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On the class of positive almost

weak* Dunford-Pettis operators
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Abstract. In this paper, we introduce and study the class of almost weak* Dunford-
Pettis operators. As consequences, we derive the following interesting results:
the domination property of this class of operators and characterizations of the
wDP* property. Next, we characterize pairs of Banach lattices for which each
positive almost weak* Dunford-Pettis operator is almost Dunford-Pettis.
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1. Introduction and notation

Let us recall from [2] that a norm bounded subset A of a Banach lattice E is
said to be almost limited if every disjoint weak* null sequence (f,,) of E’ converges
uniformly on A, that is, lim, o sup,c 4 | fn(z)| = 0.

An operator T from a Banach lattice E into a Banach space Y is said to be
almost Dunford-Pettis if || T'(zy)|| — 0 in Y for every weakly null sequence (z,,)
consisting of pairwise disjoint elements in E [6].

A Banach space X has the Dunford-Pettis* property (DP* property for short),
if z, 2 0in X and f, L 0in X' imply f,(z,) — 0.

A Banach lattice E has
- the positive Schur property, if || f»| — 0 for every weakly null sequence (f,) C
E*, equivalently, ||f.|| — 0 for every weakly null sequence (f,) C ET consisting
of pairwise disjoint terms (see page 16 of [9]);
- the weak Dunford-Pettis* property (wDP* property for short), if every relatively
weakly compact set in F is almost limited, equivalently, whenever f,,(z,) — 0 for
every weakly null sequence (z,) in E and for every disjoint weak* null sequence
(fu) in E' [2].

Recall from [4] that an operator T from a Banach space X into another Banach
space Y is called weak* Dunford-Pettis if f,(T(x,)) — 0 for every weakly null
sequence (z,) C X, and every weak* null sequence (f,) C Y’. In this paper,
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we introduce and study the disjoint version of this class of operators, that we
call almost weak* Dunford-Pettis operators (Definition 2.1). It is a class which
contains that of weak* Dunford-Pettis (resp. almost Dunford-Pettis).

The main results are some characterizations of almost weak* Dunford-Pettis
operators (Theorem 2.3). Next, we derive the following interesting consequences:
the domination property of this class of operators (Corollary 2.4), a characteri-
zation of wDP* property (Corollary 2.5). After that, we prove that each positive
almost weak* Dunford-Pettis operator from a Banach lattice F into a o- Dedekind
complete Banach lattice I is almost Dunford-Pettis if and only if E has the posi-
tive Schur property or the norm of F is order continuous (Theorem 2.7). As
consequence, we will give some interesting results (Corollaries 2.8 and 2.9).

To state our results, we need to fix some notations and recall some definitions.
A Banach lattice is a Banach space (E, || - ||) such that E is a vector lattice and
its norm satisfies the following property: for each z,y € E such that |z| < |y,
we have ||z|| < ||y||. If E is a Banach lattice, its topological dual E’, endowed
with the dual norm, is also a Banach lattice. A norm | - || of a Banach lattice
E is order continuous if for each generalized sequence (x,) such that z, | 0 in
E, the sequence (z,) converges to 0 in the norm || - ||, where the notation x, | 0
means that the sequence (z,) is decreasing, its infimum exists and inf(z,) = 0.
A Riesz space is said to be og-Dedekind complete if every countable subset that is
bounded above has a supremum, equivalently, whenever 0 < z,, 1< = implies the
existence of sup(xy,).

We will use the term operator T : E — F' between two Banach lattices to
mean a bounded linear mapping. It is positive if T'(x) > 0 in F whenever z > 0
in E. If T is an operator from a Banach lattice F into another Banach lattice
F then its dual operator 7" is defined from F’ into E' by T'(f)(z) = f(T(z))
for each f € F’ and for each x € E. We refer the reader to [1] for unexplained
terminology of Banach lattice theory and positive operators.

2. Main results

Next we give the definition of almost weak* Dunford-Pettis operator between
Banach lattices, which is a different version of the weak* Dunford-Pettis operator.

Definition 2.1. An operator T from a Banach lattice E to a Banach lattice F'
is almost weak* Dunford-Pettis if f,(T(x,)) — 0 for every weakly null sequence
() in E consisting of pairwise disjoint terms, and for every weak* null sequence
(fn) in F' consisting of pairwise disjoint terms.

