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Symmetric products of the

Euclidean spaces and the spheres

NAOTSUGU CHINEN

Abstract. By Fn(X), n > 1, we denote the n-th symmetric product of a metric
space (X, d) as the space of the non-empty finite subsets of X with at most n
elements endowed with the Hausdorff metric dg. In this paper we shall describe
that every isometry from the n-th symmetric product Fy (X) into itself is induced
by some isometry from X into itself, where X is either the Euclidean space or the
sphere with the usual metrics. Moreover, we study the n-th symmetric product
of the Euclidean space up to bi-Lipschitz equivalence and present that the 2nd
symmetric product of the plane is bi-Lipschitz equivalent to the 4-dimensional
Euclidean space.
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1. Introduction

As an interesting construction in topology, Borsuk and Ulam [4] introduced
the n-th symmetric product of a metric space (X, d), denoted by F, (X). Recall
that F,,(X) is the space of non-empty finite subsets of X with at most n elements
endowed with the Hausdorff metric dg, i.e., F,(X) ={A C X : 1 < |A] < n} and
dp(A,A") =inf{e : A C Bg(A’,¢) and A’ C By(A,e)} = max{d(a, A’),d(a’, A) :
a € A,a € A’} for any A, A’ € F,,(X) (see [12, p.6]). It was proved in [4] that
F,(I) is homeomorphic to I"™ (written F),(I) ~ I") if and only if 1 < n < 3 (cf.
Remark 4.19 below), and that for n > 4, F,(I) cannot be embedded into R™,
where I = [0, 1] has the usual metric. A considerable number of studies have been
made on the topological structures of F,,(X). For example, Molski [15] showed
that Fy(I2) ~ I*(cf. Remark 4.19 below), and that for n > 3 neither F, (I?) nor
F5(I") can be embedded into R?".

For the symmetric products of R, it is easily seen that F»(R) ~ {(z,y) € R? :
r < y} ~ R x [0,00). Indeed, the map h : {(z,y) € R? : z < y} — F(R)
defined by h(z,y) = {z,y} is a homeomorphism. It was known that F5(R) and
R3 are homeomorphic, in particular, there is a bi-Lipschitz equivalence (see [6] or
Section 4 for details). Turning toward the symmetric product F,,(S') of the circle
St, in [10], it was proved that for n € N, both Fs,_1(S!) and F,(S') have the
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same homotopy type of the (2n — 1)-sphere S?*~1. In [8], Bott corrected Borsuk’s
statement [5] and showed that F3(S!) ~ S3. In [10], another proof of it was given.

For a metric space (X,d), we denote by Isomg(X) (Isom(X) for short) the
group of all isometries from X into itself, i.e., ¢ : X — X € Isomy(X) if ¢
is a bijection satisfying that d(z,2’) = d(¢(z),¢(a’)) for any x,2’ € X. Let
n € N. Every isometry ¢ : X — X induces an isometry x,(¢) : (F.(X),dny) —
(Fr(X),dy) defined by xn(¢)(A) = ¢(A) for each A € F,(X). Thus, there
exists a natural monomorphism y, : Isomg(X) — Isomg, (F,(X)). It is clear
that xp, : Isomg(X) — Isomg,, (F,,(X)) is an isomorphism if and only if x, is an
epimorphism, i.e., for every ® € Isomg,, (F,,(X)) there exists ¢ € Isomg4(X) such
that ® = x, ().

Recently, Borovikova and Ibragimov [6] proved that (F3(R), dgr) is bi-Lipschitz
equivalent to (R3, d) and that x3 : Isomg(R) — Isomg,, (F3(R)) is an isomorphism,
where R has the usual metric d. It is of interest to know whether x,, : Isomg(X) —
Isomg,, (F,,(X)) is an isomorphism for a metric space (X, d). In the first part of
this paper, we prove the following result which is a generalization of the result
above and the affirmative answer to [7, p. 60, Conjecture 2.1].

Theorem 1.1. Let | € N and let X be either R' or S! with the usual metric d.
Then x,, : Isomg(X) — Isomg,, (F,,(X)) is an isomorphism for each n € N.

We note that there exists a compact metric space (X,d) such that neither
Xn : Isomg(X) — Isomg,, (F, (X)) is an isomorphism for n > 1 (see Section 3).

In the second part of this paper, we wish to find a metric space which is bi-
Lipschitz equivalent to (F,(R!),dg) for I € N and n > 2. In [14], by use of the
minimal element in A € F,(R), it is proved that for every n > 2, F,,(R) is bi-
Lipschitz equivalent to the product of R with the open cone over some compact
subset of F,(I). In Section 4, for every | € N, by use of the Chebyshev center of
A € F,(RY), we construct a homeomorphism heper, from F, (RY) to the product of
R! with the open cone Cone®(F<tb1(B!)) over some compact subset FcheP-1(Bl)
of F, (IB%Z) and indicate that hcpep is a bi-Lipschitz equivalence map if and only if
either [ = 1 or n = 2 holds. Moreover, we show that (F»(R?),dy) is bi-Lipschitz
equivalent to (R*, d).

