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On centerless commutative automorphic loops
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Abstract. In this short paper, we survey the results on commutative automorphic
loops and give a new construction method. Using this method, we present new
classes of commutative automorphic loops of exponent 2 with trivial center.
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1. Introduction

The setQ endowed with the binary operation x·y is a quasigroup if the equation
x · y = z has a unique solution provided two of the variables x, y, z are known.
The solution is denoted by x = z/y and y = x\z. The maps Ry : x 7→ x · y
and Lx : y 7→ x · y are the multiplication maps of (Q, ·); these are permutations
of Q. The multiplication group Mlt(Q) is generated by the multiplication maps.
Quasigroups with a unit element 1 are called loops ; L1 = R1 = id holds. Let Q
be a loop. The stabilizer subgroup of 1 in Mlt(Q) is the group of inner mappings

Inn(Q). The loop Q is an automorphic loop if Inn(Q) ≤ Aut(Q). In particular,
every group is an automorphic loop. The study of automorphic loops was initiated
by Bruck and Paige [1] and it is in the very focus of recent research of the theory
of loops and quasigroups.

Automorphic loops are power associative ([1]) and have the inverse property
([11]). Let Q be a finite automorphic loop. For any prime p, all elements of Q have
p-power order iff |Q| is a power of p ([12], [13]). We call such loops automorphic
p-loops. Automorphic p-loops are solvable ([12], [13]). Automorphic loops of finite
odd order are solvable ([13]). Automorphic loops of order p2 are associative ([4],
[13]). The class of finite commutative automorphic loops is interesting on its own.
Most importantly, finite commutative automorphic loops are solvable ([12]). For
an odd prime p, commutative automorphic p-loops are nilpotent ([3], [10]).

By now, there are many constructions showing that the above results are sharp
in some sense. For any odd prime p, we have examples of nonnilpotent automor-
phic p-loops ([9], [10]). For any n ≥ 3, there are examples of nonnilpotent com-
mutative automorphic loops of order 2n ([8]). If p < q are primes and p divides
q−1 or q+1, then we have examples of nonassociative commutative automorphic
loops of order pq ([6]).



486 G.P. Nagy

Finally, we mention that Lagrange and Cauchy Theorems are known to hold for
commutative automorphic loops and automorphic loops of odd order. The main
open problems in the theory of finite automorphic loops are the Sylow Theorems
and the existence of nonassociative finite simple automorphic loops.

In this paper, we investigate finite commutative automorphic loops of expo-
nent 2. Our main tool is the Lie ring method of [12], which was developed further
in [13]. Our main result is to give a wide class of finite commutative automorphic
loops of exponent 2 with trivial center.

2. Two constructions

In this section, we survey the properties of the two main construction methods
of automorphic loops, namely the Lie ring method and the nuclear semidirect
product method.

Let (Q,+, [., .]) be a Lie ring and assume that

for any x ∈ Q, the maps y 7→ y ± [x, y] are invertible.(W1)

We define the operation

(1) x ◦ y = x+ y − [x, y]

on Q. By [13, Lemma 5.1], (Q, ◦) is a loop. The Lie ring ideals correspond to
normal subloops, in particular, [Q,Q] corresponds to the commutator-associator
subloop of (Q, ◦). Define the further properties of the Lie ring (Q,+, [., .]):

[[x, y], [z, y]] = 0 for all x, y, z ∈ Q.(W2)

(Q, ◦) is an automorphic loop.(W−

2 )

[[x, y], [z, w]] = 0 for all x, y, z, w ∈ Q.(W+
2 )

Clearly, (W+
2 ) implies (W2). By [13, Proposition 5.2], (W2) implies (W−

2 ).
The Lie ring (Q,+, [., .]) is uniquely 2-divisible if the map x 7→ x+ x is invertible.
It was shown in [13, Lemma 5.8], that for uniquely 2-divisible Lie rings, (W−

2 )
implies (W+

2 ), that is, (W2), (W
+
2 ) and (W−

2 ) are equivalent. However, up to the
author’s knowledge, the situation is unknown in the general case. We formulate
the problem for Lie rings of characteristic 2.

Problem 2.1. Let (Q,+, [., .]) be a Lie ring of characteristic 2.

(a) Does (W−

2 ) imply (W2)?
(b) Does (W2) imply (W+

2 )?

Notice that in this formulation of (b), no reference is made to property (W1).
In fact, we think that this question is interesting for general Lie rings of char-
acteristic 2. Moreover, it is rather natural to restrict (b) to nilpotent Lie rings
of characteristic 2; then (W1) is automatically fulfilled. Using the Lie algebra
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database of the GAP package LieAlgDB [2], one can show that no nilpotent coun-
terexample of dimension at most 9 exists, cf. Proposition A.1 in the appendix.

