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On complete linear Weingarten hypersurfaces

in locally symmetric Riemannian manifolds

CicEro P. AQuiNo, HENRIQUE F. DE LiMA*, FABIO
R. DOS SANTOS, MARCO ANTONIO L. VELASQUEZ

Abstract. Our aim is to apply suitable generalized maximum principles in order
to obtain characterization results concerning complete linear Weingarten hyper-
surfaces immersed in a locally symmetric Riemannian manifold, whose sectional
curvature is supposed to obey standard constraints. In this setting, we establish
sufficient conditions to guarantee that such a hypersurface must be either totally
umbilical or an isoparametric hypersurface with two distinct principal curvatures
one of which is simple.
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1. Introduction and statements of the results

The problem to characterize hypersurfaces immersed with either constant mean
curvature or constant scalar curvature in a Riemannian space form Q**! of con-
stant sectional curvature ¢ constitutes a classical theme in the theory of isometric
immersions. For instance, Otsuki [14] studied the minimal hypersurfaces in the
standard unit Euclidean sphere S"™*1 (n > 3) with two distinct principal curva-
tures and proved that if the multiplicities of the two principal curvatures are both
greater than 1, then they are the Clifford minimal hypersurfaces. More recently,
Wu [18] extended Otsuki’s technique in order to prove that, locally, any hyper-
surface in S**! of constant mean curvature and two distinct principal curvatures
is an open part of a complete hypersurface of the same curvature properties.

For the case of the scalar curvature, Brasil Jr., Colares and Palmas [7] used
the generalized maximum principle of Omori-Yau to characterize complete hyper-
surfaces with constant normalized scalar curvature in S**1. In [3], by applying
a weak Omori-Yau maximum principle due to Pigola, Rigoli, Setti [15], Alias and
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Garcia-Martinez studied the behavior of the scalar curvature R of a complete
hypersurface immersed with constant mean curvature in Q! deriving a sharp
estimate for the infimum of R. Afterwards, Alfas, Garcia-Martinez and Rigoli [4]
obtained another suitable weak maximum principle for complete hypersurfaces
with constant scalar curvature in Q7! and gave some applications of it in order
to estimate the norm of the traceless part of its second fundamental form. In
particular, they extended the main theorem of [7] for the context of Q?*1.

Meanwhile, Li, Suh and Wei [12] considered the so-called linear Weingarten
hypersurfaces immersed in S”*!, that is, hypersurfaces of S"*! whose mean cur-
vature H and normalized scalar curvature R satisfy R = aH +b, for some a,b € R.
In this setting, they showed that if M™ is a compact linear Weingarten hypersur-
face with nonnegative sectional curvature immersed in S**! such that R = aH +b
with (n—1)a?+4n(b—1) > 0, then M™ is either totally umbilical or isometric to
a Clifford torus. More recently, the first, second and fourth authors [6] obtained
another characterization result concerning complete linear Weingarten hypersur-
faces immersed in Q""!. Under the assumption that the mean curvature attains
its maximum and supposing an appropriate restriction on the norm of the trace-
less part @ of the second fundamental form, they showed that such a hypersurface
must be either totally umbilical or isometric to an isoparametric hypersurface of
sz-i-l.

Motivated by the works described above, in this article we deal with complete
linear Weingarten hypersurfaces M™ immersed in a wide class of Riemannian
manifolds, namely locally symmetric Riemannian manifolds. We recall that a
Riemannian manifold is said to be locally symmetric when all the covariant de-
rivative components Ragce p;E of its curvature tensor vanish identically.

Given a hypersurface M™ immersed in a locally symmetric Riemannian man-

. —n+1 . . .

ifold M we will assume that, for certain constants c¢; and ¢y, the sectional
—n+1 oy

curvature K of M satisfies the following standard conditions:

C1
1.1 K = —
(1.1) (n:v) = —
for vectors n € T+M and v € TM; and
(1.2) K(u,v) > ca,

for vectors u,v € TM. In particular, we note that space forms Q7" of constant
sectional curvature c satisfy conditions (1.1) and (1.2) for <t = ¢, = ¢. On the
other hand, we also observe that such kind of curvature constrains already appear
in the current literature (see, for instance, [16], [17] and [19]).