2. Preliminaries

Notation 2.1. Let us denote the set of all natural numbers and real numbers

by N and R, respectively. Let d be the usual metric on R, ie., d(z,y) =
{Zizl(xi —y)?}Y? for any = = (z1,...,21),y = (y1,...,5) € R Write
St = {& = (z1,...,241) € R - 102 — 1) with the length metric d.

See [9] for length metrics. Denote the identity map from X into itself by idx.

Definition 2.2. Let (X,d) be a metric space, let © € X, let Y, Z be subsets of
X and let € > 0. Set diamY = sup{d(y,v’) : v,y € Y}, d(Y, Z) = inf{d(y, z) :
yeYze Z}, Bi(Yie) = {x € X : d(z,Y) < €} and Sy(Y,e) = {z € X :
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d(z,Y) =¢}. If Y = {y}, for simplicity of notation, we write By(y,€) = Ba(Y,€)
and Sy(y,€) = Sq(Y, €).
For n € N, the n-th symmetric product of X is defined by

Fu(X)={ACX:1<|A| <n}

endowed with the Hausdorff metric dy, i.e., dg(A, B) = inf{e: A C By4(B,¢) and
B C B4(A,e)} = max{d(a, B),d(b,A) : a € A,b € B} for any A, B € F,,(X) (see
[12, p.6]). Here |A] is the cardinality of A. Write F{,,,)(X) = {A C X : [A| = m}
for each m € N. Let Isom(X,Y) = {¢ € Isom(X) : ¢(y) = y for each y € Y} for
Y C X. Set 7(A) = min{{1} U {d(a,a’) : a,a’ € A;a # a'}} for each A € F,,(X).

Lemma 2.3. Let n € N and let (X, d) be a metric space. Then, x,, : Isom(X) —
Isom(F, (X)) is an isomorphism if and only if

(1) @|p, (x) € Isom(Fy (X)) for each ® € Isom(F, (X)), and

(2) Isom(F,(X), F1(X)) = {idp, x)}-

PRrROOF: The part of “only if” is easy from the definition of y,,.
Suppose that (1) and (2) hold. Let ® € Isom(F, (X)) and let ¢ = ®|p, (x) €
Isom(F1(X)). Set " = xn(¢~"') 0 @ € Isom(F,(X)). We claim that @' |, x) =

id|p, (x). Indeed, |, (x) = Xn(9)|F (x) and Xn(¢71) = xn(¢)~1. By assumption,
we have that ®' = idp, (x), therefore, ® = x,,(¢), which completes the proof. [

3. Isometries on symmetric products

Definition 3.1. Let (X,d) be a metric space, let n € N, let € > 0 and let
A € F,(X). Define

(3.1) Dn(A,e) =sup{k e N: Ay,..., Ay € Sq, (A, €),du(Ai, Aj) = 2¢
for 1<i<j<k}.

Lemma 3.2. Let I,n € N, let X be either R or S and let ® € Isom(F,(X)).
Then, ®|p, (x) € Isom(F(X)).

PrROOF: Let n € N with n > 2. Let z € X, let ¢ > 0 with € < 1 and let
y € By(z,€). It is clear that

(i) if y € Sa(z,€), then there exists the unique y’ € By(x,€) such that
d(y,y") = 2¢, and
(i) if y ¢ Sq(z,€), then there exists no y’ € By(x,€) such that d(y,y’) = 2e.
Let A € Fi(X). We show that D, (A, ¢) = 3. It follows from (i) and (ii) that
for any B,C € F,,(B4(A,€)) \ Fi1(Ba(A,¢€)) we have dg(B,C) < 2¢, and that for
any Ai,...,Am € Say (A, €) N F1(X) with dg(A4;,4;) =2efor 1 <i<j<m we
see that m < 2. This shows that D,,(4,¢) < 3.
Let a,a’ € Sq(A,€) with d(a,a’) = 2¢. Set By = {a}, By = {d'} and B3z =
{a,a’}. Then, B; € Sy, (A, ¢) for each j = 1,2,3 and du(Bj, Bj/) = 2¢ whenever
Jj # j'. Hence, D,(A,€) > 3. Therefore, D, (A, €)= 3.
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Let m € N with m > 2, let A = {a1,...,am} € Fmm)(X) and let € > 0 with
e < r(A)/5. We show that D, (A, ¢) > 3. For every j =1,...,mand k =0, 1, let
a;r € Sa(aj,€) such that d(a;o,a;1) = 2¢. Set Ag = {a1,6,,...,0m.0,,} for each
0=(01,...,0n) € {0,1}™. We see that Ag € Sy, (A,¢€) for each 6 € {0,1}™ and
that dg(Ag, Ag/) = 2¢ whenever 6 # ¢, therefore, D,,(A,¢) > 2™ > 22 > 3.

