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A note on almost sure convergence

and convergence in measure

P. Kř́ıž, J. Štěpán

Abstract. The present article studies the conditions under which the almost
everywhere convergence and the convergence in measure coincide. An appli-
cation in the statistical estimation theory is outlined as well.
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1. Introduction

Recall the basic concepts from estimation theory.

1. Consider {(Ω,F , Pθ), θ ∈ Θ} a parametric family of probability spaces,
where Θ is an arbitrary set, φ : Θ → R a parametric map.

2. To estimate φ(θ) we are allowed to perform a sequence of observations
Xn : (Ω,F) → (Z,Z) (a Hausdorff topological space with its Borel σ-
algebra)

3. and construct a sequence of measurable maps tn : ZN → R, called a
weakly consistent and strongly consistent estimator of φ(θ) if

tn(X1, X2, . . . ) → φ(θ) in Pθ-probability ∀θ ∈ Θ

and

tn(X1, X2, . . . ) → φ(θ) Pθ-almost surely ∀θ ∈ Θ

respectively.
4. In some cases we prefer to choose estimators {tn} in a suitable set K of

measurable maps tn : ZN → R.
For all this to make sense in mathematical statistics, the choice should

be tn(x1, . . . , xn, xn+1, . . . ) = tn(x1, . . . , xn).

5. The Bayesian approach further considers the parametric space Θ endowed
with a σ-algebra T and an apriori probability measure F .

Our aim is to study circumstances under which a weakly consistent estimator
is a strong one automatically. We shall start with an individual probability ν and
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try to endow a sequence of measurable functions {fn} by an additional property
that makes true rather exotic implication

fn converges in ν-measure =⇒ fn converges ν-a.s.

Our results presented in Sections 2, 3 and 4 complement those by Ionescu Tulcea
in [5] and [6]. Section 5 is a comeback to the estimation problem stated above.

2. Preliminaries

Consider a Hausdorff space S and denote by C(S) and B(S) the space of
continuous and Borel measurable real functions defined on S, respectively. Further
denote by ν a Radon probability on S. For D ⊂ S and K ⊂ B(S) denote the
restriction K|D = {f |D : f ∈ K}.

Definition 2.1. A set K ⊂ B(S) is called uniformly ν-Lusin if

∀ǫ > 0 ∃Dǫ ⊂ S compact : ν(Dǫ) ≥ 1− ǫ, K|Dǫ ⊂ C(Dǫ).

Recall that any countable K is uniformly ν-Lusin and that the uniformly ν-
Lusin property is closed under countable unions.

Definition 2.2. A σ-compact set D ⊂ S, such that ν(D) = 1 and for any
f, g ∈ K ⊂ B(S) the equivalence

f = g ν − a. s. ⇐⇒ f |D = g|D

holds, will be referred to as an SU-set for ν and K (set of uniqueness).

Theorem 2.3. Consider a uniformly ν-Lusin set K ⊂ B(S). Then there exists

an SU-set for ν and K.

Proof: For each n ∈ N consider the compact D1/n from Definition 2.1 and define
a compact Mn = supp(ν|D1/n

) ⊂ D1/n, i.e. the support of ν restricted to D1/n.

Clearly ν(Mn) > 1− 1
n . Now put D =

⋃

n Mn and observe that D is the SU-set.
Obviously D is a σ-compact set with ν(D) = 1 and

f = g ν − a.s. =⇒ f |Mn = g|Mn ν|Mn − a.e. ∀n =⇒

=⇒ f |Mn = g|Mn ∀n =⇒ f |D = g|D.

The argument for the second implication reads:
Since f |Mn , g|Mn ∈ C(Mn), we have

Q = {x ∈ Mn : f |Mn 6= g|Mn} is open in Mn and ν|Mn(Q) = 0.

Because Mn is the support of ν|D1/n
, we have Q = ∅, hence f |Mn = g|Mn .