Denoting by Rap the components of the Ricci tensor of a locally symmetric

Riemannian manifold 37" satisfying condition (1.1), the scalar curvature R of
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s given by

n+1 n n n
R= Z RAA = Z Riﬂj + 22 R(n-i—l)i(n—i—l)i = Z Rijij + 2c,.
A=1 4,j=1 =1 i,j=1

Moreover, it is well known that the scalar curvature of a locally symmetric Rie-

mannian manifold is constant. So, R = ﬁ ZZ j R;ji;j is a constant naturally

attached to a locally symmetric Riemannian manifold satisfying condition (1.1).
Now, we are in the position to state our first result.

Theorem 1. Let M”H, n > 3, be a locally symmetric Riemannian manifold
satisfying conditions (1.1) and (1.2). Let M™ be a complete linear Weingarten
hypersurface immersed in M such that R = aH + b with b > R. Setting
¢ = 2cy — ¢, suppose that R > R — ¢ when ¢ <0, andR>Rf%c when ¢ > 0.
If H attains its maximum on M™ and

n(n—1)(R+c¢—7R)>
(n—2)(nR+2c—nR)’

sup || <
M

then M™ is either totally umbilical or an isoparametric hypersurface with two
distinct principal curvatures one of which is simple.

We want to point out that, when the ambient space mtt is a Riemannian
space form Q"1 from the last part of the proof of Theorem 1.1 of [6] we see that
the isoparametric hypersurfaces of Q2! with two distinct principal curvatures,
2 n(n—1)R?

" = R
account that in this case R = ¢, we conclude that our restriction on |®]| is, in fact,
a mild hypothesis.

Afterwards, we derive another characterization result concerning the case that
the ambient space is an Einstein manifold. In what follows, £!(M) stands for the
space of Lebesgue integrable functions on M™.

one of which is simple, are such that |® Hence, taking into

Theorem 2. Let MHH, n > 3, be a locally symmetric Einstein manifold satis-
fying conditions (1.1) and (1.2). Let M™ be a complete linear Weingarten hyper-
surface immersed in M such that R = aH +b with (n—1)a®+4n(b—R) > 0.
Setting ¢ = 2co — -, suppose that R > R —c when ¢ <0, and R > R — %c when
¢> 0. If H is bounded, |VH| € L(M) and

n(n—1)(R+c—7R)>
(n—2)(nR+2c—nR)’

sup |®* <
M

then M™ is either totally umbilical or an isoparametric hypersurface with two
distinct principal curvatures one of which is simple.

This paper is organized in the following way: in Section 2 we recall standard
facts related to hypersurfaces immersed in a locally symmetric Riemannian man-
ifold and establish a suitable Simons type formula concerning such hypersurfaces.
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Besides, in Section 3 we quote some key lemmas that will be essential in the proofs
of our results. Finally, in Section 4 we present the proofs of Theorems 1 and 2.

2. A Simons type formula

In this section we will introduce some basic facts and notations that will appear
in the paper. In what follows, we will suppose that all considered hypersurfaces
are orientable and connected.

Let M™ be an n-dimensional hypersurface in a Riemannian manifold VA
We choose a local field of orthonormal frame {es} in " with dual coframe
{wa} such that, at each point of M", eq,...,e, are tangent to M" and e,41 is
normal to M™. We will use the following convention for the indices:

1<ABC,...<n+1, 1<4jk,...<n.

In this setting, denoting by {wap} the connection forms of MHH, we have

. “7n+1 .
that the structure equations of M " are given by:

(2.1) dwa = — Zwm‘ AW —wWant1 Awny1, waB +wpa =0,
[
1 _
(2.2) deB:7;wAc/\wCB+§CZDRABCDwC/\wD.