Let @ € Isom(F, (X)), let A € F,(X) and let ¢ > 0 be such that ¢ <
min{r(A),r(®(A))}. From the definition of D, (A, ¢€), we obtain D,(4,¢) =
D, (®(A),€). By the above, we see that A € Fy(X) if and only if ®(A) € Fy(X).
Therefore, ®|p, (x) € Isom(F1(X)). O

Corollary 3.3. Let I,n € N and let d be a metric on R"*! as in Notation 2.1.
Suppose that S' has a metric p = d|gi. Let ® € Isom,,, (F,(S")). Then, ®|r, s €
Isom,,,, (F1(S!)).

Proor: Let A € F,(S') and let € > 0 be such that € < r(A)/5. Define r. =
diamB,((1,0,...,0),¢) and

D) (Ayje) =sup{k e N: Ay,..., A, € S,,(4¢),
pr(Ai,Aj) =r. for 1 <i<j<k}eNU{co}.

Analysis similar to that for D, (A, ¢) in the proof of Lemma 3.2 can show that
D;,(A,e) =3 if and only if A € Fy(S'). Therefore, ®|p, g1y € Isom,, (Fi(S")). O

Notation 3.4. Let [,n € N and let A € F,,(R!). Denote the minimal convex subset
of R containing A by conv(A), and the set of all vertices of conv(A) by conv(A)©
(see [17] for details). We note that conv(A)(©® is contained in A.

Lemma 3.5. Let I,n € N, let A € F,(R!) and let ® € Isom(F,(R!), F1(R!)).
Then, conv(A)©) C ®(A) C conv(A).

PROOF: Let a € conv(A)(®. We show that a € ®(A). Let H be a hyperplane
in R! with dimension [ — 1 such that H N conv(A) = {a}, let C be the closed
half-space bounded by H containing conv(A), and let L be the line containing
a which is vertical to H. See [17] for hyperplanes and half-spaces. There exists
x € C'N L such that conv(A) C By(x,r) and conv(A) N Sy(x,r) = {a}, where
r=d(x,a).

Since dg({z}, ®(A)) = du(®({z}),®(A4)) = duy({z},A) = r, we have that
®(A) C By(z,r) and Sq(z,r) N ®(A) # 0. Let 2/ € C'N L such that v =
d(z’,a) > r. By a similar argument, we see that Sy(z’,7') N ®(A) # 0 and
Sa(z',r") N Bg(x,r) = {a}. Thus, a € ®(A).

We show that ®(A) C conv(A). If similar arguments apply to ®(A4) and &1,
we obtain

conv(®(A)© c d71(®(A)) = A.
Therefore, ®(A) C conv(conv(®(A))() C conv(A). O
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Definition 3.6. Let I,n € N, let € > 0 and let A € F,,(R"). Define S5 _(A,¢) =
{B € Sq, (A, €) : conv(A) = conv(B)}, and

(32) Dy(Aje)=sup{k e N: Ay,..., Ap € Sg, (A €),dr(As, Aj) = 2¢
for 1<i<j<k}.

Lemma 3.7. Let I,n € N and let ® € Isom(F,(R"), Fi(R")). Then, ®|p, ) =
ing(Rl)'

PROOF: Let A € F(5)(R!). Since A = conv(A)©) by Lemma 3.5, A C ®(A).
Thus, if ®(A) € F5)(R'), then A = ®(A). Therefore, it suffices to show that
D(A) € Fo (RY). We may assume that n > 3.

Suppose that I = 1. By [7], ®(F(2)(R)) = F3)(R), but we give another short
proof of it. Let A € F(5)(R) and let ¢ > 0 with ¢ < r(A)/5. We claim that
D¢ (A, e) = 1. Indeed, on the contrary, suppose that DS (A, €) > 2, i.e., there exist
A, A € SEH (A,E) such that dH(Al,AQ) = 2e¢. Since A C A1 N Ay, A1 UAy C
Ba(A,€) C Bg(A1,€) N By(Aa,¢€), thus di (A1, A2) < €, a contradiction.

Let B € Fipy(R) with 3 < m < n and let € > 0 with e < r(B)/5. We
claim that D¢ (B, ¢€) > 2. Indeed, if we choose b € B\ {min B, max B}, we define
By = (B\{b})U{b—¢} and By = (B \ {b}) U{b+e€}. Then, Bi, By € S5, (B,¢)
and dy(B1, B2) = 2¢, thus, DS (B, €) > 2.

Let A € F,(R) \ F1(R) and let € > 0 with € < min{r(A4)/5,r(®(A))/5}. By
Lemma 3.5, ®(Sg, (A, ¢)) = S5, (®(A),€). Thus, Dy (A, €) = Dy (®(A),¢). By the
above, ®(A) € Fo)(R).