The converse, i.e. f |D = g|D =⇒ f = g ν − a.s., holds trivially. �

Having a Hausdorff topological space we shall consider the spaces

Cb(S) ⊂ C(S) ⊂ B(S) ⊂ SR,
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where Cb(S) is the Banach space of real, bounded, continuous functions defined
on S (Cb(S) = C(S) if S is a compact space). The space SR will be endowed
with its product topology (the topology of the pointwise convergence) denoted
as Tp = Tp,SR . The Banach space Cb(S) will be considered in its weak topology
Tw = Tw,Cb(S). Finally, having a Radon probability ν on S we shall also deal with
the topology Tν = Tν,B(S) of the convergence in ν-measure on the space B(S).

Agree to write Tp,A, Tw,A and Tν,A for the corresponding subspace topologies,
where A ⊂ SR, A ⊂ Cb(S) and A ⊂ B(S), respectively.

Let us describe convergence in the respective topologies in more detail. Having
real functions fn, f from SR (resp. Cb(S),B(S)) recall that fn → f w.r.t. Tp iff
fn(s) → f(s) for all s ∈ S. Next, the convergence fn → f w.r.t. Tw is defined
as x(fn) → x(f) for all continuous linear functionals x on Cb(S). Recall that for
S being a compact Hausdorff space, fn → f w.r.t. Tw iff the sequence {fn} ⊂
C(S) is bounded in supremum norm and fn(s) → f(s) for each s ∈ S. This
characterisation of weak convergence follows from Riesz representation theorem
(see e.g. [3, p. 265, Corollary IV.6.4]). Finally, recall that fn → f w.r.t. Tν iff

∀ǫ > 0 : lim
n→∞

ν{s : |fn(s)− f(s)| > ǫ} = 0.

Note that for a compact Hausdorff space S, the following relations between the
topologies hold:

(2.1) Tν,C(S) ⊂ Tp,C(S) ⊂ Tw,C(S).

The first inclusion follows from the fact that the convergence in measure ν implies
the convergence ν-almost surely. The second inclusion follows from the fact that
coordinate projections πs(f) := f(s) are continuous linear functionals.

If S is a compact Hausdorff space stress that by saying that a subset K ⊂
C(S) is sequentially relatively weakly compact, we mean that any sequence in K
has a subsequence converging weakly to a limit in C(S). Moreover, if the weak
limits are in K, the set K is called sequentially weakly compact. Recall that the
sequential relative weak compactness and the relative weak compactness (i.e. the
weak closure is weakly compact) coincide by Eberlein-Smuljan theorem (see [3,
p. 430, Theorem V.6.1]).

Finally denote

SC(K) = {f ∈ B(S) : ∃fn ∈ K, fn → f on S}

the set of sequential cluster points of K w.r.t. the Tp-topology in B(S) and agree
that a Radon probability measure ν on S is called self-supporting if supp(ν) = S.

3. Tp compactness and almost sure convergence

We shall suggest some conditions, under which the Cauchy property in ν mea-
sure implies the convergence ν-almost surely.
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Theorem 3.1. Let K ⊂ B(S) be a relatively sequentially Tp,SR-compact, hence

a relatively sequentially Tp,B(S)-compact set. Assume that SC(K) is a set, which

is uniformly ν-Lusin (for example SC(K) ⊂ C(S)). Denote by D an SU-set for

ν and SC(K). If {fn} ⊂ K is a Cauchy sequence in ν-measure, then there is

f ∈ B(S) such that f |D ∈ SC(K|D) and fn → f ν-a.s.

Proof: If {fn} is a Cauchy sequence in ν-measure, then SC(f1|D, f2|D, . . .) is a
singleton set {f0}. The reasoning is as follows:

fnk
|D → g ∈ B(D) on D, fmk

|D → h ∈ B(D) on D ⇒

g = h ν − a.s., because fn|D is Cauchy in measure ν ⇒

g = h on D by Definition 2.2.

Further assume that fn|D 9 f0 on D. Then there is a neighbourhood O(f0) ∈
Tp,B(D) and a subsequence {fnk

|D} such that fnk
|D /∈ O(f0). Consider a subse-

quence {fnki
|D} such that fnki

|D → g0 on D. We get f0 6= g0 distinct functions

in SC(f1|D, f2|D, . . .), which is a contradiction.
Finally, observe that fn|D → f0 on D and thus fn → f := f0 · ID ν-a.s. and

f |D = f0 ∈ SC(K|D). �

Example 3.2. To illustrate the importance of the uniform ν-Lusin property,
recall the well-known example of a sequence convergent in measure that does not
converge a.s. Consider the probability space ([0, 1],B([0, 1]), λ[0,1]). Let kn and
vn satisfy n = kn + 2vn , 0 ≤ kn < 2vn . Define

fn(x) =

{

1, if x ∈ [kn2
−vn , (kn + 1)2−vn ]

0, otherwise.

