+z^2}\right)}{x^2 + y^2 + z^2},$$

where $F : \mathbb{R} \longrightarrow (0, \infty)$ is a smooth function. Here ψ is a horizontally and weakly conformal map with dilation $\lambda(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$.

Remark 2.1. Using Proposition 2.1, we can construct many examples for f-harmonic morphisms (in a generalized sense).

Proposition 2.2 remains true for the map $\varphi : (M, g) \longrightarrow (N, h)$, where N is an open subsets of \mathbb{R}^n and $h = e^{\alpha(y)} \langle \cdot, \cdot \rangle_{\mathbb{R}^n}$ is a metric conformally equivalent to the standard inner product on \mathbb{R}^n .

References

- [1] Ara M., Geometry of F-harmonic maps, Kodai Math. J. 22 (1999), no. 2, 243–263.
- [2] Baird P., Wood J.C., Harmonic Morphisms between Riemannain Manifolds, Clarendon Press, Oxford, 2003.
- [3] Course N., f-harmonic maps which map the boundary of the domain to one point in the target, New York J. Math. 13 (2007), 423–435 (electronic).
- [4] Djaa M., Cherif A.M., Zegga K., Ouakkas S., On the generalized of harmonic and biharmonic maps, Int. Electron. J. Geom. 5 (2012), no. 1, 90–100.
- [5] Mustapha D., Cherif A.M., On the generalized f-biharmonic maps and stress f-bienergy tensor, Journal of Geometry and Symmetry in Physics, JGSP 29 (2013), 65–81.
- [6] Fuglede B., Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier (Grenoble) 28 (1978), 107–144.
- [7] Gudmundsson S., The geometry of harmonic morphisms, University of Leeds, Department of Pure Mathematics, April 1992.
- [8] Ishihara T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ. 19 (1979), no. 2, 215–229.

 $e(\varphi^1) =$

- [9] Lichnerowicz A., Applications harmoniques et variétés Kähleriennes, 1968/1969 Symposia Mathematica, Vol. III (INDAM, Rome, 1968/69), pp. 341–402, Academic Press, London.
- [10] Ou Y.L., On f-harmonic morphisms between Riemannian manifolds, arxiv:1103.5687, Chinese Ann. Math., series B, to appear.
- [11] Ouakkas S., Nasri R., Djaa M., On the f-harmonic and f-biharmonic maps, JP J. Geom. Topol. 10 (2010), no. 1, 11–27.

LABORATORY OF GEOMETRY, ANALYSIS, CONTROLE AND APPLICATIONS, SAIDA UNI-VERSITY, ALGERIA

E-mail: Ahmedcherif29@Hotmail.fr

DEPARTMENT OF MATHEMATICS, RELIZANE UNIVERSITY, ALGERIA

E-mail: Djaamustapha@Live.com

(Received March 25, 2013, revised May 29, 2013)