Symmetric products of the Euclidean spaces and the spheres

NAOTSUGU CHINEN

Abstract. By $F_n(X)$, $n \geq 1$, we denote the *n*-th symmetric product of a metric space (X, d) as the space of the non-empty finite subsets of X with at most *n* elements endowed with the Hausdorff metric d_H . In this paper we shall describe that every isometry from the *n*-th symmetric product $F_n(X)$ into itself is induced by some isometry from X into itself, where X is either the Euclidean space or the sphere with the usual metrics. Moreover, we study the *n*-th symmetric product of the Euclidean space up to bi-Lipschitz equivalence and present that the 2nd symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional Euclidean space.

Keywords: isometry; symmetric product; bi-Lipschitz maps; Euclidean space; sphere

Classification: Primary 54B20, 54B10; Secondary 30C65, 30L10

1. Introduction

As an interesting construction in topology, Borsuk and Ulam [4] introduced the *n*-th symmetric product of a metric space (X, d), denoted by $F_n(X)$. Recall that $F_n(X)$ is the space of non-empty finite subsets of X with at most *n* elements endowed with the Hausdorff metric d_H , i.e., $F_n(X) = \{A \subset X : 1 \leq |A| \leq n\}$ and $d_H(A, A') = \inf\{\epsilon : A \subset B_d(A', \epsilon) \text{ and } A' \subset B_d(A, \epsilon)\} = \max\{d(a, A'), d(a', A) :$ $a \in A, a' \in A'\}$ for any $A, A' \in F_n(X)$ (see [12, p. 6]). It was proved in [4] that $F_n(\mathbb{I})$ is homeomorphic to \mathbb{I}^n (written $F_n(\mathbb{I}) \approx \mathbb{I}^n$) if and only if $1 \leq n \leq 3$ (cf. Remark 4.19 below), and that for $n \geq 4$, $F_n(\mathbb{I})$ cannot be embedded into \mathbb{R}^n , where $\mathbb{I} = [0, 1]$ has the usual metric. A considerable number of studies have been made on the topological structures of $F_n(X)$. For example, Molski [15] showed that $F_2(\mathbb{I}^2) \approx \mathbb{I}^4$ (cf. Remark 4.19 below), and that for $n \geq 3$ neither $F_n(\mathbb{I}^2)$ nor $F_2(\mathbb{I}^n)$ can be embedded into \mathbb{R}^{2n} .

For the symmetric products of \mathbb{R} , it is easily seen that $F_2(\mathbb{R}) \approx \{(x, y) \in \mathbb{R}^2 : x \leq y\} \approx \mathbb{R} \times [0, \infty)$. Indeed, the map $h : \{(x, y) \in \mathbb{R}^2 : x \leq y\} \to F_2(\mathbb{R})$ defined by $h(x, y) = \{x, y\}$ is a homeomorphism. It was known that $F_3(\mathbb{R})$ and \mathbb{R}^3 are homeomorphic, in particular, there is a bi-Lipschitz equivalence (see [6] or Section 4 for details). Turning toward the symmetric product $F_n(\mathbb{S}^1)$ of the circle \mathbb{S}^1 , in [10], it was proved that for $n \in \mathbb{N}$, both $F_{2n-1}(\mathbb{S}^1)$ and $F_{2n}(\mathbb{S}^1)$ have the

DOI 10.14712/1213-7243.2015.118

same homotopy type of the (2n-1)-sphere \mathbb{S}^{2n-1} . In [8], Bott corrected Borsuk's statement [5] and showed that $F_3(\mathbb{S}^1) \approx \mathbb{S}^3$. In [10], another proof of it was given.

For a metric space (X, d), we denote by $\operatorname{Isom}_d(X)$ ($\operatorname{Isom}(X)$ for short) the group of all isometries from X into itself, i.e., $\phi : X \to X \in \operatorname{Isom}_d(X)$ if ϕ is a bijection satisfying that $d(x, x') = d(\phi(x), \phi(x'))$ for any $x, x' \in X$. Let $n \in \mathbb{N}$. Every isometry $\phi : X \to X$ induces an isometry $\chi_n(\phi) : (F_n(X), d_H) \to$ $(F_n(X), d_H)$ defined by $\chi_n(\phi)(A) = \phi(A)$ for each $A \in F_n(X)$. Thus, there exists a natural monomorphism $\chi_n : \operatorname{Isom}_d(X) \to \operatorname{Isom}_{d_H}(F_n(X))$. It is clear that $\chi_n : \operatorname{Isom}_d(X) \to \operatorname{Isom}_{d_H}(F_n(X))$ is an isomorphism if and only if χ_n is an epimorphism, i.e., for every $\Phi \in \operatorname{Isom}_{d_H}(F_n(X))$ there exists $\phi \in \operatorname{Isom}_d(X)$ such that $\Phi = \chi_n(\phi)$.

Recently, Borovikova and Ibragimov [6] proved that $(F_3(\mathbb{R}), d_H)$ is bi-Lipschitz equivalent to (\mathbb{R}^3, d) and that $\chi_3 : \text{Isom}_d(\mathbb{R}) \to \text{Isom}_{d_H}(F_3(\mathbb{R}))$ is an isomorphism, where \mathbb{R} has the usual metric d. It is of interest to know whether $\chi_n : \text{Isom}_d(X) \to$ $\text{Isom}_{d_H}(F_n(X))$ is an isomorphism for a metric space (X, d). In the first part of this paper, we prove the following result which is a generalization of the result above and the affirmative answer to [7, p. 60, Conjecture 2.1].

Theorem 1.1. Let $l \in \mathbb{N}$ and let X be either \mathbb{R}^l or \mathbb{S}^l with the usual metric d. Then $\chi_n : \operatorname{Isom}_d(X) \to \operatorname{Isom}_{d_H}(F_n(X))$ is an isomorphism for each $n \in \mathbb{N}$.

We note that there exists a compact metric space (X, d) such that neither $\chi_n : \operatorname{Isom}_d(X) \to \operatorname{Isom}_{d_H}(F_n(X))$ is an isomorphism for n > 1 (see Section 3).

In the second part of this paper, we wish to find a metric space which is bi-Lipschitz equivalent to $(F_n(\mathbb{R}^l), d_H)$ for $l \in \mathbb{N}$ and $n \geq 2$. In [14], by use of the minimal element in $A \in F_n(\mathbb{R})$, it is proved that for every $n \geq 2$, $F_n(\mathbb{R})$ is bi-Lipschitz equivalent to the product of \mathbb{R} with the open cone over some compact subset of $F_n(\mathbb{I})$. In Section 4, for every $l \in \mathbb{N}$, by use of the Chebyshev center of $A \in F_n(\mathbb{R}^l)$, we construct a homeomorphism h_{cheb} from $F_n(\mathbb{R}^l)$ to the product of \mathbb{R}^l with the open cone Cone^o($F_n^{\text{cheb},1}(\mathbb{B}^l)$) over some compact subset $F_n^{\text{cheb},1}(\mathbb{B}^l)$ of $F_n(\mathbb{B}^l)$ and indicate that h_{cheb} is a bi-Lipschitz equivalence map if and only if either l = 1 or n = 2 holds. Moreover, we show that $(F_2(\mathbb{R}^2), d_H)$ is bi-Lipschitz equivalent to (\mathbb{R}^4, d).

2. Preliminaries

Notation 2.1. Let us denote the set of all natural numbers and real numbers by \mathbb{N} and \mathbb{R} , respectively. Let d be the usual metric on \mathbb{R}^l , i.e., $d(x,y) = \{\sum_{i=1}^l (x_i - y_i)^2\}^{1/2}$ for any $x = (x_1, \ldots, x_l), y = (y_1, \ldots, y_l) \in \mathbb{R}^l$. Write $\mathbb{S}^l = \{x = (x_1, \ldots, x_{l+1}) \in \mathbb{R}^{l+1} : \sum_{i=1}^{l+1} x_i^2 = 1\}$ with the length metric d. See [9] for length metrics. Denote the identity map from X into itself by id_X .