Here, Rapcp, Rop and R denote respectively the Riemannian curvature tensor,
.. . . . —n+1
the Ricci tensor and the scalar curvature of the Riemannian manifold 37" .

In this setting, we have
Rep = Z Rpepp, R= Z Raa.
B A

Moreover, the components Ragpc p;E of the covariant derivative of the Riemannian

—nt1
curvature tensor of M are defined by

ZRABCD;EWE = dRaBcp — Z(REBCDWEA
E E

+Rapcpwep + Rapepwee + RapcrweD).

Next, we restrict all the tensors to M™. First of all, w,y1 = 0 on M™, so
Zi wn+1i A w; = dwp41 = 0 and by Cartan’s Lemma we can write

(2.3) Wntli = Zhij‘*}jv hij = hiji.
J

This gives the second fundamental form of M", h = Zij hijwiwjentq and its
square length S =", j hfj Furthermore, the mean curvature H of M™ is defined
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The structure equations of M™ are given by

(2.4) dw; = — Zwij ANwj, Wwij +wj; = 0,
J

1
(25) dwij = — ;wik ANwgj + 5 ;Rijklwk A wi.

Using the structure equations we obtain the Gauss equation

(2.6) Rijwi = Rijii + (hikhji — hathjr),

where R;ji; are the components of the curvature tensor of M™.
The Ricci curvature and the normalized scalar curvature of M™ are given,
respectively, by

(2.7) R = Z Rikjk +nHh;; — Z hikhi;
k k
and
1
(2.8) R ) ;R
From (2.7) and (2.8) we obtain
(2.9) n(n - 1)R = ZRijij +n?H? - S.
4,J

The first covariant derivatives h;;r of h;; satisfy
(2.10) Z hijkwk = dhij — Z hkjwki — Z hikwkj-
k k k

Then, by exterior differentiation of (2.3), we obtain the Codazzi equation

(2.11) hijk — hikj = —Rny1)ijk-

Similarly, the second covariant derivatives h;;z; of h;; are given by
(2.12) > higwr = dhigr = > higrwi — > hakwi; — Y hijiwi.
1 1 1 1
By exterior differentiation of (2.10), we can get the following Ricci formula

(2.13) hijri — hijue = Z Rimn Rkl + Z P Rmik -

m
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—n+1
At this point, we will assume that the ambient space M "isa locally sym-
metric Riemannian manifold. Thus, we have that

(214) R(nJrl)ijkl = R(nJrl)i(nJrl)khjl + R(nJrl)ij(nJrl)hkl - Z RTTLijkhT)’Ll)

where R(n+1)ijkl denotes the covariant derivative of R(n—i—l)ijk as a tensor on M"
so that

Z Rint1yijriwr = dR(ny1yij5 — Z Rint1yjrwii
) )

- Z Ripy1yiktj — Z Rini1)ijiwik:
l !

The Laplacian Ah;; of h;; is defined by Ah;; = Z hijik. Thus, from equations
k

(2.11), (2.13) and (2.14) we deduce that

Ahij = (nH)ij + nHR(nJrl)i(nJrl)j + TLHZ hikhkj
k
(2.15) - Z hij Rns 1) k(nt1)k
k

_Shij + Z(h7rLiRmkjk + hnLijkik + 2hk7nR7nijk)-

k,m

Since AS =2 (Zi,j hijAhij + 32, 5k h?jk), taking a local orthonormal frame

{e1,...,en} on M™ such that h;; = \;d;;, from equation (2.15) we obtain the
following Simons type formula

SAS = ST+ Y N0l YN - 8

N i

(2.16) +nH Z )\iR(nH)i(nH)i - SZ R(n—i—l)i(n—i—l)i
1 _
+3 Z(Ai — Xj)?Rijij.-
J
Now, let ¥ = Zi,j W;;w; ® wj be a symmetric tensor on M™ defined by