Then {fn} is a sequence that is relatively sequentially Tp compact and conver-
gent in measure λ[0,1]. However, it does not converge λ[0,1] - almost surely and
SC(f1, f2 . . . ) = {I{x} : x ∈ [0, 1]}∪{0}, which is not a uniformly λ[0,1]-Lusin set.

Theorem 3.3. Let K ⊂ B(S) be a sequentially Tp-compact, uniformly ν-Lusin
set and D an SU-set for ν and K. If {fn} ⊂ K is a Cauchy sequence in ν-
measure, then there is f ∈ B(S) such that f |D ∈ K|D and fn → f ν-a.s.
Moreover Tp,K|D = Tν,K|D and both topologies are compact metrizable.

Proof: The sequential Tp-compactness implies SC(K) ⊂ K and the existence
of ν-a.s. limit follows by Theorem 3.1.

Definition 2.2 implies that Tν,K|D is a Hausdorff topology and the equality of
the topologies thus follows by Proposition 463C, p. 539 in [4]. Their metrizability
follows by the metrizability of Tν,K|D , and thus the compactness is implied by the
sequential compactness of Tp,K|D . �

Recall that the sequential compactness of K w.r.t. Tp in the theorem above
can be replaced by the countable compactness w.r.t. Tp (by application of Corol-
lary 463K, p. 545 in [4]).
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Corollary 3.4. Let S be a compact Hausdorff space, K ⊂ C(S) a bounded

(sequentially) relatively weakly compact set in C(S) and ν a self-supporting

Radon probability on S. Denote by K
p
, K

w
and K

ν
the Tp,SR , Tw,C(S) and

Tν,C(S)-closure of K, respectively. Then

K
p
= K

w
= K

ν
=: K and Tp,K = Tw,K = Tν,K .

As a consequence,

{fn} ⊂ K ν-Cauchy =⇒ ∃f ∈ K : fn → f ν-a.s., fn → f weakly

and there are gn ∈ co(f1, f2, . . . ) such that gn → f uniformly on S.

By co(K), denote the set of all convex combinations of elements of K.

Proof: First, we show that K
p
= K

w
. We shall start with the inclusion K

w
⊂

K
p
:

f ∈ K
w

=⇒ f ∈ C(S) and fα → f for some net fα ∈ K in Tw,C(S)-topology

=⇒ fα → f w.r.t. Tp,C(S) =⇒ fα → f w.r.t. Tp,SR =⇒ f ∈ K
p
.

Note that the second implication follows from (2.1). The argument for the second

inclusion K
p
⊂ K

w
is:

f ∈ K
p

=⇒ fα → f for some net fα ∈ K in Tp,SR-topology

=⇒ fβ → f in Tw,C(S) topology for some subnet fβ =⇒ f ∈ K
w
.

Indeed, sinceK is relatively Tw,C(S) compact set (= relatively sequentially Tw,C(S)

compact) there exists a subnet fβ convergent w.r.t. Tw,C(S). Moreover, the weak
limit of fβ is also a pointwise limit of fβ , which equals the pointwise limit of fα.

The same argument applies to arbitrary A ⊂ K
p
, resulting in A

p
= A

w
. Hence,

Tp,K
p = Tw,K

w .

Next, recall that K
p
is a Tw-compact and thus a Tp-compact set. We apply

Theorem 3.3 with D = S and the subsequent comment to verify that Tp,K
p =

Tν,K
p and both topologies are compact metrizable.

Further note that Tν,C(S) is a metrizable topology, because the ν-equivalence
class of an f ∈ C(S) is a singleton set. Due to the compactness of Tν,K

p , the set

K
p
is a closed superset of K w.r.t. Tν,C(S)-topology. Hence, K

ν
⊂ K

p
. On the

other hand, the set K
ν
is closed w.r.t. the Tp,SR-topology because Tp,K

p = Tν,K
p .