Suppose that [ > 2. Let A € F{y) (R!) and let L be the line in R! containing A.
By Lemma 3.5, ®(F, (L)) = F.(L), i.e., ®|p, (1) € Isom(F,(L)). Applying to the
case | = 1, ®(A) = A, which completes the proof. O

Lemma 3.8. Let [,n € N. Then, Isom(F,(R"), Fi(R")) = {idg, &)}

PROOF: Let ® € Isom(F,(R'), Fi(R")) and let A € F,,)(R"). We show that
®(A) C A. On the contrary, suppose that there exists z € ®(A) \ A. By
Lemma 3.5, we note that conv(A)(®) € ®(A) C conv(A). There exist a hyperplane
H in R! with dimension [ —1 containing z and a line L in R! containing z such that
H is vertical to L, ANH = 0, and, ANC}, # 0 for k = 0, 1, where Cp and C are the
closed half-spaces bounded by H with CoUC; = R!. As in the proof of Lemma, 3.5,
there exist a sufficiently large » > 0 and xx € L N IntpiCy for k = 0,1 such that
r = d(zo,2) = d(x1,2), AN (Sq(zo,7) U S4(z1,7)) = 0, and A C By(zo,7) U
By(x1,7). Set Ay = {xo,x1}. Since d(z, A1) =r, we see dg(P(A), A1) > r. Since
AN Sy(A1,r) =0, A C Bag(Ay,7) and Ay C By(A,r), we have dy (A, A1) < r.
By Lemma 3.7, we have r < dg(®(A), A1) = du(P(A), P(A1)) = du(A, A1) <,
a contradiction.

If similar arguments apply to ®(A) and ®~!, we obtain 4 = &~ 1(®(A)) C
®(A), therefore, A = ®(A), which completes the proof. O

Lemma 3.9. Let [,n € N. Then Isom(F,(S"), Fi(S")) = {idg, s}
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PrOOF: Let ® € Isom(F,(S!), F1(SY), m € N with 2 < m < n and let A €
Fin)(S"). We show that A = ®(A). Let a € A and let o’ € S' be the anti-point
of a. Since dg({a'},®(A)) = dg(®({d'}), ®(A)) = dg({d'},A) = 7w, we have
a € ®(A), therefore, A C D(A). I similar arguments apply to ®(A) and &1,
we obtain ®(A) C ®71(®(A)) = A, therefore, A = ®(A), which completes the
proof. O

PrOOF OF THEOREM 1.1: By Lemmas 3.2, 3.8 and 3.9, the conditions in
Lemma 2.3 hold for (X, d), which completes the proof. O

Corollary 3.10. Let I,n € N and let d be a metric on Rt as in Notation 2.1.
Suppose S' has a metric p = d|si. Then xy, : Isom,(S!) — Isom,,, (F,,(S!)) is an
isomorphism for each n € N.

PRrROOF: By similar arguments as in the proof of Lemma 3.9, we have
Isom,, (Fn(SY), Fi(S") = {idp,)}. By Corollary 3.3, the conditions in
Lemma 2.3 hold for (S!, p), which completes the proof. O

Question 3.11. Let I,n € N with n > 2. Is x, : Isomg(X) — Isomg, (F,(X))
an isomorphism when

(1) X is a convex subset of R,

(2) X is an R-tree (see [3] for R-trees) o

(3) X is the hyperbolic l-space (see [9] for the hyperbolic l-space)?
<

Remark 3.12. Let n,m € N with 2 < n < m and let (X,d) be an m-points
discrete metric space satisfying that d(z,2’) = 1 whenever © # 2’. Then, F,(X)
is a discrete metric space such that dgy (A, A’) = 1 for any A, A’ € F,(X) with
A # A'. Thus, [Isom(X)| = | X|! < |Fp(X)|! = [Isom(F,(X))|, therefore, xy :
Isomy(X) — Isomg, (F, (X)) is not an isomorphism.

By [1, p. 182], there exists ® € Isome,, (F>(R?))\{idp, g2)} such that ®|p, g2y =
idp, (r2). Hence, by Lemma 2.3, x2 : Isom¢(R?) — Isomg, (F3(R?)) is not an
isomorphism.

Remark 3.13. Recall that F(X) is the space of non-empty compact subsets of
a metric space (X, d) endowed with the Hausdorff metric dg. Similarly, we can
define a natural monomorphism x : Isomgy(X) — Isomg, (F(X)). There are
quite general results for some underlying spaces X corresponding to Theorem 1.1
and Question 3.11 on an epimorphism y : Isomg(X) — Isomg, (F(X)) (see [1]
and [11]).

4. Bi-Lipschitz equivalence

Definition 4.1. Let K > 0 and let f : (X,d) — (Y, p) be a map from a metric
space (X, d) to a metric space (Y, p). The map f is said to K-Lipschitz if for any
z, 7' € X, p(f(x), f(2')) < Kd(x,2'). If f is a bijection and for any x,2’ € X,

K~ Vd(w,2') < p(f(2), f(2')) < Kd(,2"),

then f is said to be K -bi-Lipschitz equivalence (bi-Lipschitz equivalence for short).
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Remark 4.2. Let d be a metric on R? as in Notation 2.1, let p = d|g: be a metric
on S, and let § be the length metric on S'. We see that the identity map idg: :
(S, p) — (St, ) is a w-bi-Lipschitz equivalence map. Indeed, p < § and, for every
x; = €™ € S! we have that m2p(zg, 2¢)? — (w9, 2¢)? = 272(1 —cost) —t2 > 0 for
0 <t <7/3, and that wp(zg,zt) > 7 > t = 0(x0, 2;) for 7/3 < t < 7, therefore
0 < mp.