\I’ij = nH(Sij — hlJ

Following Cheng-Yau [10], we introduce an operator [J associated to ¥ acting on
any smooth function f by
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(2.17) uf= Z Wijfi; = Z(nH5ij = hij) fij-
4,J

2%

Setting f = nH in (2.17) and taking again a local frame field {ey,...,e,} on
M™ such that h;; = X;id;j;, from equation (2.9) we obtain the following:

O(nH)

nHA(nH) ZA (nH);

1 2 Z 2 Z

= §A(’I’LH) — , (TLH)J — : )\I(HH),”
n(n —1) 1 9 9

= B AR+ SAS -’ VHP =Y Ni(nH) .

5 R+ 5 S —n?|VH] i Ai(nH) i

Consequently, taking into account equation (2.16), we get

O(nH) = ( AR—}—Zh”k —n?|VH]> + nHY X - S
1,5,k A
(2.18) +nHZ ANiR(n41)i(n+1yi — SZ Rnt1)i(nt1)i

2 Z i ’Lj’L]

Remark 1. Concerning the previous computation of O(nH ), when the ambient
space is a Riemannian space form, we also would like to suggest the readers to
see Corollary 3.3 (case r = 1) in [8].

3. Key lemmas

In this section, we will quote some key lemmas which will be essential in order to
prove our classifications of linear Weingarten hypersurfaces in locally symmetric
Riemannian manifolds. The first one is a classic algebraic lemma due to M.
Okumura in [13], and completed with the equality case in [1] by H. Alencar and
M. do Carmo.

Lemma 1. Let p1,..., 4y, be real numbers such that ZM = 0 and Zuf =2,

where 8 > 0. Then

(n 3 5. (=2
31 mﬂ <2 =

and equality holds if and only if at least (n — 1) of the numbers pu,; are equal.

7,
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To obtain the second lemma, we can argue as in the proof of either Lemma 2.1
of [12] or Lemma 3.2 of [6]. In what follows, as before, R = ﬁ > i Rijij-

Lemma 2. Let M™ be a linear Weingarten hypersurface in a locally symmetric

Riemannian manifold 3" satisfying condition (1.1) such that R = aH + b for
some a,b € R. Suppose that

(3.2) (n —1)%a® +4n(n —1)(b—R) > 0.
Then we have

(3.3) > iy = 0| VHP.
igok
Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on M™,
then H is constant on M™.
PROOF: Since we are supposing that R = aH + b, from equation (2.9) we get
2 Z hijhijk = (2n2H — n(n — 1)@) H7k.
,J
Thus, we get

2

43S hiship | = (2n*H — n(n — 1)a)” |VH].
k ij

Consequently, using Cauchy-Schwartz inequality, we obtain that

AN AR
07

.3,k

(3.4) 45> hiy
4,4,k
2

v

43| D hishisn
k i,j
= (2n’H —n(n— 1)a)2 |VH|?.
On the other hand, since R = aH + b, from equation (2.9) we easily see that

(2n*H — n(n — l)a)2 = n?(n—1)2%a*+4n3(n —1)b
(3.5) —4n®(n — 1)R + 4n>S.
Consequently, from (3.2), (3.4) and (3.5) we have

S hiy = n*S|VH|.
1,5,k
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Therefore, we obtain either S = 0 and )7, ;; hi;y = n?*|VH[? or 32, ;
n?|VH|?. Moreover, if inequality (3.2) is strict, from (3.5) we get that

2
hijk >

(2n*H —n(n — 1)a)2 > 4n?2S.

Now, let us assume in addition that the equality holds in (3.3) on M™. In this case,
we wish to show that H is constant on M™. Suppose, by contradiction, that it does
not occur. Consequently, there exists a point p € M™ such that [VH(p)| > 0. So,
one deduces from (3.4) that 4S(p) >, ; . hi;(p) > 4n*S(p)|VH (p)|* and, since
Dok hZ(p) = n*|VH(p)]* > 0, we arrive at a contradiction. Hence, in this
case, we conclude that H must be constant on M™. (Il

In what follows, we will consider the Cheng-Yau’s modified operator

-1
i aA.