Definition 2.2. Let (X, d) be a metric space, let $x \in X$, let Y, Z be subsets of X and let $\epsilon > 0$. Set diam $Y = \sup\{d(y, y') : y, y' \in Y\}$, $d(Y, Z) = \inf\{d(y, x) : y \in Y, z \in Z\}$, $B_d(Y, \epsilon) = \{x \in X : d(x, Y) \le \epsilon\}$ and $S_d(Y, \epsilon) = \{x \in X : d(x, Y) \le \epsilon\}$

 $d(x, Y) = \epsilon$. If $Y = \{y\}$, for simplicity of notation, we write $B_d(y, \epsilon) = B_d(Y, \epsilon)$ and $S_d(y, \epsilon) = S_d(Y, \epsilon)$.

For $n \in \mathbb{N}$, the *n*-th symmetric product of X is defined by

$$F_n(X) = \{A \subset X : 1 \le |A| \le n\}$$

endowed with the Hausdorff metric d_H , i.e., $d_H(A, B) = \inf\{\epsilon : A \subset B_d(B, \epsilon) \text{ and } B \subset B_d(A, \epsilon)\} = \max\{d(a, B), d(b, A) : a \in A, b \in B\}$ for any $A, B \in F_n(X)$ (see [12, p. 6]). Here |A| is the cardinality of A. Write $F_{(m)}(X) = \{A \subset X : |A| = m\}$ for each $m \in \mathbb{N}$. Let $\operatorname{Isom}(X, Y) = \{\phi \in \operatorname{Isom}(X) : \phi(y) = y \text{ for each } y \in Y\}$ for $Y \subset X$. Set $r(A) = \min\{\{1\} \cup \{d(a, a') : a, a' \in A, a \neq a'\}\}$ for each $A \in F_n(X)$.

Lemma 2.3. Let $n \in \mathbb{N}$ and let (X, d) be a metric space. Then, $\chi_n : \text{Isom}(X) \to \text{Isom}(F_n(X))$ is an isomorphism if and only if

- (1) $\Phi|_{F_1(X)} \in \text{Isom}(F_1(X))$ for each $\Phi \in \text{Isom}(F_n(X))$, and
- (2) $\operatorname{Isom}(F_n(X), F_1(X)) = \{ \operatorname{id}_{F_n(X)} \}.$

PROOF: The part of "only if" is easy from the definition of χ_n .

Suppose that (1) and (2) hold. Let $\Phi \in \text{Isom}(F_n(X))$ and let $\phi = \Phi|_{F_1(X)} \in \text{Isom}(F_1(X))$. Set $\Phi' = \chi_n(\phi^{-1}) \circ \Phi \in \text{Isom}(F_n(X))$. We claim that $\Phi'|_{F_1(X)} = \text{id}|_{F_1(X)}$. Indeed, $\Phi|_{F_1(X)} = \chi_n(\phi)|_{F_1(X)}$ and $\chi_n(\phi^{-1}) = \chi_n(\phi)^{-1}$. By assumption, we have that $\Phi' = \text{id}_{F_n(X)}$, therefore, $\Phi = \chi_n(\phi)$, which completes the proof. \Box

3. Isometries on symmetric products

Definition 3.1. Let (X, d) be a metric space, let $n \in \mathbb{N}$, let $\epsilon > 0$ and let $A \in F_n(X)$. Define

$$(3.1) \quad D_n(A,\epsilon) = \sup\{k \in \mathbb{N} : A_1, \dots, A_k \in S_{d_H}(A,\epsilon), d_H(A_i, A_j) = 2\epsilon$$

for $1 \le i < j \le k\}.$

Lemma 3.2. Let $l, n \in \mathbb{N}$, let X be either \mathbb{R}^l or \mathbb{S}^l and let $\Phi \in \text{Isom}(F_n(X))$. Then, $\Phi|_{F_1(X)} \in \text{Isom}(F_1(X))$.

PROOF: Let $n \in \mathbb{N}$ with $n \geq 2$. Let $x \in X$, let $\epsilon > 0$ with $\epsilon < 1$ and let $y \in B_d(x, \epsilon)$. It is clear that

- (i) if $y \in S_d(x, \epsilon)$, then there exists the unique $y' \in B_d(x, \epsilon)$ such that $d(y, y') = 2\epsilon$, and
- (ii) if $y \notin S_d(x,\epsilon)$, then there exists no $y' \in B_d(x,\epsilon)$ such that $d(y,y') = 2\epsilon$.

Let $A \in F_1(X)$. We show that $D_n(A, \epsilon) = 3$. It follows from (i) and (ii) that for any $B, C \in F_n(B_d(A, \epsilon)) \setminus F_1(B_d(A, \epsilon))$ we have $d_H(B, C) < 2\epsilon$, and that for any $A_1, \ldots, A_m \in S_{d_H}(A, \epsilon) \cap F_1(X)$ with $d_H(A_i, A_j) = 2\epsilon$ for $1 \le i < j \le m$ we see that $m \le 2$. This shows that $D_n(A, \epsilon) \le 3$.

Let $a, a' \in S_d(A, \epsilon)$ with $d(a, a') = 2\epsilon$. Set $B_1 = \{a\}, B_2 = \{a'\}$ and $B_3 = \{a, a'\}$. Then, $B_j \in S_{d_H}(A, \epsilon)$ for each j = 1, 2, 3 and $d_H(B_j, B_{j'}) = 2\epsilon$ whenever $j \neq j'$. Hence, $D_n(A, \epsilon) \geq 3$. Therefore, $D_n(A, \epsilon) = 3$.

Let $m \in \mathbb{N}$ with $m \geq 2$, let $A = \{a_1, \ldots, a_m\} \in F_{(m)}(X)$ and let $\epsilon > 0$ with $\epsilon < r(A)/5$. We show that $D_n(A, \epsilon) > 3$. For every $j = 1, \ldots, m$ and k = 0, 1, let $a_{j,k} \in S_d(a_j, \epsilon)$ such that $d(a_{j,0}, a_{j,1}) = 2\epsilon$. Set $A_\theta = \{a_{1,\theta_1}, \ldots, a_{m,\theta_m}\}$ for each $\theta = (\theta_1, \ldots, \theta_m) \in \{0, 1\}^m$. We see that $A_\theta \in S_{d_H}(A, \epsilon)$ for each $\theta \in \{0, 1\}^m$ and that $d_H(A_\theta, A_{\theta'}) = 2\epsilon$ whenever $\theta \neq \theta'$, therefore, $D_n(A, \epsilon) \geq 2^m \geq 2^2 > 3$.

Let $\Phi \in \text{Isom}(F_n(X))$, let $A \in F_n(X)$ and let $\epsilon > 0$ be such that $\epsilon < \min\{r(A), r(\Phi(A))\}$. From the definition of $D_n(A, \epsilon)$, we obtain $D_n(A, \epsilon) = D_n(\Phi(A), \epsilon)$. By the above, we see that $A \in F_1(X)$ if and only if $\Phi(A) \in F_1(X)$. Therefore, $\Phi|_{F_1(X)} \in \text{Isom}(F_1(X))$.

Corollary 3.3. Let $l, n \in \mathbb{N}$ and let d be a metric on \mathbb{R}^{l+1} as in Notation 2.1. Suppose that \mathbb{S}^l has a metric $\rho = d|_{\mathbb{S}^l}$. Let $\Phi \in \operatorname{Isom}_{\rho_H}(F_n(\mathbb{S}^l))$. Then, $\Phi|_{F_1(\mathbb{S}^l)} \in \operatorname{Isom}_{\rho_H}(F_1(\mathbb{S}^l))$.