Hence, K
p
⊂ K

ν
and we get K

p
= K

ν
.

The rest follows by Theorem 3.3 because Tν,K = Tp,K = Tw,K. The existence

of convex combinations gn follows for example by [3, p. 422, Corollary V.3.14]. �



34 P. Kř́ıž, J. Štěpán

Remark 3.5. Consider a compact set D ⊂ S and a uniformly bounded relatively
Tw-compact set {tn} in C(S). Denote

mD = {µ : µ is a Radon probability measure, supp(µ) = D}

and observe that Corollary 3.4 yields the following implication: If there exists a
ν ∈ mD such that {tn} is a ν-Cauchy sequence, then {tn} is µ-Cauchy for all
µ ∈ mD and there exists t ∈ C(S) such that tn → t pointwise on D, hence tn → t
µ-a.s. for all µ ∈ mD.

Example 3.6. Assume S = {0, 1}N with ν a Radon probability measure on S.
Define a continuous mapping s : S → [0, 1] by

s(x) =

∞
∑

k=1

2−kxk, where x = (x1, x2, . . . ).

Denote

[y]n =
k

2n
if y ∈

[

k

2n
,
k + 1

2n

)

, y ∈ [0, 1]

and put

hn(y) =
1

∑n
k=1 2

−k
[y]n, y ∈ [0, 1].

Since obviously hn(y) → y on [0, 1], the set {hn◦s : n ∈ N} is Tp sequentially rela-
tively compact with continuous (and thus uniformly ν-Lusin) cluster points w.r.t.
Tp. By Theorem 3.1, the convergence of hn ◦ s in ν-measure and the convergence
ν-almost surely coincide.

Further note that

hn(s(x1, x2, . . . )) =
1

∑n
k=1 2

−k

n
∑

k=1

2−kxk.

The weighted averages hn◦s are equicontinuous w.r.t. Tp and thus {hn◦s : n ∈ N}
is a uniformly bounded relatively weakly compact subset of C(S). The equivalence
of the two modes of convergence of hn◦s stated above follows also by Corollary 3.4.

Our results presented up to now augment to some extent those by Ionescu Tul-
cea [5], [6] (see also [4, 463C and 463F]). To make some comparison, remark that
the essential part of our reasoning, to be found in the statement of Theorem 2.3,
reads as follows:
For arbitrary Radon probability ν on S and some K ⊂ B(S) there is a Borel set
D ⊂ S such that ν(D) = 1 and

ν{x ∈ S : f(x) 6= g(x)} > 0 happens iff f, g are functions, that are distinct on D.

The above property postulated for example in [4, Theorem 463F] is verified for
sets K that are uniformly ν-Lusin by an analysis of the support set for ν.
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4. When a set K ⊂ B(S) is Tp-compact and uniformly Lusin?

Throughout the present section we shall assume that K ⊂ B(S) is a bounded
set. Consider the following pair of conditions:

(A)
For arbitrary F ⊂ K countable and a sequence {s0, s1, s2, . . . } ⊂ S such that
limn f(sn) = f(s0) exists for all f ∈ F the convergence is quasi-uniform on F ,
i.e. for every ǫ > 0 and n0 there exists a finite number of indices n1, . . . , nk ≥ n0

such that for each f ∈ F ,

min
i=1,...,k

|f(sni)− f(s0)| < ǫ.

(B)
For arbitrary sequence {fn} ⊂ K and a countable set A ⊂ S there exists a cluster
point of {fn|A} in C(A) w.r.t. the pointwise convergence.

If S is a compact Hausdorff space and K ⊂ C(S) a bounded set, then, denoting

by K
w
and K

p
the closure of K in the Tw,C(S) and Tp,C(S) topology respectively,

(A) ⇐⇒ K is a sequentially relatively weakly compact subset of C(S)

⇐⇒ K is a sequentially relatively compact set in the Tp,C(S)-topology

⇐⇒ K
w
is a compact set in the Tw,C(S)-topology

⇐⇒ K
p
is a compact set in the Tp,C(S)-topology

⇐⇒ (B)

(4.1)

are true equivalences.