Another important observation is the following. If the answers to both ques-
tions (a) and (b) are affirmative, then any commutative automorphic loop of
exponent 2, which is constructed from a Lie ring of characteristic 2 turns out
to be associative modulo its middle nucleus. Indeed, by [13, Proposition 5.2],
a ∈ Nµ(Q) iff [[x, y], a] = 0 for all x, y ∈ Q. That is, (W+

2 ) implies [z, w] ∈ Nµ(Q)
for all z, w ∈ Q, and, the factor Q/Nµ(Q) is an elementary abelian 2-group. This
fact justifies the importance of the class of commutative automorphic loops which
are nuclear semidirect product of elementary abelian 2-groups. For the proofs of
the following facts the reader is referred to [7].

Let H , K be abelian groups and Φ = {ϕi,j ∈ Aut(K) | i, j ∈ H} a family of
automorphisms such that

ϕi,j = ϕj,i(2)

ϕ0,i = idK(3)

ϕi,j ◦ ϕk,n = ϕk,n ◦ ϕi,j(4)

ϕi,j+k ◦ ϕj,k = ϕk,i+j ◦ ϕi,j(5)

ϕi,j+k + ϕj,i+k + ϕk,i+j = idK +2 · ϕi,j,k(6)

hold for all i, j, k ∈ H . Then, the underlying set Q = K ×H endowed with the
operation

(7) (a, i) ⋆ (b, j) = (ϕi,j(a+ b), i+ j)

is a commutative automorphic loop. Moreover, K is a normal subloop contained
in the middle nucleus, H ≤ Q, and Q/K ∼= H . Conversely, if Q is an arbitrary
commutative automorphic loop,K an abelian normal subloop contained inNµ(Q),
H an abelian subloop isomorphic to Q/K, then Q can be constructed by (7). It is
worth mentioning that nonsplitting examples of order 32 can be constructed (see
Proposition A.2 in the appendix). We remark further that if Q is a commutative
automorphic loop of exponent 2 and Nµ(Q) has index 2 then Q splits.

Let H,K be elementary abelian 2-groups. [7, Proposition 1.4] implies that the
center of Q is

{(a, i) | ϕj,k(a) = a and ϕi,j = idK for all j, k ∈ H}.

In [8], the authors describe completely the case |H | = 2, that is, when the middle
nucleus has index 2. In this case, Φ consists of idK and a single nontrivial auto-
morphism ϕ = ϕ1,1. (In order to see this, use [8, Proposition 2.7] with the extra
assumption that Q has exponent 2.) The construction of [8, Section 3.2] gives a
commutative automorphic loop of exponent 2 with trivial center and order 2n for
any n ≥ 3.
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At the end of this section we make a closer look at the construction of [7,
Theorem 4.3] and show that it has a nontrivial center. Let X be a subset of
End(K) satisfying X2 = 0. The group G = 〈idK +x | x ∈ X〉Aut(K) is an

elementary abelian 2-group and ϕ : H2 → G, ϕ : (i, j) 7→ ϕi,j a symmetric
bilinear mapping. Since G has a common fixed point a ∈ K, the center of the
resulting commutative automorphic loop is nontrivial.

3. Centerless commutative automorphic loops

For vector spaces K,H , we identify the subspaces K ⊕ 0 and 0⊕H of K ⊕H
with K and H , respectively.

Lemma 3.1. Let H,K be vector spaces over F2, and β : H → End(K) a linear

map. Define the bracket

(8) [a⊕ i, b⊕ j] = (β(j)a+ β(i)b)⊕ 0

on Q = K⊕H . Then (Q,+, [., .]) is a Lie algebra over F2 if and only if β(i), β(j)
commute for all i, j ∈ H . Moreover, [Q,Q] ⊆ K and [[Q,Q], [Q,Q]] = 0 hold.

Proof: The nontrivial part of the proof is the Jacobi identity which is equivalent
to β(i)β(j) + β(j)β(i) = 0 by a straightforward calculation. �

Proposition 3.2. Let H,K be vector spaces over F2, and β : H → End(K) a

linear map. Define the operation

(9) (a⊕ i) ∗ (b ⊕ j) = (a+ b+ β(j)a + β(i)b)⊕ (i+ j)

on Q = K ⊕H . Assume that for all i, j ∈ H

(i) the endomorphisms β(i), β(j) commute,

(ii) and id+β(i) is invertible.

Then (Q, ∗, 0) is a commutative automorphic loop of exponent 2 with the following

properties:

(a) K ∩ Z(Q) = {a ∈ K | β(j)a = 0 for all j ∈ H};
(b) H ∩ Z(Q) = {i ∈ H | β(i)β(j) = 0 for all j ∈ H};
(c) Z(Q) = (K ∩ Z(Q))⊕ (H ∩ Z(Q)).