PROOF: Let $A \in F_n(\mathbb{S}^l)$ and let $\epsilon > 0$ be such that $\epsilon < r(A)/5$. Define $r_{\epsilon} = \operatorname{diam} B_{\rho}((1, 0, \dots, 0), \epsilon)$ and

$$D'_n(A,\epsilon) = \sup\{k \in \mathbb{N} : A_1, \dots, A_k \in S_{\rho_H}(A,\epsilon), \\ \rho_H(A_i, A_j) = r_\epsilon \text{ for } 1 \le i < j \le k\} \in \mathbb{N} \cup \{\infty\}$$

Analysis similar to that for $D_n(A, \epsilon)$ in the proof of Lemma 3.2 can show that $D'_n(A, \epsilon) = 3$ if and only if $A \in F_1(\mathbb{S}^l)$. Therefore, $\Phi|_{F_1(\mathbb{S}^l)} \in \operatorname{Isom}_{\rho_H}(F_1(\mathbb{S}^l))$. \Box

Notation 3.4. Let $l, n \in \mathbb{N}$ and let $A \in F_n(\mathbb{R}^l)$. Denote the minimal convex subset of \mathbb{R}^l containing A by conv(A), and the set of all vertices of conv(A) by conv $(A)^{(0)}$ (see [17] for details). We note that conv $(A)^{(0)}$ is contained in A.

Lemma 3.5. Let $l, n \in \mathbb{N}$, let $A \in F_n(\mathbb{R}^l)$ and let $\Phi \in \text{Isom}(F_n(\mathbb{R}^l), F_1(\mathbb{R}^l))$. Then, $\text{conv}(A)^{(0)} \subset \Phi(A) \subset \text{conv}(A)$.

PROOF: Let $a \in \operatorname{conv}(A)^{(0)}$. We show that $a \in \Phi(A)$. Let H be a hyperplane in \mathbb{R}^l with dimension l-1 such that $H \cap \operatorname{conv}(A) = \{a\}$, let C be the closed half-space bounded by H containing $\operatorname{conv}(A)$, and let L be the line containing a which is vertical to H. See [17] for hyperplanes and half-spaces. There exists $x \in C \cap L$ such that $\operatorname{conv}(A) \subset B_d(x, r)$ and $\operatorname{conv}(A) \cap S_d(x, r) = \{a\}$, where r = d(x, a).

Since $d_H(\{x\}, \Phi(A)) = d_H(\Phi(\{x\}), \Phi(A)) = d_H(\{x\}, A) = r$, we have that $\Phi(A) \subset B_d(x, r)$ and $S_d(x, r) \cap \Phi(A) \neq \emptyset$. Let $x' \in C \cap L$ such that r' = d(x', a) > r. By a similar argument, we see that $S_d(x', r') \cap \Phi(A) \neq \emptyset$ and $S_d(x', r') \cap B_d(x, r) = \{a\}$. Thus, $a \in \Phi(A)$.

We show that $\Phi(A) \subset \operatorname{conv}(A)$. If similar arguments apply to $\Phi(A)$ and Φ^{-1} , we obtain

$$\operatorname{conv}(\Phi(A))^{(0)} \subset \Phi^{-1}(\Phi(A)) = A.$$

Therefore, $\Phi(A) \subset \operatorname{conv}(\operatorname{conv}(\Phi(A))^{(0)}) \subset \operatorname{conv}(A)$.

Definition 3.6. Let $l, n \in \mathbb{N}$, let $\epsilon > 0$ and let $A \in F_n(\mathbb{R}^l)$. Define $S_{d_H}^c(A, \epsilon) = \{B \in S_{d_H}(A, \epsilon) : \operatorname{conv}(A) = \operatorname{conv}(B)\}$, and

$$(3.2) \quad D_n^c(A,\epsilon) = \sup\{k \in \mathbb{N} : A_1, \dots, A_k \in S_{d_H}^c(A,\epsilon), d_H(A_i, A_j) = 2\epsilon$$

for $1 \le i < j \le k\}.$

Lemma 3.7. Let $l, n \in \mathbb{N}$ and let $\Phi \in \text{Isom}(F_n(\mathbb{R}^l), F_1(\mathbb{R}^l))$. Then, $\Phi|_{F_2(\mathbb{R}^l)} = \text{id}_{F_2(\mathbb{R}^l)}$.

PROOF: Let $A \in F_{(2)}(\mathbb{R}^l)$. Since $A = \operatorname{conv}(A)^{(0)}$, by Lemma 3.5, $A \subset \Phi(A)$. Thus, if $\Phi(A) \in F_{(2)}(\mathbb{R}^l)$, then $A = \Phi(A)$. Therefore, it suffices to show that $\Phi(A) \in F_{(2)}(\mathbb{R}^l)$. We may assume that $n \geq 3$.

Suppose that l = 1. By [7], $\Phi(F_{(2)}(\mathbb{R})) = F_{(2)}(\mathbb{R})$, but we give another short proof of it. Let $A \in F_{(2)}(\mathbb{R})$ and let $\epsilon > 0$ with $\epsilon < r(A)/5$. We claim that $D_n^c(A, \epsilon) = 1$. Indeed, on the contrary, suppose that $D_n^c(A, \epsilon) \ge 2$, i.e., there exist $A_1, A_2 \in S_{d_H}^c(A, \epsilon)$ such that $d_H(A_1, A_2) = 2\epsilon$. Since $A \subset A_1 \cap A_2$, $A_1 \cup A_2 \subset B_d(A, \epsilon) \subset B_d(A_1, \epsilon) \cap B_d(A_2, \epsilon)$, thus $d_H(A_1, A_2) \le \epsilon$, a contradiction.

Let $B \in F_{(m)}(\mathbb{R})$ with $3 \leq m \leq n$ and let $\epsilon > 0$ with $\epsilon < r(B)/5$. We claim that $D_n^c(B,\epsilon) \geq 2$. Indeed, if we choose $b \in B \setminus \{\min B, \max B\}$, we define $B_1 = (B \setminus \{b\}) \cup \{b - \epsilon\}$ and $B_2 = (B \setminus \{b\}) \cup \{b + \epsilon\}$. Then, $B_1, B_2 \in S_{d_H}^c(B,\epsilon)$ and $d_H(B_1, B_2) = 2\epsilon$, thus, $D_n^c(B,\epsilon) \geq 2$.

Let $A \in F_n(\mathbb{R}) \setminus F_1(\mathbb{R})$ and let $\epsilon > 0$ with $\epsilon < \min\{r(A)/5, r(\Phi(A))/5\}$. By Lemma 3.5, $\Phi(S_{d_H}^c(A, \epsilon)) = S_{d_H}^c(\Phi(A), \epsilon)$. Thus, $D_n^c(A, \epsilon) = D_n^c(\Phi(A), \epsilon)$. By the above, $\Phi(A) \in F_{(2)}(\mathbb{R}^l)$.

Suppose that $l \ge 2$. Let $A \in F_{(2)}(\mathbb{R}^l)$ and let L be the line in \mathbb{R}^l containing A. By Lemma 3.5, $\Phi(F_n(L)) = F_n(L)$, i.e., $\Phi|_{F_n(L)} \in \text{Isom}(F_n(L))$. Applying to the case l = 1, $\Phi(A) = A$, which completes the proof.

Lemma 3.8. Let $l, n \in \mathbb{N}$. Then, $\operatorname{Isom}(F_n(\mathbb{R}^l), F_1(\mathbb{R}^l)) = {\operatorname{id}_{F_n(\mathbb{R}^l)}}.$

PROOF: Let $\Phi \in \text{Isom}(F_n(\mathbb{R}^l), F_1(\mathbb{R}^l))$ and let $A \in F_{(m)}(\mathbb{R}^l)$. We show that $\Phi(A) \subset A$. On the contrary, suppose that there exists $z \in \Phi(A) \setminus A$. By Lemma 3.5, we note that $\operatorname{conv}(A)^{(0)} \subset \Phi(A) \subset \operatorname{conv}(A)$. There exist a hyperplane H in \mathbb{R}^l with dimension l-1 containing z and a line L in \mathbb{R}^l containing z such that H is vertical to $L, A \cap H = \emptyset$, and, $A \cap C_k \neq \emptyset$ for k = 0, 1, where C_0 and C_1 are the closed half-spaces bounded by H with $C_0 \cup C_1 = \mathbb{R}^l$. As in the proof of Lemma 3.5, there exist a sufficiently large r > 0 and $x_k \in L \cap \operatorname{Int}_{\mathbb{R}^l} C_k$ for k = 0, 1 such that $r = d(x_0, z) = d(x_1, z), A \cap (S_d(x_0, r) \cup S_d(x_1, r)) = \emptyset$, and $A \subset B_d(x_0, r) \cup B_d(x_1, r)$. Set $A_1 = \{x_0, x_1\}$. Since $d(z, A_1) = r$, we see $d_H(\Phi(A), A_1) \ge r$. Since $A \cap S_d(A_1, r) = \emptyset, A \subset B_d(A_1, r)$ and $A_1 \subset B_d(A, r)$, we have $d_H(A, A_1) < r$. By Lemma 3.7, we have $r \le d_H(\Phi(A), A_1) = d_H(\Phi(A), \Phi(A_1)) = d_H(A, A_1) < r$, a contradiction.