The former four equivalences are simply the content of Theorem IV.6.14 in [3],
p. 269, the latter one is verified in a more general form by Asanov and Veličko
(1981) in [1]. A direct verification of the equivalence (A)⇐⇒ (B) might be of
some interest.

(A)⇒ (B): Assume {fn} ⊂ K and a countable set A ⊂ S. The condition (A)
implies the sequential relative compactness of K in the Tp,C(S)-topology. The se-
quential relative compactness ensures the existence of a subsequence {fnk

} ⊂ {fn}
and a function f ∈ C(S) such that fnk

→ f on S. Hence, f |A is a cluster point
of {fn|A} in C(A).

(B)⇒ (A): Assume A = {s0, s1, . . . } ⊂ S, and f(sn) → f(s0) for all f ∈ F (a
countable subset of K). Consider the (metrizable) product topology on R

A and

apply (B) to prove that the closure F |A of F |A is a compact subset of C(A) in
the product topology of RA. For a while assume that

(4.2) f(sn) → f(s0) ∀f ∈ F |A
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holds. Define mappings ŝn : F |A → R by

ŝn(f) = f(sn) ∀f ∈ F |A, ∀n ∈ {0, 1, 2, . . .}.

Clearly, ŝn are continuous mappings on the compact set F |A for each n = 0, 1, . . . .

Moreover, by (4.2), ŝn → ŝ0 on F |A. It follows by Theorem IV.6.11 in [3] that

ŝn → ŝ0 quasi-uniformly on F |A and thus quasi-uniformly on F .

It remains to verify (4.2). Take f ∈ F |A arbitrary and assume that f(sn) 9
f(s0), i.e. that there is a subsequence {f(snk

)} such that |f(snk
)− f(s0)| > ǫ for

all k and some ǫ > 0. However, by compactness of S there is a subnet {tα} of
{snk

} such that tα → s00 ∈ S. Note that

g(s00) = lim g(tα) = lim g(snk
) = g(s0) for arbitrary g ∈ F .

Let gn → f on A for some gn ∈ F and note that

f(s00) = lim gn(s00) = lim gn(s0) = f(s0) if s00 ∈ A.

Consider a countable set H = A ∪ {s00} and correctly define h : H → R by

h(s) = f(s) if s ∈ A and h(s00) = f(s0) if s00 /∈ A.

All this implies that gn(s) → h(s) for all s ∈ H and the condition (B) proves that
h ∈ C(H). Hence,

lim f(tα) = f(s00) = f(s0),

which is a contradiction. Thus, (4.2) is proved.

We need some simple sufficient conditions to identify (relatively) sequentially
Tp-compact and uniformly ν-Lusin sets K ⊂ B(S).

Theorem 4.1. Assume that K ⊂ B(S) is a set that is bounded and sequentially

separable in Tp-topology of B(S) such that either (A) or (B) holds. Then K is

uniformly ν-Lusin and there is a σ-compact set D ⊂ S such that

ν(D) = 1,K|D is a sequentially relatively Tp-compact subset of B(D);(4.3)

and

the sequential Tp-closure of K|D in B(D) is a uniformly ν-Lusin set.(4.4)

Proof: Consider F ⊂ K a countable sequentially Tp-dense set in K. Obviously
F is uniformly ν-Lusin, hence there are increasing compacts Dn ⊂ S such that

ν(Dn) ≥ 1−
1

n
and f |Dn ∈ C(Dn) ∀f ∈ F.

Then F |Dn ⊂ K|Dn are bounded subsets of C(Dn) that satisfy condition (A)
or equivalently (B) and therefore these sets are relatively weakly sequentially
compact in C(Dn) for arbitrary n ∈ N.
Consider now a function f ∈ K and a sequence {fk} ⊂ F such that fk → f
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on S. By the diagonal procedure we exhibit a subsequence {fnj} and functions
gn ∈ C(Dn) such that

fnj → gn weakly on C(Dn) ⇒ fnj → gn on Dn

⇒ f |Dn = gn ⇒ f |Dn ∈ C(Dn)

and we have proved that K is uniformly ν-Lusin set.
Finally, put D =

⋃∞
1 Dn and consider an arbitrary sequence {fk|D} ⊂ K|D.

Then for each n, the sequence

{fk|Dn} ⊂ K|Dn satisfies (A) and therefore, according to (4.1),

it has a subsequence that is Tp-convergent to a gn ∈ C(Dn).