(3.6) L=0-

Related to such operator, we have the following sufficient criteria of ellipticity
which extends Lemma 3.3 of [6].

Lemma 3. Let M™ be a linear Weingarten hypersurface immersed in a locally

symmetric Riemannian manifold M such that R =aH +0b withb > R. Then,
L is elliptic.

PRrROOF: From equation (2.9), since R = aH + b with b > R = ﬁ Do Rijij,
we easily see that H cannot vanish on M™ and, by the choice of an appropriate
orientation, we may assume that H > 0 on M™".

Let us consider the case that a = 0. Since R = b > R, from equation (2.9), if
we choose a local orthonormal frame {ei,...,e,} on M™ such that h;; = A;d;5,

we have that ZKJ- AiA; > 0. Consequently,

nPH? = A7 42) N > A

1<J

for every ¢ = 1,...,n and, hence, we have that nH — \; > 0 for every i. Therefore,
in this case, we conclude that L is elliptic.
Now, suppose that a # 0. From equation (2.9) we get that

a=—-————(S-n’H*+n(n-1)(b—R)).
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Consequently, for every i = 1, ..., n, with a straightforward algebraic computation
we verify that

an)\ifnila = nH- )\+ﬁ(57n2H2+n(n71)(b772))
1 2y
= 5= Z)\ O N +nmn-1)b-7R)
J#i J#i

Therefore, since we are assuming that b > R, we also conclude in this case that
L is elliptic. U

To close this section, we quote a generalized maximum principle due to Cam-
inha (cf. Proposition 2.1 of [9]; see also the Theorem of Karp [11]). In what
follows, divX denotes the divergence of a smooth vector field X € T M.

Lemma 4. Let X be a smooth vector field on a complete oriented Riemannian
manifold M™, such that divX does not change sign on M™. If | X| € L}(M), then
divX = 0.

4. Proofs of Theorems 1 and 2

Now, we are in position to prove Theorem 1.

PROOF OF THEOREM 1: From (2.18) and (3.6), if we choose a local orthonormal
frame {ei,...,e,} on M™ such that h;; = \;0;;, we get

Z hiw —n*|VH|? + nHZ A — 52

.5,k

+ ZR(nJrl yi(nt1yi(NHA; — 5) + Z — )% Rijij.

4,

(4.1)

Thus, from Lemma 2, we have
L(nH) > H Z AP — 5% 4 Z Rini1yitninyi(nHX; — S)

+Z )? Rijis.

(4.2)

Setting ®;; = hi; — Hé;5, we will also consider the following symmetric tensor

o = Z@ijwi & wj.

4,J
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Let |®]? = Z@?j be the square of the length of ®. It is easy to check that ® is
traceless ang,] recalling that R = ﬁ Z” Rijij, from (2.9) we get
(4.3) |®]> =S —nH?*=n(n - 1)H* +n(n — 1)(R — R).

Moreover, if we take a local frame field eq,...,e, at p € M™, such that

hij = Xidij and @i = p;idi ,
it is straightforward to check that
Zui =0, Zuf = |®|? and Zuf’ = Z)\f — 3H|®|*> — nH3.
Consequently, by applying Lemma 1 to the real numbers pq, ..., t,, we get
nHY N =8 = —(|o +nH?)? +n’H* + 3nH?|®|> + nH Y _ 1}

(4.4)

v

-2
_jof 4 nmol? — =2 giep
nn—1)

On the other hand, using curvature conditions (1.1) and (1.2), we get

(4.5) > Rusvyimanyi(nHA = §) = e1(nH? = ) = —c1 ||
and

Z()\i — X)) Rijij > e Z()\i =)

2] 2]
(4.6) = 2nca(S — nH?) = 2nce| @2

Hence, setting ¢ = 2¢9 — c—l, from (4.2), (4.4), (4.5) and (4.6) we obtain that
n

(4.7) L(nH) > |®? <|<I>|2+nH2 %H@an).
From (4.3), we obtain

(4.8) n(n—1)H?* =n(n—1)(R-R) +|®|*.
Thus, from (4.7) and (4.8) we get

4.9 L(H) 2 ———[0*Pr (|®).

“nn-1)
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where

Pr(z) = —(n—2)2>—(n—2)z\/22+n(n—1)(R-R)
(4.10) +n(n—1)(R+c—R).