If similar arguments apply to $\Phi(A)$ and Φ^{-1} , we obtain $A = \Phi^{-1}(\Phi(A)) \subset \Phi(A)$, therefore, $A = \Phi(A)$, which completes the proof.

Lemma 3.9. Let $l, n \in \mathbb{N}$. Then $\operatorname{Isom}(F_n(\mathbb{S}^l), F_1(\mathbb{S}^l)) = {\operatorname{id}_{F_n(\mathbb{S}^l)}}.$

PROOF: Let $\Phi \in \text{Isom}(F_n(\mathbb{S}^l), F_1(\mathbb{S}^l)), m \in \mathbb{N}$ with $2 \leq m \leq n$ and let $A \in F_{(m)}(\mathbb{S}^l)$. We show that $A = \Phi(A)$. Let $a \in A$ and let $a' \in \mathbb{S}^l$ be the anti-point of a. Since $d_H(\{a'\}, \Phi(A)) = d_H(\Phi(\{a'\}), \Phi(A)) = d_H(\{a'\}, A) = \pi$, we have $a \in \Phi(A)$, therefore, $A \subset \Phi(A)$. If similar arguments apply to $\Phi(A)$ and Φ^{-1} , we obtain $\Phi(A) \subset \Phi^{-1}(\Phi(A)) = A$, therefore, $A = \Phi(A)$, which completes the proof. \Box

PROOF OF THEOREM 1.1: By Lemmas 3.2, 3.8 and 3.9, the conditions in Lemma 2.3 hold for (X, d), which completes the proof.

Corollary 3.10. Let $l, n \in \mathbb{N}$ and let d be a metric on \mathbb{R}^{l+1} as in Notation 2.1. Suppose \mathbb{S}^l has a metric $\rho = d|_{\mathbb{S}^l}$. Then $\chi_n : \operatorname{Isom}_{\rho}(\mathbb{S}^l) \to \operatorname{Isom}_{\rho_H}(F_n(\mathbb{S}^l))$ is an isomorphism for each $n \in \mathbb{N}$.

PROOF: By similar arguments as in the proof of Lemma 3.9, we have $\operatorname{Isom}_{\rho_H}(F_n(\mathbb{S}^l), F_1(\mathbb{S}^l)) = {\operatorname{id}_{F_n(\mathbb{S}^l)}}.$ By Corollary 3.3, the conditions in Lemma 2.3 hold for (\mathbb{S}^l, ρ) , which completes the proof.

Question 3.11. Let $l, n \in \mathbb{N}$ with $n \geq 2$. Is $\chi_n : \operatorname{Isom}_d(X) \to \operatorname{Isom}_{d_H}(F_n(X))$ an isomorphism when

- (1) X is a convex subset of \mathbb{R}^l ,
- (2) X is an \mathbb{R} -tree (see [3] for \mathbb{R} -trees) or
- (3) X is the hyperbolic *l*-space (see [9] for the hyperbolic *l*-space)?

Remark 3.12. Let $n, m \in \mathbb{N}$ with $2 \leq n \leq m$ and let (X, d) be an *m*-points discrete metric space satisfying that d(x, x') = 1 whenever $x \neq x'$. Then, $F_n(X)$ is a discrete metric space such that $d_H(A, A') = 1$ for any $A, A' \in F_n(X)$ with $A \neq A'$. Thus, $|\text{Isom}(X)| = |X|! < |F_n(X)|! = |\text{Isom}(F_n(X))|$, therefore, $\chi_n : \text{Isom}_d(X) \to \text{Isom}_{d_H}(F_n(X))$ is not an isomorphism.

By [1, p. 182], there exists $\Phi \in \text{Isom}_{\xi_H}(F_2(\mathbb{R}^2)) \setminus \{ \text{id}_{F_2(\mathbb{R}^2)} \}$ such that $\Phi|_{F_1(\mathbb{R}^2)} = \text{id}_{F_1(\mathbb{R}^2)}$. Hence, by Lemma 2.3, $\chi_2 : \text{Isom}_{\xi}(\mathbb{R}^2) \to \text{Isom}_{\xi_H}(F_2(\mathbb{R}^2))$ is not an isomorphism.

Remark 3.13. Recall that F(X) is the space of non-empty compact subsets of a metric space (X, d) endowed with the Hausdorff metric d_H . Similarly, we can define a natural monomorphism χ : $\text{Isom}_d(X) \to \text{Isom}_{d_H}(F(X))$. There are quite general results for some underlying spaces X corresponding to Theorem 1.1 and Question 3.11 on an epimorphism χ : $\text{Isom}_d(X) \to \text{Isom}_{d_H}(F(X))$ (see [1] and [11]).

4. Bi-Lipschitz equivalence

Definition 4.1. Let K > 0 and let $f : (X, d) \to (Y, \rho)$ be a map from a metric space (X, d) to a metric space (Y, ρ) . The map f is said to K-Lipschitz if for any $x, x' \in X, \rho(f(x), f(x')) \leq Kd(x, x')$. If f is a bijection and for any $x, x' \in X$,

$$K^{-1}d(x, x') \le \rho(f(x), f(x')) \le Kd(x, x'),$$

then f is said to be K-bi-Lipschitz equivalence (bi-Lipschitz equivalence for short).

Remark 4.2. Let d be a metric on \mathbb{R}^2 as in Notation 2.1, let $\rho = d|_{\mathbb{S}^1}$ be a metric on \mathbb{S}^1 , and let θ be the length metric on \mathbb{S}^1 . We see that the identity map $\mathrm{id}_{\mathbb{S}^1}$: $(\mathbb{S}^1, \rho) \to (\mathbb{S}^1, \theta)$ is a π -bi-Lipschitz equivalence map. Indeed, $\rho < \theta$ and, for every $x_t = e^{2\pi i t} \in \mathbb{S}^1$, we have that $\pi^2 \rho(x_0, x_t)^2 - \theta(x_0, x_t)^2 = 2\pi^2(1 - \cos t) - t^2 \ge 0$ for $0 \le t \le \pi/3$, and that $\pi \rho(x_0, x_t) \ge \pi \ge t = \theta(x_0, x_t)$ for $\pi/3 \le t \le \pi$, therefore $\theta \le \pi \rho$.

Notation 4.3. Let $l, n \in \mathbb{N}$, let $t \in [0, \infty)$, let $a = (a_1, \ldots, a_l), x = (x_1, \ldots, x_l) \in \mathbb{R}^l$ and let $A \in F_n(\mathbb{R}^l)$. Write $a \pm x = (a_1 \pm x_1, \ldots, a_l \pm x_l), ta = (ta_1, \ldots, ta_l), A \pm x = \{a \pm x : a \in A\}$ and $tA = \{ta : a \in A\}$.

Definition 4.4. Let $l, n \in \mathbb{N}$ with n > 1, let $z_0 = (0, \dots, 0) \in \mathbb{R}^l$, let $c : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l, d)$ be a map, and let $F_n^c(\mathbb{R}^l) = \{A \in F_n(\mathbb{R}^l) : c(A) = z_0\}$. Let us define two maps $\overline{c}_0 : \mathbb{R}^l \times F_n^c(\mathbb{R}^l) \to F_n(\mathbb{R}^l)$ and $\overline{c}_1 : F_n(\mathbb{R}^l) \to \mathbb{R}^l \times F_n(\mathbb{R}^l)$ by $\overline{c}_0(x, A) = A + x$ and $\overline{c}_1(A') = (c(A'), A' - c(A'))$ for each $A \in F_n^c(\mathbb{R}^l)$, each $A' \in F_n(\mathbb{R}^l)$ and each $x \in \mathbb{R}^l$.