For proof of the next theorem, we need the following lemma which is just
Lemma 2.2 of Chen in [2].

Lemma 2.2. Let FE be a o-Dedekind complete Banach lattice, and let (f,) be
a weak* convergent sequence of E'. If (g,,) is a disjoint sequence of E' satisfying
lgn| < |fn] for each n, then the sequences (gy), (|gnl); (gn) T, (gn)~ are all weak*
convergent to zero. In particular, if (f,) is a disjoint weak* convergent sequence
in its own right, then the sequences (fn), (|ful); (fn)", (fn)~ are all weak* null.
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Now, for positive operators between two Banach lattices, we give a characteri-
zation of almost weak* Dunford-Pettis operators.

Theorem 2.3. Let E and F be two Banach lattices such that F is o-Dedekind
complete. For every positive operator T from E into F, the following assertions
are equivalent.

(1) T is almost weak* Dunford-Pettis operator.

(2) For every disjoint weakly null sequence (z,) C E*, and every disjoint
weak* null sequence (f,) C (F')" it follows that f,(T(z,)) — 0.

(3) For every disjoint weakly null sequence (z,,) C E*, and every weak* null
sequence (fn) C F' it follows that f,(T(x,)) — 0.

(4) For every disjoint weakly null sequence (z,,) C ET, and every weak* null
sequence (f,) C (F')*t it follows that f,(T(x,)) — 0.

(5) For every weakly null sequence (z,,) C E*, and every weak* null sequence
(fn) C (F')* it follows that f,(T(z,)) — 0.

PRrROOF: (1) = (2) Obvious.

(2) = (3) Assume by way of contradiction that there exists a disjoint weakly
null sequence (x,) C ET, and a weak* null sequence (f,) C F’ such that
fn(T(x,)) does not converge to 0. The inequality |fn(T(zn))| < |fnl (T(zn))
implies |fy| (T'(x,)) does not converge to 0. Then there exist some € > 0 and a
subsequence of | f,,| (T'(z,)) (which we shall denote by |f,.| (T'(x,)) again) satisfy-
ing |fn| (T(x,)) > € for all n.

On the other hand, since x,, — 0 weakly in E, then T'(z,,) — 0 weakly in F.
Now an easy inductive argument shows that there exist a subsequence (z,) of
(x,) and a subsequence (g,,) of (f,) such that

|gn| (T'(2n)) > €

and

(4" Z?:l 19:]) (T (2n+1)) < %

foralln > 1. Put h =32, 27" |g,| and hy, = (|gnt1| — 4" > g gl —27"R)T.
By Lemma 4.35 of [1] the sequence (hy,) is disjoint. Since 0 < h,, < |gn41] for all
n > 1 and (g,) is weak* null in F’, then from Lemma 2.2 (h,,) is weak* null in
F’. From the inequality

Y

hn, (T(Zn+1 )

<|gn+1| —4m ) gl - 2_"h> (T(zn11))

i=1

> em L (T (z00))
n

we see that h,(T'(zn41)) > 5 must hold for all n sufficiently large (because

27"h(T(zp+1)) — 0), which contradicts with our hypothesis (2).
(3) = (4) Obvious.
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(4) = (5) Assume by way of contradiction that there exists a weakly null
sequence (z,) C E1 and a weak* null sequence (f,,) C (F’)" such that f,,(T(x,))
does not converge to 0. Then there exists some ¢ > 0 and a subsequence of
fn(T(x,)) (which we shall denote by f,(T(z,)) again) satisfying f,(T(x,)) > €
for all n.

On the other hand, since (f,) is a weak* null sequence in (F”), then T77(f,) — 0
weak* in E’. Now an easy inductive argument shows that there exist a subse-
quence (z,) of (x,) and a subsequence (g,,) of (f,) such that

T'(gn)(2n) > €

and

T'(gnt1) (4" 200y 2i) < &
foralln > 1. Put z =Y 7 27"z, and y,, = (2p41 — 4" > 2 —27"2)". By
Lemma 4.35 of [1] the sequence (y,,) is disjoint. Since 0 < y,, < z,41 foralln > 1
and (z,) is weakly null in F, then from Theorem 4.34 of [1] (y,) — 0 weakly in
FE. From the inequality

T'(gn1)(yn) = T'(gn+1) (szrl —4ny ai- 2_"Z>
i=1

1
= 27T (gn41)(2)

we see that gn11(T'(yn)) = T"(gn+1)(yn) = § must hold for all n sufficiently large
(because 27T (gn+1)(2) — 0), which contradicts with our hypothesis (4).