Notation 4.3. Let I,n € N, let t € [0,00),let a = (a1,...,a1),x = (z1,...,2;) € R!
and let A € F,(RY). Write a £ = (ay £ x1,...,a; £ x7), ta = (tay,..., ta),
Atz={atz:a€ A} and tA= {ta:a € A}.

Definition 4.4. Let I,n € N with n > 1, let 29 = (0,...,0) € R% let ¢ :
(F(RY,dp) — (R',d) be a map, and let FS(R!) = {A € F,(R!) : ¢(A) = 2}
Let us define two maps ¢ : R! x FS(RY) — F,(RY) and ¢; : F,(R') — R! x F,(R!)
by ¢(z, A) = A+ z and ¢;(A") = (c(A’), A’ — ¢(A")) for each A € F¢(R!), each
A’ € F,(R!) and each x € R%.

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.5. Let [,n € N withn > 1, let ¢ : (F,(R"),dg) — (R!,d) be a map and
let G : (RY x FE(RY), p) — (F(R!Y),dy) and @ : (F,(RY),dy) — (R x E,(RY), p)
be two maps as in Definition 4.4, where p = \/d? + d% is the metric compatible
with the topology on R! x F,,(R!). Then, the following statements hold.
(1) The map T is a v/2-Lipschitz map.
(2) If the map c is a K-Lipschitz map for some K > 0, then the map ¢ is a
V2K?2 + 2K + 1-Lipschitz map.
(3) If c(A+ x) = c¢(A) + x for each A € F,(R!) and each x € R!, then
El(Fn(Rl)) = Rl X Fﬁ(Rl) and C1 -1 = [
(4) If ¢ satisfies (2) and (3), then the map ¢ : (F,(R)),dy) —
(R! x FS(RY,p) is a K'-bi-Lipschitz equivalence map, where K' =

max{v/2,V2K? + 2K + 1}.

ProOF: (1) Let (z,4), (2, A’) € Rt x F¢(RY), let € > 0 such that A C By(A',€)
and A" C Bg(A,¢€) and let a € A. Then, there exists a’ € A’ such that d(a,a’) < e.
Thus,

dla+z,d +2")=d(a,d +2' —z) <d(a,d’) +d(a,a + 2" — ) <e+d(x, ).

Hence, a4+ € By(A'+12',e+d(x,2')), therefore, A+x C By(A'+12',e+d(x,2’)).
Similarly, A’+2' C Bg(A+z,e+d(x,2")). We conclude that dgy (A+xz, A'+2')? <
(s (A, &)+ d(z,2)}? < 2{d(z,2')? +dsr (A, A} = 2p((z, A), (a', A'))?, hence,
the map @ is a v/2-Lipschitz map.

(2) Let A, A’ € F,,(R!) and let € > 0 such that A C Bg(A’,€) and A’ C Ba(4,¢).
Let a € A. Then, there exists o’ € A’ such that d(a,a’) < e. We have

d(a — c(A),d’ — c(A)) = d(a,a’ — (c(A") — c(A)))
<d(a,a’) +d(d',a’ — (c(A') = c(A)))
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=d(a,a") + d(c(A"),c(A))
<e+d(c(A), c(4)).

Thus, a — ¢(A) € By(A',e 4+ d(c(A’),c(A))), therefore, A — c¢(A) C B (A +
d(c (A’ ¢(A))). Similarly, we obtain A’ c(A) C Bd(A e+ d(c(A4),c(A)
conclude

dg(A—c(A), A" —c(A") <du(A, A") +d(c(A),c(A"))
< dH(A,A/) + KdH(A,AI) = (K + 1)dH(A,AI),

therefore, the map ¢; is a (vV2K? + 2K + 1)-Lipschitz map.

(3) By assumption, it is clear that ¢ (F,(R!)) = R! x F¢(RY). Let A € FS(R?!)
and let x € RL. Then ¢ oco(z, A) =¢1(A+ 1) = (c(A+2z),A+z—c(A+1)) =
(c(A) +2,A+ 2~ (c(A) + 7)) = (x,A). Therefore, ¢ 0Ty = idpiy pemr). It is
clear that ¢y o¢; = idp, (rt)-

(4) Tt is clear from (1),(2) and (3). O

Definition 4.6 ([14]). Let (X,d) be a metric space with diamX < 2. The
quotient space Cone’(X) = X x [0,00)/X x {0} is called an open cone over X.
Let p : X x [0,00) — Cone’(X) be the natural projection. Denote p(z,t) by
[x,t] € Cone’(X). Let us define a metric d. on Cone’(X) compatible with the
topology on Cone’(X) by

de([z, 1], [¢, ¢']) = min{t, t'}d(x, 2") + [t — #']
for any [z,t], [z, t'] € Cone®(X).