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.5. Let $l, n \in \mathbb{N}$ with n > 1, let $c : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l, d)$ be a map and let $\overline{c}_0 : (\mathbb{R}^l \times F_n^c(\mathbb{R}^l), \rho) \to (F_n(\mathbb{R}^l), d_H)$ and $\overline{c}_1 : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l \times F_n(\mathbb{R}^l), \rho)$ be two maps as in Definition 4.4, where $\rho = \sqrt{d^2 + d_H^2}$ is the metric compatible with the topology on $\mathbb{R}^l \times F_n(\mathbb{R}^l)$. Then, the following statements hold.

- (1) The map \overline{c}_0 is a $\sqrt{2}$ -Lipschitz map.
- (2) If the map c is a K-Lipschitz map for some K > 0, then the map \overline{c}_1 is a $\sqrt{2K^2 + 2K + 1}$ -Lipschitz map.
- (3) If c(A + x) = c(A) + x for each $A \in F_n(\mathbb{R}^l)$ and each $x \in \mathbb{R}^l$, then $\overline{c}_1(F_n(\mathbb{R}^l)) = \mathbb{R}^l \times F_n^c(\mathbb{R}^l)$ and $\overline{c}_1^{-1} = \overline{c}_0$.
- (4) If c satisfies (2) and (3), then the map $\overline{c}_1 : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l \times F_n^c(\mathbb{R}^l), \rho)$ is a K'-bi-Lipschitz equivalence map, where $K' = \max\{\sqrt{2}, \sqrt{2K^2 + 2K + 1}\}.$

PROOF: (1) Let $(x, A), (x', A') \in \mathbb{R}^l \times F_n^c(\mathbb{R}^l)$, let $\epsilon > 0$ such that $A \subset B_d(A', \epsilon)$ and $A' \subset B_d(A, \epsilon)$ and let $a \in A$. Then, there exists $a' \in A'$ such that $d(a, a') < \epsilon$. Thus,

$$d(a + x, a' + x') = d(a, a' + x' - x) \le d(a, a') + d(a', a' + x' - x) \le \epsilon + d(x, x').$$

Hence, $a+x \in B_d(A'+x', \epsilon+d(x,x'))$, therefore, $A+x \subset B_d(A'+x', \epsilon+d(x,x'))$. Similarly, $A'+x' \subset B_d(A+x, \epsilon+d(x,x'))$. We conclude that $d_H(A+x, A'+x')^2 \leq \{d_H(A, A') + d(x,x')\}^2 \leq 2\{d(x,x')^2 + d_H(A, A')^2\} = 2\rho((x,A), (x',A'))^2$, hence, the map \overline{c}_0 is a $\sqrt{2}$ -Lipschitz map.

(2) Let $A, A' \in F_n(\mathbb{R}^l)$ and let $\epsilon > 0$ such that $A \subset B_d(A', \epsilon)$ and $A' \subset B_d(A, \epsilon)$. Let $a \in A$. Then, there exists $a' \in A'$ such that $d(a, a') < \epsilon$. We have

$$d(a - c(A), a' - c(A')) = d(a, a' - (c(A') - c(A)))$$

$$\leq d(a, a') + d(a', a' - (c(A') - c(A)))$$

$$= d(a, a') + d(c(A'), c(A)) < \epsilon + d(c(A'), c(A)).$$

Thus, $a - c(A) \in B_d(A', \epsilon + d(c(A'), c(A)))$, therefore, $A - c(A) \subset B_d(A', \epsilon + d(c(A'), c(A)))$. Similarly, we obtain $A' - c(A') \subset B_d(A, \epsilon + d(c(A'), c(A)))$. We conclude

$$d_H(A - c(A), A' - c(A')) \le d_H(A, A') + d(c(A), c(A'))$$

$$\le d_H(A, A') + K d_H(A, A') = (K+1)d_H(A, A'),$$

therefore, the map \overline{c}_1 is a $(\sqrt{2K^2 + 2K + 1})$ -Lipschitz map.

(3) By assumption, it is clear that $\overline{c}_1(F_n(\mathbb{R}^l)) = \mathbb{R}^l \times F_n^c(\mathbb{R}^l)$. Let $A \in F_n^c(\mathbb{R}^l)$ and let $x \in \mathbb{R}^l$. Then $\overline{c}_1 \circ \overline{c}_0(x, A) = \overline{c}_1(A + x) = (c(A + x), A + x - c(A + x)) = (c(A) + x, A + x - (c(A) + x)) = (x, A)$. Therefore, $\overline{c}_1 \circ \overline{c}_0 = \operatorname{id}_{\mathbb{R}^l \times F_n^c(\mathbb{R}^l)}$. It is clear that $\overline{c}_0 \circ \overline{c}_1 = \operatorname{id}_{F_n(\mathbb{R}^l)}$.

(4) It is clear from (1),(2) and (3).

Definition 4.6 ([14]). Let (X, d) be a metric space with diam $X \leq 2$. The quotient space $\operatorname{Cone}^{o}(X) = X \times [0, \infty)/X \times \{0\}$ is called an *open cone over* X. Let $p: X \times [0, \infty) \to \operatorname{Cone}^{o}(X)$ be the natural projection. Denote p(x, t) by $[x, t] \in \operatorname{Cone}^{o}(X)$. Let us define a metric d_c on $\operatorname{Cone}^{o}(X)$ compatible with the topology on $\operatorname{Cone}^{o}(X)$ by

$$d_c([x,t],[x',t']) = \min\{t,t'\}d(x,x') + |t-t'|$$

for any $[x, t], [x', t'] \in \operatorname{Cone}^{o}(X)$.

Remark 4.7. Let (X, d) and (Y, ρ) be metric spaces and let $f : (X, d) \to (Y, \rho)$ be a K-Lipschitz map for some K > 0. Then, $\chi_n(f) : (F_n(X), d_H) \to (F_n(Y), \rho_H)$ defined by $\chi_n(f)(A) = f(A)$ for each $A \in F_n(X)$ is a K-Lipschitz map. If max{diamX, diamY} ≤ 2 and $K \geq 1$, then $\overline{f} : (\text{Cone}^o(X), d_c) \to (\text{Cone}^o(Y), \rho_c)$ defined by $\overline{f}([x, t]) = [f(x), t]$ for each $[x, t] \in \text{Cone}^o(X)$ is a K-Lipschitz map.

The following lemma is obtained from the proof of [14, Lemma 2.2].

Lemma 4.8. Let (X, d) be a metric space with diam $X \leq 2$, let K > 0, and let ρ be a metric on Cone^o(X) compatible with the topology on Cone^o(X) such that

(1)
$$\rho([x,t],[x',t]) = td(x,x'),$$

(2)
$$\rho([x,t],[x',t']) \ge |t-t'|$$
, and,

(3) $\rho([x,t], [x,t']) \le K|t-t'|$

for any $t, t' \in [0, \infty)$ and any $x, x' \in X$. Then, $\mathrm{id}_{\mathrm{Cone}^o(X)} : (\mathrm{Cone}^o(X), \rho) \to (\mathrm{Cone}^o(X), d_c)$ is a K-Lipschitz map and $\mathrm{id}_{\mathrm{Cone}^o(X)} : (\mathrm{Cone}^o(X), d_c) \to (\mathrm{Cone}^o(X), \rho)$ is a (K + 2)-Lipschitz map and, thus, $\mathrm{id}_{\mathrm{Cone}^o(X)}$ is a (K + 2)-bi-Lipschitz equivalence map.

Definition 4.9. Let $l, n \in \mathbb{N}$ with n > 1, let $\mathbb{B}^l = \{x \in \mathbb{R}^l : d(x, z_0) \leq 1\}$, and let $c : F_n(\mathbb{R}^l) \to \mathbb{R}^l$ be a map. Set $F_n^{c,1}(\mathbb{B}^l) = \{A \in F_n(\mathbb{B}^l) : c(A) = z_0 \text{ and } e^{-1}\}$

 $d_H(\{z_0\}, A) = 1\}$. Let us define \widetilde{c} : Cone^o $(F_n^{c,1}(\mathbb{B}^l)) \to F_n(\mathbb{R}^l)$ by $\widetilde{c}([A, t]) = tA$ for each $A \in F_n^{c,1}(\mathbb{B}^l)$ and each $t \in [0, \infty)$.