(5) = (1) Let (z,,) be a weak null sequence in E consisting of pairwise disjoint
terms, and let (f,,) be a weak* null sequence in F’ consisting of pairwise disjoint
terms, it follows from Remark(1) of [6] that (|z,]) is weakly null in E, and from
lemma 2.2 that (| f,]) is weak* null in F’. So by our hypothesis (5), |fn| (T |zn|) —
0. Now, from the inequality |fn(T(xn))| < |fn| (T'(Jzn|)) for each n, we deduce
that f,(T(x,)) — 0, and this completes the proof. O

The domination property for almost weak* Dunford-Pettis operators can be
derived from Theorem 2.3.

Corollary 2.4. Let E and F be two Banach lattices such that F' is o-Dedekind
complete. If S and T are two positive operators from E into F such that 0 <
S < T and T is an almost weak* Dunford-Pettis, then S is also almost weak*
Dunford-Pettis.

PRrROOF: Let (x,) be a weakly null sequence in ET and (f,) be a weak* null
sequence in (F’)T. According to (5) of Theorem 2.3, it suffices to show that
fn(S(zn)) — 0. Since T is almost weak* Dunford-Pettis, then Theorem 2.3
implies that f,(T(x,)) — 0. Now, by the inequality 0 < f,,(S(zy)) < fn(T(zy))
for each n, we conclude that f,(S(z,)) — 0. O
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As consequence of Theorem 2.3 and Theorem 3.2 of Chen [2], other charac-
terizations of Banach lattices with the wDP* property are given in the following
Corollary.

Corollary 2.5. Let E be a o-Dedekind complete Banach lattice. Then, the
following assertions are equivalent.
(1) E has the wDP* property.
(2) The solid hull of every relatively weakly compact set in E is almost limited.
(3) The identity operator Idg : E — E is almost weak* Dunford-Pettis.
(4) For every disjoint weakly null sequence (z,) C E, and every disjoint
weak* null sequence (f,) C E' it follows that f,(z,) — 0.
(5) For every disjoint weakly null sequence (z,) C E*, and every disjoint
weak* null sequence (f,) C (E')" it follows that f(x,) — 0.
(6) For every disjoint weakly null sequence (x,) C ET, and every weak* null
sequence (f,) C E' it follows that f(xz,) — 0.
(7) For every disjoint weakly null sequence (z,,) C E*, and every weak* null
sequence (f,) C (E')T it follows that f,(z,) — 0.
(8) For every weakly null sequence (z,) C ET, and every weak* null sequence
(f (E')" it follows that f,(xy) — 0.

n) C
PROOF: (3) < (4) Obvious.
) &

3)e (5 (6) < (7) < (8) follows from Theorem 2.3.
(1) & (2) & (4) follows from Theorem 3.2 of [2]. O

The proof of the next theorem is based on the following proposition.
Proposition 2.6. Let E, F and G be three Banach lattices such that G has
the DP* property. Then, each operator T : E — F that admits a factorization
through the Banach lattice G is almost weak* Dunford-Pettis.

PROOF: Let P: E — G and @ : G — F be two operators such that T'= @Q o P.
Let (x,,) be a disjoint weakly null sequence in E and let (f,) be a disjoint weak*

null sequence in F'. It is clear that P(z,) ~ 0 in G and Q’'(f,) L 0in &, As
G has the DP* property, then

fa(Tzn) = fu(Q o P(zy)) = (Q' fo)(P(zn)) — 0.
This proves that T is almost weak* Dunford-Pettis. (I

Note that every almost Dunford-Pettis operator is almost weak* Dunford-
Pettis, but the converse is not true in general. In fact, Idjo : £ — £ is
almost weak* Dunford-Pettis operator because ¢*° has the wDP* property, but
it fails to be almost Dunford-Pettis because /> does not have the positive Schur
property.

Now, we characterize Banach lattices such that each positive almost weak*
Dunford-Pettis operator is almost Dunford-Pettis.