Our restrictions on R guarantee that Pr(0) > 0 and the function Pgr(z) is
strictly decreasing for x > 0, with Pr(z*) =0 at

x (R+0R)\/(n—2)(nR+20—nR) > 0.

Thus, our hypothesis on |®| guarantees that

1

(4.11) LU 2 s

|®[*Pr (12]) > 0.

Consequently, since Lemma 3 guarantees that L is elliptic and as we are sup-
posing that H attains its maximum on M™, from (4.11) we conclude that H is
constant on M"™. Thus, taking into account equation (4.1), we get

Z hie =n?|VH|* =0,
N

and it follows that \; is constant for every i = 1,...,n.

If |®| < z*, then from (4.11) we have that |®| = 0 and, hence, M™ is totally
umbilical. If |®| = x*, since the equality holds in (3.1) of Lemma 1, we conclude
that M™ is either totally umbilical or an isoparametric hypersurface with two
distinct principal curvatures one of which is simple. [l

Now, we present the proof of Theorem 2.

PROOF OF THEOREM 2: From (2.17) we have that
Of = trace(P; o V2 f),

where V2 f stands for the self-adjoint linear operator metrically equivalent to the
hessian of f and, denoting by I the identity in the algebra of smooth vector fields
on M",

(4.12) Py =nHI — h.
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Thus, by using the standard notation () for the induced metric of M™, we get
Of = > (Pi(Ve, V1), e,

where {e1,...,e,} is a local orthonormal frame on M™. Consequently, we have
that

div(P(Vf))

D> (Ve PV, e) + Z(Pl(veivf), ei)

(4.13) (Zthh V) +0f,

where

divPy = trace (VP1) = » (Ve P1) (e:).

K2

On the other hand, since M "*!is an Einstein manifold with n > 3, there exists

a parameter A € R such that Ric = A(,), where Ric denotes the Ricci tensor of

M Thus, denoting by R the curvature tensor of MHH, from Lemma 25 of [5]

(see also Lemma 3.1 of [2]) we have

<diVP17 Vf> = Z<§(7I7 ei)vfa ei> = ﬁ(nv Vf) = >‘<77a Vf> =0,

%

where 7 stands for the unit normal vector field on M™.
Hence, from (4.13), we conclude that

(4.14) Of = div(PL(Vf)).

From (4.14), we have that

(4.15) L(nH) =div(P(VH)),
where
(4.16) P=nP + @a[.

Moreover, since H is supposed to be bounded on M™, from equation (2.9) we
have that h is also bounded on M™. Consequently, from (4.12) and (4.16) we see
that there exists a positive constant C' such that |P| < C. Thus, since we are also
assuming that |VH| € L£L}(M), we obtain that

(4.17) |P(VH)| < |P||VH| < C|VH| € L'Y(M).

Thus, from (4.11), (4.15), (4.17), we can apply Lemma 4 to obtain that
L(nH) = 0 on M™. Consequently, taking into account that all the inequali-
ties that we have obtained along the proof of Theorem 1 are, in fact, equalities,
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from equation (4.1) we have that

> iy =n?|VH|.
N

Hence, since we are assuming (n — 1)a® + 4n(b — R) > 0, where

1 _
R =1y & fo

,J

by applying Lemma 2 we get that H is constant on M™.
Therefore, in a similar way as in the last part of the proof of Theorem 1 we
conclude that M™ is either totally umbilical or an isoparametric hypersurface with

two distinct principal curvatures one of which is simple. Il
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