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.10. If $c(tA) = z_0$ for each $A \in F_n^c(\mathbb{R}^l)$ and each $t \in [0, \infty)$, then $\widetilde{c}(\operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l))) = F_n^c(\mathbb{R}^l)$ and $\widetilde{c} : (\operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l)), (d_H)_c) \to (F_n^c(\mathbb{R}^l), d_H)$ is a 3-bi-Lipschitz equivalence map, where \widetilde{c} is the map as in Definition 4.9. In particular, \widetilde{c} is a 3-Lipschitz map and \widetilde{c}^{-1} is a 1-Lipschitz map.

PROOF: It is clear that $\widetilde{c}(\operatorname{Cone}^{o}(F_{n}^{c,1}(\mathbb{B}^{l}))) = F_{n}^{c}(\mathbb{R}^{l})$. It suffices to show three conditions with K = 1 from Lemma 4.8 for $d = \rho = d_{H}$.

Since d(tx, tx') = td(x, x') for any $x, x' \in \mathbb{B}^l$ and each $t \in [0, \infty)$, $d_H(tA, tA') = td_H(A, A')$ for each $A \in F_n^{c,1}(\mathbb{B}^l)$ and each $t \in [0, \infty)$.

Let $t, t' \in [0, \infty)$ with $t \leq t'$ and let $A, A' \in F_n^{c,1}(\mathbb{B}^l)$. Since $S_d(z_0, t) \cap (tA) \neq \emptyset$ and $S_d(z_0, t') \cap (t'A') \neq \emptyset$, we have $d_H(tA, t'A') \geq d_H(S_d(z_0, t), S_d(z_0, t')) = t' - t$. Let $t, t' \in [0, \infty)$ and let $A \in F_n^{c,1}(\mathbb{B}^l)$. Let $x \in A$. Since

$$d(tx, t'x) = |t - t'| d(z_0, x) \le |t - t'|,$$

 $t'x \in B_d(tA, |t-t'|)$. Hence, $t'A \subset B_d(tA, |t-t'|)$. Similarly, we see that $tA \subset B_d(t'A, |t-t'|)$, therefore, $d_H(tA, t'A) \leq |t-t'|$.

Proposition 4.11. Let $l, n \in \mathbb{N}$ with n > 1 and let $c : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l, d)$ be a map such that c(A + x) = c(A) + x for each $A \in F_n(\mathbb{R}^l)$ and each $x \in \mathbb{R}^l$, and that $c(tA') = z_0$ for each $A' \in F_n^c(\mathbb{R}^l)$ and each $t \in [0, \infty)$. Let $\sigma = \sqrt{d^2 + (d_H)_c^2}$ be the metric compatible with the topology on $\mathbb{R}^l \times \operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l))$ and let $h_c = (\operatorname{id}_{\mathbb{R}^l} \times \widetilde{c}^{-1}) \circ \overline{c_1} : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l \times \operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l)), \sigma)$ be a map, where $\overline{c_1}$ and \widetilde{c} are the maps as in Definitions 4.4 and 4.9, respectively.

- (1) If c is a K-Lipschitz map for some K > 0, then h_c is a K'-bi-Lipschitz equivalence map, where $K' = \max\{3\sqrt{2}, \sqrt{2K^2 + 2K + 1}\}$. In particular, h_c is a $\sqrt{2K^2 + 2K + 1}$ -Lipschitz map and h_c^{-1} is a $3\sqrt{2}$ -Lipschitz map.
- (2) Conversely, if h_c is K''-Lipschitz map for some K'' > 0, then c is a K''-Lipschitz map.

PROOF: (1) By Lemma 4.10,

$$\operatorname{id}_{\mathbb{R}^l} \times \widetilde{c}^{-1} : (\mathbb{R}^l \times F_n^c(\mathbb{R}^l), \rho) \to (\mathbb{R}^l \times \operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l)), \sigma)$$

is a 3-bi-Lipschitz equivalence map. Thus, by Lemma 4.5, h_c is a K'-bi-Lipschitz equivalence map.

(2) Let $p: (\mathbb{R}^l \times \operatorname{Cone}^o(F_n^{c,1}(\mathbb{B}^l)), \sigma) \to (\mathbb{R}^l, d)$ be the projection map which is an 1-Lipschitz map. Since $c = p \circ h_c$, c is a K''-Lipschitz map. \Box

If c satisfies the assumptions in Proposition 4.11, then c is a Lipschitz map if and only if h_c is a bi-Lipschitz equivalence map.

Definition 4.12. Let $l, n \in \mathbb{N}$ with n > 1 and let $A \in F_n(\mathbb{R}^l)$. A point cheb(A) of \mathbb{R}^l is said to be the *Chebyshev center* of A if

(*)
$$\max_{a \in A} d(\operatorname{cheb}(A), a) = \min_{x \in \mathbb{R}^l} \max_{a \in A} d(x, a)$$
$$(d_H(\{\operatorname{cheb}(A)\}, A) = \min_{x \in \mathbb{R}^l} d_H(\{x\}, A) = d_H(F_1(\mathbb{R}^l), A)).$$

Set $R(A) = \max_{a \in A} d(\operatorname{cheb}(A), a) = d_H(\{\operatorname{cheb}(A)\}, A)$, called a *Chebyshev radius* of A. It is known that such a point satisfying (*) is unique and the map cheb : $F_n(\mathbb{R}^l) \to \mathbb{R}^l : A \mapsto \operatorname{cheb}(A)$ is well-defined and continuous (see [2] or [13]). It is clear that $R : F_n(\mathbb{R}^l) \to \mathbb{R} : A \mapsto R(A)$ is continuous by (*) and that cheb satisfies the assumptions for c = cheb in Proposition 4.11.

Let $F_n^{\text{cheb},1}(\mathbb{B}^l) = \{A \in F_n(\mathbb{B}^l) : \text{cheb}(A) = z_0 \text{ and } R(A) = 1\}$, and let $\text{Cone}^o(F_n^{\text{cheb},1}(\mathbb{B}^l))$ be the open cone over $F_n^{\text{cheb},1}(\mathbb{B}^l)$ with the metric $(d_H)_c$. Fix $A_0 \in F_n^{\text{cheb},1}(\mathbb{B}^l)$. Let us define a map $h_{\text{cheb}} : F_n(\mathbb{R}^l) \to \mathbb{R}^l \times \text{Cone}^o(F_n^{\text{cheb},1}(\mathbb{B}^l))$ by

$$h_{\rm cheb}(A) = \begin{cases} ({\rm cheb}(A), [(A - {\rm cheb}(A))/R(A), R(A)]) & \text{if } A \in F_n(\mathbb{R}^l) \setminus F_1(\mathbb{R}^l) \\ ({\rm cheb}(A), [A_0, 0]) & \text{if } A \in F_1(\mathbb{R}^l). \end{cases}$$

It is clear that $h_{\text{cheb}} = (\mathrm{id}_{\mathbb{R}^l} \times \widetilde{\mathrm{cheb}}^{-1}) \circ \overline{\mathrm{cheb}}_1$, where $\overline{\mathrm{cheb}}_1$ and $\widetilde{\mathrm{cheb}}$ are the maps as in Definitions 4.4 and 4.9 for c = cheb, respectively.

By definition, it is easy to check the following result.

Proposition 4.13. Let $l, n \in \mathbb{N}$ with n > 1. The map $h_{\text{cheb}} : F_n(\mathbb{R}^l) \to \mathbb{R}^l \times \text{Cone}^o(F_n^{\text{cheb},1}(\mathbb{B}^l))$ defined in Definition 4.12 is a homeomorphism.