Remark 4.7. Let (X, d) and (Y, p) be metric spaces and let f: (X,d) — (Y, p) be
a K-Lipschitz map for some K > 0. Then, xn(f) : (Fo(X),dg) — (Fo(Y), pm)
defined by x,(f)(4) = f(A) for each A € F,(X) is a K-Lipschitz map. If
max{diamX,diamY} < 2 and K > 1, then f : (Cone®(X),d.) — (Cone®(Y), p.)
defined by f([x,t]) = [f(x),t] for each [z,t] € Cone’(X) is a K-Lipschitz map.

The following lemma is obtained from the proof of [14, Lemma 2.2].

Lemma 4.8. Let (X, d) be a metric space with diamX < 2, let K > 0, and let p
be a metric on Cone’(X) compatible with the topology on Cone (X) such that
t

(1) ([, 1], [2", t]) = td(z,z"),
@) plfe, 4. [, 0) > |t — '], and,
(3) pllr ], o, #]) < Kt

for any t,t" € [0,00) and any x,x" € X. Then, idgoneo(x) : (Cone’(X), p)
(Cone’ (X) d.) is a K-Lipschitz map and idcenee(xy @ (Cone’(X),d.)
(Cone’(X),p) is a (K + 2)-Lipschitz map and, thus, idconeo(x) is a (K + 2)-
bi-Lipschitz equivalence map.

Definition 4.9. Let [,n € N with n > 1, let B! = {z € R' : d(=, 29) < 1}, and
let ¢ : F,(RY) — R! be a map. Set F&'(B!) = {4 € F,(B') : ¢(A) = z and
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dr({z0},A) = 1}. Let us define ¢ : Cone®(FS1(BY)) — F,(RY) by ¢([A, 1)) = tA
for each A € F&!(B!) and each t € [0, c0).

The proof of the following lemma is based on the proof of [14, Lemma 2.4].

Lemma 4.10. If c¢(tA) = z for each A € F¢(R!) and each t € [0,0), then
&(Cone®(FEL(B)) = FE(R!) and @ : (Cone®(FSL(B)), (dn)e) — (FS(R'),drr)
is a 3-bi-Lipschitz equivalence map, where ¢ is the map as in Definition 4.9. In
particular, ¢ is a 3-Lipschitz map and ¢! is a 1-Lipschitz map.

PROOF: It is clear that ¢(Cone®(FS1(B!))) = FS(RY). Tt suffices to show three
conditions with K =1 from Lemma 4.8 for d = p = dp.

Since d(tz,tz’) = td(x,z') for any z,2’ € B! and each t € [0,00), dy (tA,tA") =
tdu (A, A’) for each A € F&1(B!) and each t € [0, ).

Let t,#' € [0,00) with ¢ <t and let A, A’ € F&(B'). Since Sa(z0,t)N (tA) #0
and Sy(zo,t" )N’ A") # 0, we have dy (tA,t'A") > du (Sa(z0,1t), Sa(z0,t")) = t' —t.

Let t,t' € [0,00) and let A € F&(B!). Let 2 € A. Since

d(te,t'z) = |t —t'|d(20,2) < |t — '],

t'c € By(tA, |t —t'|). Hence, t’A C By(tA, |t —t'|). Similarly, we see that tA C
Ba(t'A, |t — t'|), therefore, dy (tA, T’ A) < |t —t/|. O

Proposition 4.11. Let [,n € N withn > 1 and let ¢ : (F,(R"),dy) — (R',d) be
a map such that c¢(A + x) = ¢(A) + x for each A € F,,(R') and each x € R!, and
that c(tA') = zg for each A’ € F¢(R!) and each t € [0,00). Let o = \/d? + (dp)?
be the metric compatible with the topology on R! x Cone’(F%'(B')) and let
he = (idgt x €71 0%y : (F,(RY),dy) — (R! x Cone?(F1(B!)), o) be a map, where
¢, and ¢ are the maps as in Definitions 4.4 and 4.9, respectively.

(1) If ¢ is a K-Lipschitz map for some K > 0, then h. is a K’-bi-Lipschitz
equivalence map, where K' = max{3v/2,v/2K?2 + 2K + 1}. In particular,
he is a /2K?2 + 2K + 1-Lipschitz map and h;l is a 3\/§—L1'psch1'1;z map.

(2) Conversely, if h. is K"-Lipschitz map for some K" > 0, then c is a
K" -Lipschitz map.

PRrROOF: (1) By Lemma 4.10,
idp x €71 (R x FS(RY), p) — (R! x Cone?(FS1 (BY)), 0)

is a 3-bi-Lipschitz equivalence map. Thus, by Lemma 4.5, h. is a K’-bi-Lipschitz
equivalence map.