In particular, if β is injective and at least one β(j) is invertible then Q has trivial

center.

Proof: Since the β(i)’s commute, (Q,+, [., .]) is a Lie algebra with [[Q,Q], [Q,Q]]
= 0 by Lemma 3.1. For fixed a, b, b′, i, j, j′,

id+ ada⊕i : b⊕ j 7→ b′ ⊕ j′

holds iff j = j′ and (id+β(i))b = b′ + β(j′)a. That is, id+ ada⊕i is invertible iff
id+β(i) is invertible. This means that (Q,+, [., .]) satisfies (W1) and (Q, ∗, 0) is a
commutative automorphic loop of exponent 2 by [13, Proposition 5.2]. We intend
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to show the properties of Z(Q) by referring to [7, Proposition 1.4]. In order to do
that, we must construct (Q, ∗) as nuclear semidirect product. Put

ϕi,j = (id+β(i+ j))−1(id+β(i))(id+β(j))

and

u(a⊕ i) = (id+β(i))a⊕ i.

Then, using (9) and β(i)β(j) = β(j)β(i)

u(a⊕ i) ∗ u(b⊕ j) = ((id+β(i))a⊕ i) ∗ ((id+β(j))b ⊕ j)

= [(id+β(i))(id+β(j))(a + b)]⊕ (i+ j)

= u(ϕi,j(a+ b)⊕ (i+ j)).

Comparing this with (7), we see that u is an isomorphism between (Q, ∗) and the
nuclear semidirect product (Q, ⋆), associated to Φ = {ϕi,j | i, j ∈ H}. Now, [7,
Proposition 1.4] implies (a), (b) and (c), since ϕi,j = id iff β(i)β(j) = 0. The last
claim follows easily. �

We finish the paper with two explicit examples of maps β : H → End(K) which
give rise to commutative automorphic loops of exponent 2 with trivial nucleus.

Example 1. Let K be a field of characteristic 2 and δ : H →֒ (K,+) an injective
homomorphism such that 1 6∈ Im(δ). Define β : H → EndF2

(K) by

β(i)(a) = δ(i)a.

Then, β is injective and id+β(i) is invertible for all i ∈ H .

The next example is a special case of Example 1.

Example 2. LetK be a field of characteristic 2, H a proper subfield and σ ∈ K\H .
Define β : H → EndF2

(K) by

β(i)(a) = σia.

Then, β is injective and id+β(i) is invertible for all i ∈ H .

Appendix A. Low dimensional nilpotent Lie algebras

The Lie algebra database of the GAP package LieAlgDB [2] contains the com-
plete list of nilpotent Lie algebras with dimension at most 9 over F2. We used
this package for an exhaustive search for low dimensional counterexamples of
Problem 2.1.

Proposition A.1 (Computational result). Let (Q, [., .]) be a nilpotent Lie algebra
over F2 with dimQ ≤ 9. Then Q satisfies either all or none of (W2), (W+

2 )
and (W−

2 ).
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Proof: The basic idea is to test Q first for (W2). If (W2) holds, then we test for
(W+

2 ), in the negative case Q would be a counterexample to (b). If (W2) does
not hold, then we test for (W−

2 ), which would yield counterexample to (a) in the
positive case. One can accelerate the test with the following tricks.

(i) Let B be a basis of Q over F2. (W2) holds iff

[[x, y], [z, y]] = [[x, y], [z, w]] = 0

for all x, y, z, w ∈ B.
(ii) (W+

2 ) holds iff the length of the Lie derived series of Q is at most 3.
(iii) Construct the loop (Q, ◦) by (1). Let R be the right section of (Q, ◦) and

let S be a generating set of Inn(Q, ◦). Then, (W−

2 ) holds iff R = s−1Rs
for all s ∈ S. �

Since the number of nilpotent Lie algebras of dimension 5 over F2 is 9, the
following example can be found.

Proposition A.2 (Computational result). There exists a nilpotent Lie algebra

(Q, [., .]) of dimension 5 over F2 such that the corresponding loop (Q, ◦) satisfies
the following:

(i) (Q, ◦) is a commutative automorphic loop of exponent 2;
(ii) the index of the middle nucleus is 4;
(iii) Q does not split nuclearly, that is, there are no subgroups H,K such that

K is normal in Q, K ≤ Nµ(Q), Q = HK and H ∩K = {1}. �
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[8] Jedlička P., Kinyon M., Vojtěchovský P., Constructions of commutative automorphic loops,
Comm. Algebra 38 (2010), no. 9, 3243–3267.
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