We note that $F_2^{\text{cheb},1}(\mathbb{B})$ is one point, $F_3^{\text{cheb},1}(\mathbb{B}) = \{\{-1,t,1\}: -1 \leq t \leq 1\}$ is a circle, and, $F_2^{\text{cheb},1}(\mathbb{B}^l) = \{\{-x,x\} \subset \mathbb{B}^l : d(x,z_0) = 1\}$ is the real projective (l-1)-space \mathbb{RP}^{l-1} for each $l \geq 2$. Hence, it is obtained that $F_2(\mathbb{R}) \approx \mathbb{R} \times [0,\infty)$, $F_3(\mathbb{R}) \approx \mathbb{R} \times \mathbb{R}^2 \approx \mathbb{R}^3$, $F_2(\mathbb{R}^l) \approx \mathbb{R}^l \times \text{Cone}^o(\mathbb{RP}^{l-1})$ for each $l \geq 2$, in particular, $F_2(\mathbb{R}^2) \approx \mathbb{R}^2 \times \mathbb{R}^2 \approx \mathbb{R}^4$.

We obtain the following result from Proposition 4.11 and [13, Lemmas 1,2 and 3].

Corollary 4.14. Let $l, n \in \mathbb{N}$ with n > 1 and let $h_{\text{cheb}} : (F_n(\mathbb{R}^l), d_H) \to (\mathbb{R}^l \times \text{Cone}^o(F_n^{\text{cheb},1}(\mathbb{B}^l)), \sigma)$ be the map defined in Definition 4.12. Then, the following conditions are equivalent:

- (1) h_{cheb} is a bi-Lipschitz equivalence map;
- (2) h_{cheb} is a $3\sqrt{2}$ -bi-Lipschitz equivalence map;
- (3) either l = 1 or n = 2 holds.

In particular, if either l = 1 or n = 2 holds, then h_{cheb} is a $\sqrt{5}$ -Lipschitz map and h_{cheb}^{-1} is a $3\sqrt{2}$ -Lipschitz map.

Remark 4.15. Let $n \in \mathbb{N}$ with n > 1. Let us define min : $(F_n(\mathbb{R}), d_H) \to (\mathbb{R}, d)$ by min $(A) = \min\{a : a \in A\}$ for each $A \in F_n(\mathbb{R})$. It is clear that min is a 1-Lipschitz map satisfying the assumptions for $c = \min$ in Proposition 4.11. By Proposition 4.11(1), $h_{\min} : (F_n(\mathbb{R}), d_H) \to (\mathbb{R} \times \operatorname{Cone}^o(F_n^{\min,1}(\mathbb{B})), \sigma)$ is a $3\sqrt{2}$ -bi-Lipschitz equivalence map. We note that $F_n^{\min,1}(\mathbb{B}) = \mathbb{I}_*^{(n)}$ which is bi-Lipschitz equivalent to $F_n^{\operatorname{cheb},1}(\mathbb{B})$. Here $\mathbb{I}_*^{(n)} = \{A \in F_n(\mathbb{I}) : \{0,1\} \subset A\}$ is induced in [14].

Question 4.16. Let l > 1 and let n > 2. Are spaces $(F_n(\mathbb{R}^l), d_H)$ and $(\mathbb{R}^l \times \text{Cone}^o(F_n^{\text{cheb},1}(\mathbb{B}^l)), \sigma)$ bi-Lipschitz non-equivalent?

Since $\operatorname{Cone}^{o}(F_{2}^{\operatorname{cheb},1}(\mathbb{B}))$ is one point, by Corollary 4.14, $F_{2}(\mathbb{R})$ is $3\sqrt{2}$ -bi-Lipschitz equivalent to $\mathbb{R} \times [0, \infty)$. The following result was first proved in [6].

Corollary 4.17. $(F_3(\mathbb{R}), d_H)$ is bi-Lipschitz equivalent to (\mathbb{R}^3, d) .

PROOF: We note that $F_3^{\text{cheb},1}(\mathbb{B}) = \{A_t = \{-1,t,1\} : -1 \leq t \leq 1\}$ has the metric d_H and $\mathbb{S}^1 = \{e^{(t+1)\pi i} \in \mathbb{S}^1 : -1 \leq t \leq 1\}$ has the length metric θ , where $M(t,t') = \max\{d(t,A_1), d(t',A_1)\}, d_H(A_t,A_{t'}) = \min\{|t-t'|, M(t,t')\}$ and $\theta(t,t') = \pi \min\{|t-t'|, 2-|t-t'|\}$ for each $-1 \leq t \leq 1$. Let us define $\alpha : F_3^{\text{cheb},1}(\mathbb{B}) \to \mathbb{S}^1$ by $\alpha(A_t) = e^{(t+1)\pi i}$ for each $-1 \leq t \leq 1$. We note that

(*)
$$M(t,t') \le d(t,A_1) + d(t',A_1) = 2 - |t-t'| \le 2M(t,t')$$

for any $t, t' \in [-1, 1]$. Hence, $d_H(A_t, A_{t'}) \leq \theta(t, t')$ for any $t, t' \in [-1, 1]$ and α^{-1} : $(\mathbb{S}^1, \theta) \to (F_3^{\text{cheb}, 1}(\mathbb{B}), d_H)$ is a 1-Lipschitz map. We show that $\alpha : (F_3^{\text{cheb}, 1}(\mathbb{B}), d_H)$ $\to (\mathbb{S}^1, \theta)$ is a (2π) -Lipschitz map. If $d_H(A_t, A_{t'}) = |t - t'|$, then $\theta(t, t') = \pi |t - t'|$ by (*). If $d_H(A_t, A_{t'}) = M(t, t')$, by (*), then

$$\frac{1}{\pi}\theta(t,t') \le 2 - |t-t'| \le 2M(t,t') \le 2d_H(A_t,A_{t'}),$$

thus, $\alpha : (F_3^{\text{cheb},1}(\mathbb{B}), d_H) \to (\mathbb{S}^1, \theta)$ is a (2π) -bi-Lipschitz equivalence map. By Remark 4.2, $\text{id}_{\mathbb{S}^1} \circ \alpha : (F_3^{\text{cheb},1}(\mathbb{B}), d_H) \to (\mathbb{S}^1, \theta) \to (\mathbb{S}^1, \rho)$ is a (2π) -Lipschitz map and its inverse is a π -Lipschitz map. Therefore, by Remark 4.7, the natural extension map $\overline{\alpha} : (\text{Cone}^o(F_3^{\text{cheb},1}(\mathbb{B})), (d_H)_c) \to (\text{Cone}^o(\mathbb{S}^1), \rho_c)$ of $\text{id}_{\mathbb{S}^1} \circ \alpha$ is a (2π) -Lipschitz map and its inverse is a π -Lipschitz map.

Let us define $\beta : (\mathbb{R}^2, d) \to (\operatorname{Cone}^o(\mathbb{S}^1), \rho_c)$ by $\beta(x) = [x/d(x, z_0), d(x, z_0)]$ for each $x \in \mathbb{R}^2 \setminus \{z_0\}$ and $\beta(z_0) = [e^{\pi i}, 0]$. We show that β is a 1-Lipschitz map and its inverse is a 3-Lipschitz map. It suffices to show three conditions with K = 1 from Lemma 4.8 for d. It is clear that $d(tx, tx') = td(x, x') = t\rho(x, x')$ for each $t \in [0, \infty)$ and any $x, x' \in \mathbb{S}^1$. Let $t, t' \in [0, \infty)$ with $t \leq t'$ and let $x, x' \in \mathbb{S}^1$. Since $tx \in S_d(z_0, t)$ and $t'x' \in S_d(z_0, t')$, we have $d_H(tx, t'x') \geq$ $d_H(S_d(z_0, t), S_d(z_0, t')) = t' - t$. Let $t, t' \in [0, \infty)$ and let $x \in \mathbb{S}^1$. Then d(tx, t'x) = $|t - t'|d(z_0, x) = |t - t'|$.

By Corollary 4.14, $(\mathrm{id}_{\mathbb{R}} \times \beta^{-1}) \circ (\mathrm{id}_{\mathbb{R}} \times \overline{\alpha}) \circ h_{\mathrm{cheb}} : (F_3(\mathbb{R}), d_H) \to (\mathbb{R} \times \mathrm{Cone}^o(F_3^{\mathrm{cheb},1}(\mathbb{B}^1)), \sigma) \to (\mathbb{R} \times \mathrm{Cone}^o(\mathbb{S}^1), \sqrt{d^2 + \rho_c^2}) \to (\mathbb{R}^3, d)$ is a $6\sqrt{5}\pi$ -bi-Lipschitz equivalence map.