By the diagonal procedure again we find a subsequence {fnj} such that

fnj |Dn → gn on Dn ∀n.

Hence there is a g ∈ B(D) such that fnj(s) → g(s) for all s ∈ D and therefore

K|D is a sequentially relatively Tp-compact subset of B(D).

Similarly, as in the proof that K is uniformly ν-Lusin, any sequential Tp-cluster
point g of K|D is constructed in the following manner:

g|Dn = gn ∈ C(Dn), hence the sequential Tp-closure of K|D in B(D)

is uniformly ν-Lusin set.

�

Let g be an arbitrary Tp-cluster point of K|D in B(S), where D =
⋃∞

1 Dn is a
σ-compact set constructed above. Assuming that S is a completely regular space
there are gen ∈ C(D) such that gen|Dn = gn, hence gen → g on D and consequently
g ∈ B1(D), where B1(D) denotes the space of functions of the first Baire category
on D. According to (4.3)

K|D is a sequentially relatively Tp-compact subset of B1(D).

Theorem 4.2. Let K ⊂ B(S) be a bounded set that is sequentially separable in

Tp-topology of B(S) such that either (A) or (B) holds. If {fn} ⊂ K is a Cauchy

sequence in ν measure then there is f ∈ B(S) such that fn → f ν-a.s.

Proof: Consider the σ-compact set D constructed in Theorem 4.1. Obviously,
K|D is a sequentially separable subset of B(D) that satisfies either the condi-
tion (A) or the condition (B). It follows by Theorem 4.1 that K|D is a relatively
sequentially Tp-compact set in B(D) such that the set of its sequential cluster
points SC(K|D) is uniformly ν|D-Lusin. The rest follows by Theorem 3.1. �
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Example 4.3. Consider the Helly spaceH of non-decreasing functions f : [0, 1] →
[0, 1]. Clearly, each f ∈ H has at most countably many points of discontinuity.
Recall that H is bounded, sequentially separable in B1[0, 1] (H is separable and
first countable space) and (sequentially) Tp-compact in B1[0, 1] (see [7, M, p. 164]).

However, H fulfils neither condition (A) nor (B). To see this, consider

sn = 1−
1

n
, s0 = 1; fn(x) = xn, with A = {s0, s1, . . . };F = {f1, f2, . . . }.

If we consider the Lebesgue measure λ on [0, 1], then clearly H is not uniformly
λ-Lusin. In spite of this, the assertion of Theorem 4.2 holds for H , as we are able
to demonstrate that

{fn} ⊂ H a Cauchy sequence in λ measure =⇒

∃f ∈ H such that fn → f λ-a.s.

The argument reads as follows:
There is a subsequence {fnk

} ⊂ {fn} such that fnk
→ f ∈ H pointwise. Hence,

fn → f in λ-measure.
Let x0 be a continuity point of f and fix ǫ > 0. Then

1. ∃δ > 0 : |y − x0| < δ ⇒ |f(y)− f(x0)| <
ǫ
4 ;

and

2. ∃N > 0 ∀n ≥ N : λ{x : |fn(x) − f(x)| ≥ ǫ
4} < δ.

Thus

3. ∀n ≥ N ∃xL,n ∈ (x0 − δ, x0), xH,n ∈ (x0, x0 + δ):
|fn(xL,n)− f(xL,n)| <

ǫ
4 , |fn(xH,n)− f(xH,n)| <

ǫ
4 .

We conclude

4. n ≥ N ⇒ |fn(x0)− f(x0)| ≤ |fn(xH,n)− f(x0)|+
|f(x0)− fn(xL,n)| ≤ |fn(xH,n)− f(xH,n)|+ |f(xH,n)− f(x0)|+
|f(x0)− f(xL,n)|+ |f(xL,n)− fn(xL,n)| ≤ ǫ,
where the first inequality follows by the monotonicity of fn.

Thus fn(x0) → f(x0) at each continuity point x0 of f .

5. Application in estimation theory

The results above might be applied to prove the strong consistency of weakly
consistent estimators based on their analytical properties. Come back to the
estimation theoretic setting 1, 2 and 3 from Section 1 with S = ZN. Denote µθ

the image measures on S defined by µθ(B) = Pθ[(X1, X2, . . . ) ∈ B].