Theorem 2.7. Let F and F' be two Banach lattices such that F' is o-Dedekind
complete. Then the following assertions are equivalent.
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(1) Each positive almost weak* Dunford-Pettis operator T : E — F' is almost
Dunford-Pettis.
(2) One of the following assertions is valid:
(a) E has the positive Schur property,
(b) the norm of F' is order continuous.

PROOF: (1) = (2) Assume by way of contradiction that E does not have the
positive Schur property and the norm of F is not order continuous. We have to
construct a positive almost weak* Dunford-Pettis operator which is not almost
Dunford-Pettis. As E does not have the positive Schur property, then there exists
a disjoint weakly null sequence (z,,) in ET which is not norm null. By choosing a
subsequence we may suppose that there is € > 0 with ||z, | > € > 0 for all n. From
the equality ||z,| = sup{f(z,): f € (E')",|f|| =1}, there exists a sequence
(fn) C (E')* such that |f,|| = 1 and f,(x,) > € holds for all n. Now, consider
the operator R : E — £°° defined by

R(x) = (fn(z))521

On the other hand, since the norm of F' is not order continuous, it follows from
Theorem 4.51 of [1] that £>° is lattice embeddable in F, i.e., there exists a lattice
homomorphism S : /*° — F and there exist tow positive constants M and m
satisfying

m[[(A)klloe < ISR E < M ARk oo

for all (\g)x € £°°. Put T'= SoR, and note by Proposition 2.6 that T is a positive
almost weak* Dunford-Pettis operator because ¢*° has DP* property. However,
for the disjoint weakly null sequence (x,,) C ET, we have

1T ()l = [1S((Fu(@n)) o)l = m|[(fr(@n)kll oo = mfn(2n) = me

for every n. This shows that T is not almost Dunford-Pettis, and we are done.
(a) = (1) In this case, each operator T : E — F is almost Dunford-Pettis.
(b)= (1) Let (z,) C E be a positive disjoint weakly null sequence. We shall
show that || T'(z,,)| — 0. By Corollary 2.6 of [3], it suffices to prove that |T'(z,,)| —
0 and f,(T(z,)) — 0 for every disjoint and norm bounded sequence (f,,) C (F')™.
Let f € (F')" and by Theorem 1.23 of [1] there exists some g € [—f, f] with
fITz,| = g(Tx,). Since x, = 0 then f|Txz,| = g(Tx,) = (T"g)(zn) — 0,
thus |T(x,)] = 0. On the other hand, let (f,) C (F')* be a disjoint and norm
bounded sequence. As the norm of F' is order continuous, then by Corollary

2.4.3 of [5] fn 2. Now, since T is positive almost weak* Dunford-Pettis then,
fu(T(x,)) — 0. This completes the proof. O

Remark 1. The assumption that F' is o-Dedekind complete is essential in The-
orem 2.7. In fact, if we consider £ = ¢°° and F = ¢, the Banach lattice of all
convergent sequences, it is clear that F' = ¢ is not o-Dedekind complete, and it
follows from the proof of Proposition 1 of [7] and Theorem 5.99 of [1] that each
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operator from ¢ into ¢ is Dunford-Pettis (and hence is almost Dunford-Pettis).
But ¢°° does not have the positive Schur property and the norm of ¢ is not order
continuous.

As consequences of Theorem 2.7, we have the following characterization.

Corollary 2.8. Let E be a o0-Dedekind complete Banach lattice. Then the fol-
lowing assertions are equivalent.

(1) Each positive almost weak* Dunford-Pettis operator T : E — E is almost
Dunford-Pettis.
(2) The norm of E is order continuous.

PROOF: The result follows from Theorem 2.7 by noting that if E has the positive
Schur property then the norm of F is order continuous. [l

Now, from Corollary 2.8 and Theorem 4.9 (Nakano) of [1], we obtain the fol-
lowing result, which is just Proposition 3.3 of [2].

Corollary 2.9. Let E be a Banach latticee. Then E has the positive Schur
property if and only if E has the wDP* property and its norm is order continuous.

PROOF: The “only if” part is trivial.

For the “if” part, since £ has wDP* property, then Idg : E — FE is almost
weak* Dunford-Pettis operator. As the norm of E is order continuous, it follows
from Theorem 4.9 (Nakano) of [1] that E is o-Dedekind complete, and by Corol-
lary 2.8 we have that Idg : F — FE is almost Dunford-Pettis. This proves that F
has the positive Schur property. (]
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