Corollary 4.18. $(F_2(\mathbb{R}^2), d_H)$ is bi-Lipschitz equivalent to (\mathbb{R}^4, d) .

PROOF: We note that $\mathbb{S}^1 = \{e^{2\pi i t} \in \mathbb{B}^2 : 0 \leq t \leq 1\}$ has the length metric θ , $F_2^{\text{cheb},1}(\mathbb{B}^2) = \{A_t = \{-e^{\pi i t}, e^{\pi i t}\} : 0 \le t \le 1\}$. Let θ_H be the metric on $F_2^{\text{cheb},1}(\mathbb{B}^2)$ induced by θ . It is clear that the map $\alpha : (F_2^{\text{cheb},1}(\mathbb{B}^2), \theta_H) \to (\mathbb{S}^1, \theta)$ defined by $\alpha(A_t) = e^{2\pi i t}$ for each $t \in [0, 1]$ is a 2-Lipschitz map and its inverse is a 1/2-Lipschitz map. By Remarks 4.2 and 4.7, the identity maps $\operatorname{id}_{\mathbb{S}^1} : (\mathbb{S}^1, \theta) \to (\mathbb{S}^1, \rho) \text{ and } \operatorname{id}_{F_2^{\operatorname{cheb}, 1}(\mathbb{B}^2)} : (F_2^{\operatorname{cheb}, 1}(\mathbb{B}^2), \theta_H) \to (F_2^{\operatorname{cheb}, 1}(\mathbb{B}^2), d_H)$ are 1-Lipschitz and its inverses are π -Lipschitz. Therefore, by Remark 4.7, the natural extension map $\overline{\alpha}$: (Cone^o($F_2^{\text{cheb},1}(\mathbb{B}^2)$), $(d_H)_c$) \rightarrow (Cone^o(\mathbb{S}^1), $(\rho_H)_c$) of $\operatorname{id}_{\mathbb{S}^1} \circ \alpha \circ (\operatorname{id}_{F_2^{\operatorname{cheb},1}(\mathbb{B}^2)})^{-1}$ is a (2π) -Lipschitz map and its inverse is a $(\pi/2)$ -Lipschitz map.

Let $\beta : (\mathbb{R}^2, d) \to (\operatorname{Cone}^o(\mathbb{S}^1), \rho_c)$ be a 1-Lipschitz map such that its inverse is a 3-Lipschitz map as in the proof of Corollary 4.17. By Corollary 4.14, $(id_{\mathbb{R}^2} \times$ $\beta^{-1}) \circ (\mathrm{id}_{\mathbb{R}^2} \times \overline{\alpha}) \circ h_{\mathrm{cheb}} : (F_2(\mathbb{R}^2), d_H) \xrightarrow{} (\mathbb{R}^2 \times \mathrm{Cone}^o(F_2^{\mathrm{cheb}, 1}(\mathbb{B}^2)), \sigma) \xrightarrow{} (\mathbb{R}^2 \times \mathrm{Cone}^o(F_2^{\mathrm{cheb}, 1}(\mathbb{B}^2)), \sigma) \xrightarrow{} (\mathbb{R}^2 \times \mathrm{Cone}^o(F_2^{\mathrm{cheb}, 1}(\mathbb{R}^2)), \sigma) \xrightarrow{} (\mathbb{R}^2 \times \mathrm{Cone}^o(F_2^{\mathrm{$ $\operatorname{Cone}^{o}(\mathbb{S}^{1}), \sqrt{d^{2} + \rho_{c}^{2}} \to (\mathbb{R}^{4}, d)$ is a $6\sqrt{5}\pi$ -bi-Lipschitz equivalence map. \square

Remark 4.19. Let (X, d) be a metric space with diamX < 2. Set Cone(X) = $X \times [0,1]/X \times \{0\}$ which is called a *cone over* X. Let us consider $F_n(\mathbb{B}^l)$ and the restriction map $h'_{\text{cheb}} = h_{\text{cheb}}|_{F_n(\mathbb{B}^l)} : (F_n(\mathbb{B}^l), d_H) \to (\mathbb{B}^l \times \text{Cone}(F_n^{\text{cheb},1}(\mathbb{B}^l)), \sigma)$ of h_{cheb} defined in Definition 4.12. It is clear that h'_{cheb} is a homeomorphism. If similar arguments above apply to the case (\mathbb{B}^l, d) , we obtain that the following conditions are equivalent:

- (1) h'_{cheb} is a bi-Lipschitz equivalence map; (2) h'_{cheb} is a $3\sqrt{2}$ -bi-Lipschitz equivalence map;
- (3) either l = 1 or n = 2 holds.

Moreover, $(F_2(\mathbb{B}), d_H)$, $(F_3(\mathbb{B}), d_H)$ and $(F_2(\mathbb{B}^2), d_H)$ are bi-Lipschitz equivalent to (\mathbb{B}^2, d) , (\mathbb{B}^3, d) and (\mathbb{B}^4, d) , respectively.

Question 4.20. Since $F_3(\mathbb{S}^1) \approx \mathbb{S}^3$, it is natural to ask a question whether $F_3(\mathbb{S}^1)$ is bi-Lipschitz equivalent to \mathbb{S}^3 .

Acknowledgment. The author is grateful to H. Kodama, A. Koyama, K. Mine and Y. Ogasawara, for a useful suggestion which significantly shortened the proof of Lemma 3.9, and would like to thank the referee for helpful suggestions and comments (in particular, on Remark 3.13).

References

- [1] Bandt C., On the metric structure of hyperspaces with Hausdorff metric, Math. Nachr. 129 (1986), 175-183.
- [2] Belobrov P.K., The Čebyšev point of a system of sets, Izv. Vysš. Učebn. Zaved. Matematika **55** (1966), 18–24.
- [3] Bestvina M., R-trees in Topology, Geometry, and Group Theory, Handbook of Geometric Topology, 55–91, North-Holland, Amsterdam, 2002.
- [4] Borsuk K., Ulam S., On symmetric products of topological spaces, Bull. Amer. Math. Soc. **37** (1931), 875–882.

Symmetric products of the Euclidean spaces and the spheres

- [5] Borsuk K., On the third symmetric potency of the circumference, Fund. Math. 36 (1949), 236-244.
- Borovikova M., Ibragimov Z., The third symmetric product of R, Comput. Methods Funct. Theory 9 (2009), 255–268.
- [7] Borovikova M., Ibragimov Z., Yousefi H., Symmetric products of the real line, J. Anal. 18 (2010), 53–67.
- [8] Bott R., On the third symmetric potency of S_1 , Fund. Math. **39** (1952), 264–268.
- [9] Bridson M.R., Haefliger A., Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, Berlin, 1999.
- [10] Chinen N., Koyama A., On the symmetric hyperspace of the circle, Topology Appl. 157 (2010), 2613–2621.
- [11] Foertsch T., Isometries of spaces of convex compact subsets of globally non-positively Busemann curved spaces, Colloq. Math. 103 (2005), 71–84.
- [12] Illanes A., Nadler S.B., Jr., Hyperspaces, Marcel Dekker, New York, 1999.
- [13] Ivanshin P.N., Sosov E.N., Local Lipschitz property for the Chebyshev center mapping over N-nets, Mat. Vesnik 60 (2008), 9–22.
- [14] Kovalev L.V., Symmetric products of the line: embeddings and retractions, Proc. Amer. Math. Soc. 143 (2015), 801-809.
- [15] Molski R., On symmetric product, Fund. Math. 44 (1957), 165–170.
- [16] Morton H.R., Symmetric product of the circle, Proc. Cambridge Philos. Soc. 63 (1967), 349–352.
- [17] Valentine F.A., Convex Sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964.
- [18] Wu W., Note sur les produits essentiels symétriques des espaces topologiques, C.R. Acad. Sci. Paris 224 (1947), 1139–1141.

Department of Mathematics, National Defense Academy of Japan, Yokosuka 239-8686, Japan

E-mail: naochin@nda.ac.jp

(Received August 20, 2014, revised December 24, 2014)