Theorem 5.1. Recall the Bayesian approach (see paragraph 5 from Section 1).
Consider a bounded weakly consistent estimator {tn} of φ(θ) such that the se-

quence satisfies condition (A) or (B) and an arbitrary (Bayesian) probability
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distribution F on Θ. Then
(

tn(X1, X2, . . . ) → φ(θ) Pθ − a.s.

)

for F -almost all θ ∈ Θ.

Proof: Set ν =
∫

µθF (dθ). Obviously, {tn} is a Cauchy sequence in ν-measure.
Thus by Theorem 4.2 we obtain f ∈ B(S) such that tn → f ν-a.s.. The Pθ-a.s.
convergence for F -almost all θ follows by the definition of ν. �

Note that for a countable Θ we obtain strong consistency of tn by taking F
with positive mass in each θ ∈ Θ.

As shown below, to apply Corollary 3.4, no measure on Θ is needed.

Theorem 5.2. Assume K = {tn} ⊂ C(S), where S = ZN. Further assume that

there are compacts Sj ⊂ S for j = 1, 2, . . . such that K|Sj is uniformly bounded,

relatively weakly compact subset of C(Sj) for each j and Pθ(
⋃

Sj) = 1 for all

θ ∈ Θ. Then {tn} is weakly consistent estimator of φ(θ) if and only if it is strongly

consistent estimator of the parametric function.

Proof: Apply Corollary 3.4 individually for each ν = Pθ and S = Sj . �

Recall that the relative weak compactness in C(S) can be verified by (4.1).

6. Conclusion

In conclusion we have to admit that our choice to construct a strongly con-
sistent estimator {tn} as a Tp-compact sequence has some limitations as far as
applications to mathematical statistics are concerned. In a very special case of
Corollary 3.4 and of the subsequent Remark 3.5 ({tn} ⊂ C(S) where S is a com-
pact space) we get a strongly consistent estimator that is not fit to distinguish
probability distributions supported by the same compact support.

On the other hand, consider S = {0, 1}N, denote by pn : S → {0, 1} the
coordinate projections and by Θ the set of all Borel probability measures µ on
S such that pn converge in µ-measure, denoting by φ(µ) the corresponding µ-
probability limit. The sequence {pn} being trivially a weakly consistent estimator
of φ(µ) is obviously not a strongly consistent one. However, in the Bayesian setting
of Theorem 5.1 it is easy to construct almost strongly consistent subsequence
estimator {pnk

}. More precisely, for arbitrary Bayesian probability distribution
F (on the Borel σ-algebra of the set Θ endowed by the topology of the weak
convergence of Borel probability measures on S) the barycentric measure ν =
∫

µF (dµ) is in Θ and therefore there is a subsequence {pnk
} and Θ0 ⊂ Θ with

F (Θ0) = 1 such that

(6.1) {pnk
} is a strongly consistent estimator for the parametric function φ|Θ0

.

It follows that there is a Borel map t : S → {0, 1} (t = lim supk pnk
) such that

t = φ(µ) µ-almost surely for µ ∈ Θ0.
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Recall that such a map t, not necessarily Borel measurable, is called a probability
limit identification function (PLIF) for Θ0. While there is (under the continuum
hypothesis) a PLIF for the universum Θ (see [9]), there is no Borel PLIF for this
set (see [2]). Thus, the above discussion might serve to further research on how
to construct Borel PLIFs for some small sets Θ0 ⊂ Θ started in [8].

Observe that to construct the convergent subsequence {pnk
} in (6.1) we need

a very complex information about the barycentric probability ν =
∫

µF (dµ) so
that (6.1) is in fact only an existence statement. Obviously, the constructions of
weakly consistent estimators {tn} of φ|Θ0

where Θ0 ⊂ Θ that are automatically
strongly consistent might have some merits.
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[9] Štěpán J., The probability limit identification function exists under the continuum hypo-

thesis, Ann. Probability 1 (1973), 712–715.

Charles University, Faculty of Mathematics and Physics, Department of

Probability and Mathematical Statistics, Sokolovská 83, 186 75 Prague 8,
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