(2) Let p : (R! x Cone®(F$1(B!)),0) — (R, d) be the projection map which is
an 1-Lipschitz map. Since ¢ = p o h,, ¢ is a K"-Lipschitz map. O

If ¢ satisfies the assumptions in Proposition 4.11, then ¢ is a Lipschitz map if
and only if h. is a bi-Lipschitz equivalence map.
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Definition 4.12. Let [,n € N with n > 1 and let A € F,(R!). A point cheb(A)
of R is said to be the Chebyshev center of A if

max d(cheb(A),a) = min max d(z, a)
a€A z€R! a€A

*k
S dnlieheb(A)), A) = min ({2}, 4) = dn(F (R, ).

Set R(A) = maxgea d(cheb(A),a) = di({cheb(A)}, A), called a Chebyshev radius
of A. Tt is known that such a point satisfying (*) is unique and the map cheb :
F,(RY) — R!: A — cheb(A) is well-defined and continuous (see [2] or [13]). Tt
is clear that R : F,(R') — R : A + R(A) is continuous by () and that cheb
satisfies the assumptions for ¢ = cheb in Proposition 4.11.

Let FSheb1(B!) = {A € F,(B') : cheb(4) = 2 and R(A) = 1}, and let
Cone® (Fheb:1(B!)) be the open cone over Fheb:1(B!) with the metric (dg).. Fix
Ag € FhebL(BY). Let us define a map henep : Fr(R!) — R! x Cone®(EFcheb-1(Bl))
by

henen (4) = (cheb(A), [(A — cheb(A))/R(A), R(A)]) if A€ F,(R)\ Fi(RY)
b (cheb(A), [Ao, 0]) if Ac Fi(R).

— 1 —
It is clear that heheb, = (idg: % cheb ) o cheby, where cheb; and cheb are the
maps as in Definitions 4.4 and 4.9 for ¢ = cheb, respectively.

By definition, it is easy to check the following result.

Proposition 4.13. Let I,n € N with n > 1. The map hepep : Fn(R!) — R x
Cone® (F<heb:-1(B!)) defined in Definition 4.12 is a homeomorphism.

We note that F5""!(B) is one point, F5"™'(B) = {{-1,£,1} : =1 <t < 1}
is a circle, and, F5""(B!) = {{—z,2} C B! : d(z, 20) = 1} is the real projective
(I —1)-space RP'! for each I > 2. Hence, it is obtained that F5(R) ~ R x [0, o0),
F5(R) ~ R x R2 &~ R3, F5(R!) ~ R! x Cone®(RP'™1) for each [ > 2, in particular,
F(R?) =~ R? x R? =~ R%.

We obtain the following result from Proposition 4.11 and [13, Lemmas 1,2
and 3.

Corollary 4.14. Let I,n € N with n > 1 and let hepep, : (Fn(RY),dgy) — (R! x
Cone® (Fheb:1(B!)), o) be the map defined in Definition 4.12. Then, the following
conditions are equivalent:

(1) hcneb is a bi-Lipschitz equivalence map;
(2) heneb is a 3v/2-bi-Lipschitz equivalence map;
(3) either I =1 or n =2 holds.

In particular, if either [ = 1 or n = 2 holds, then hcnep, is a \/E-Lipschitz map
and h;hleb is a 3v/2-Lipschitz map.
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Remark 4.15. Let n € N with n > 1. Let us define min : (F,(R),dy) — (R,d)
by min(A) = min{a : a € A} for each A € F,(R). It is clear that min is a
1-Lipschitz map satisfying the assumptions for ¢ = min in Proposition 4.11. By
Proposition 4.11(1), Amin : (Fy(R),dpr) — (R x Cone®(F™™1(B)), o) is a 3v/2-bi-
Lipschitz equivalence map. We note that F™»H(B) = I which is bi-Lipschitz
equivalent to F>1(B). Here I") = {A € F,(I) : {0,1} C A} is induced in [14].

Question 4.16. Let | > 1 and let n > 2. Are spaces (F,,(R'),dy) and (R! x
Cone® (Fheb:1(BY)), o) bi-Lipschitz non-equivalent?

Since Cone®(F5"™!(B)) is one point, by Corollary 4.14, Fy(R) is 3v/2-bi-
Lipschitz equivalent to R x [0, 00). The following result was first proved in [6].

Corollary 4.17. (F3(R),dy) is bi-Lipschitz equivalent to (R3,d).

Proor: We note that Fs"™!'(B) = {4, = {~1,£,1} : =1 < ¢ < 1} has the
metric dy and S' = {e(ttD7™ ¢ S' . —1 < ¢ < 1} has the length metric 6,
where M (t,t') = max{d(t, A1),d(t', A1)}, duy(As, Ay) = min{|t — |, M(¢,¢')}
and 6(t,t') = mmin{|t — ¢/|,2 — |t — |} for each —1 < ¢t < 1. Let us define
o FSPP N (B) — St by a(A4;) = eD7 for each —1 <t < 1. We note that

() M, t) <d(t,Ay) +d(t', A) =2 — |t — /| <2M(t, )

for any t,t € [—1,1]. Hence, dy (A, Ap) < 0(t,t') for any t,¢' € [-1,1] and a1 :
(S',0) — (F5"™'(B), dg) is a 1-Lipschitz map. We show that o : (F5""!(B), dzr)
— (S, 0) is a (27)-Lipschitz map. If dy(As, Ay) = [t —t'], then O(t, ') = w|t — /|
by (). If dg(As, Ay) = M(¢,t'), by (), then

%G(t,t’) <2— |t =t <2M(t,t') < 2dy(As, Ap),

thus, a : (F5"™'(B),dg) — (S',6) is a (27)-bi-Lipschitz equivalence map. By
Remark 4.2, idg: o o : (F§"™'(B),dy) — (S',6) — (S',p) is a (2r)-Lipschitz
map and its inverse is a w-Lipschitz map. Therefore, by Remark 4.7, the natural
extension map @ : (Cone®(Fs™*(B)), (dg)e) — (Cone®(S1), pe) of idgi o a is a
(27)-Lipschitz map and its inverse is a 7-Lipschitz map.

Let us define 8 : (R2,d) — (Cone®(S'), p.) by B(x) = [x/d(z, 20), d(x, z0)] for
each z € R?\ {20} and B(29) = [¢™,0]. We show that 3 is a 1-Lipschitz map
and its inverse is a 3-Lipschitz map. It suffices to show three conditions with
K =1 from Lemma 4.8 for d. It is clear that d(tz,tz’) = td(z,2') = tp(x,z’)
for each t € [0,00) and any z,2' € S!. Let t,#' € [0,00) with ¢ < ' and let
x,2' € S'. Since tx € S4(z0,t) and t'z’ € Sq(z0,t'), we have dy(tx,t'z") >
dr(Sa(zo,t), Sa(zo,t')) =t —t. Let t,¢' € [0,00) and let « € S*. Then d(tz,t'z) =
[t —t'|d(z0,2) = |t — t'].

By Corollary 4.14, (idg x f71) o (idg X @) o hcheb : (F3(R),dy) — (R x
Cone® (F$"™ 1 (B')),0) — (R x Cone’(SY), /& + p2) — (R3,d) is a 6v/5 x-bi-
Lipschitz equivalence map. (I
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Corollary 4.18. (F»(R?),dy) is bi-Lipschitz equivalent to (R*,d).

PROOF: We note that S = {e?™® € B2 : 0 < t < 1} has the length met-
ric 0, FS"" 1 (B2) = {A, = {—e™,e™*} : 0 < t < 1}. Let 6y be the metric
on F5™P1(B2) induced by 6. It is clear that the map a : (F5"™!(B2),0y) —
(S',0) defined by a(A;) = e2™ for each t € [0,1] is a 2-Lipschitz map and
its inverse is a 1/2-Lipschitz map. By Remarks 4.2 and 4.7, the identity maps
idg: 2 (81,0) — (8',p) and id perev o) = (F5""(B?), 0n) — (F5 "' (B?), dpr)
are 1-Lipschitz and its inverses are m-Lipschitz. Therefore, by Remark 4.7, the
natural extension map @ : (Cone®(FS"™!(B2)), (dy)e) — (Cone®(SY), (pr)e) of
idg: OO[O(ichheb,l(]Bz))71 is a (27)-Lipschitz map and its inverse is a (7/2)-Lipschitz
map.

Let 3: (R?,d) — (Cone’(S'), p.) be a 1-Lipschitz map such that its inverse is
a 3-Lipschitz map as in the proof of Corollary 4.17. By Corollary 4.14, (idgz x
B o (idp2 X @) 0 hepeb : (F2(R2),dp) — (R? x Cone®(F5"*!(B2)),0) — (R? x
Cone®(S'), /d% + p2) — (R*,d) is a 6+/5 m-bi-Lipschitz equivalence map. O

Remark 4.19. Let (X, d) be a metric space with diamX < 2. Set Cone(X) =
X x[0,1]/X x {0} which is called a cone over X. Let us consider F,,(B') and the
restriction map hly,., = heheb|r, B1) : (Fn(B'),du) — (B' x Cone(F™!(B)), o)
of hcheb defined in Definition 4.12. It is clear that k., ., is a homeomorphism. If
similar arguments above apply to the case (IB%l, d), we obtain that the following
conditions are equivalent:

(1) hl;.p is a bi-Lipschitz equivalence map;

(2) B/} is @ 3v/2-bi-Lipschitz equivalence map;

(3) either I =1 or n = 2 holds.
Moreover, (Fy(B),dg), (F3(B),dy) and (Fy(B?),dg) are bi-Lipschitz equivalent
to (B?,d), (B3,d) and (B*,d), respectively.

Question 4.20. Since F3(S') ~ S3, it is natural to ask a question whether F3(S*)
is bi-Lipschitz equivalent to S2.
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