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On complete linear Weingarten hypersurfaces

in locally symmetric Riemannian manifolds
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Abstract. Our aim is to apply suitable generalized maximum principles in order
to obtain characterization results concerning complete linear Weingarten hyper-
surfaces immersed in a locally symmetric Riemannian manifold, whose sectional
curvature is supposed to obey standard constraints. In this setting, we establish
sufficient conditions to guarantee that such a hypersurface must be either totally
umbilical or an isoparametric hypersurface with two distinct principal curvatures
one of which is simple.
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1. Introduction and statements of the results

The problem to characterize hypersurfaces immersed with either constant mean
curvature or constant scalar curvature in a Riemannian space form Qn+1

c of con-
stant sectional curvature c constitutes a classical theme in the theory of isometric
immersions. For instance, Otsuki [14] studied the minimal hypersurfaces in the
standard unit Euclidean sphere Sn+1 (n ≥ 3) with two distinct principal curva-
tures and proved that if the multiplicities of the two principal curvatures are both
greater than 1, then they are the Clifford minimal hypersurfaces. More recently,
Wu [18] extended Otsuki’s technique in order to prove that, locally, any hyper-
surface in Sn+1 of constant mean curvature and two distinct principal curvatures
is an open part of a complete hypersurface of the same curvature properties.

For the case of the scalar curvature, Brasil Jr., Colares and Palmas [7] used
the generalized maximum principle of Omori-Yau to characterize complete hyper-
surfaces with constant normalized scalar curvature in Sn+1. In [3], by applying
a weak Omori-Yau maximum principle due to Pigola, Rigoli, Setti [15], Aĺıas and
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Garćıa-Mart́ınez studied the behavior of the scalar curvature R of a complete
hypersurface immersed with constant mean curvature in Qn+1

c , deriving a sharp
estimate for the infimum of R. Afterwards, Aĺıas, Garćıa-Mart́ınez and Rigoli [4]
obtained another suitable weak maximum principle for complete hypersurfaces
with constant scalar curvature in Qn+1

c , and gave some applications of it in order
to estimate the norm of the traceless part of its second fundamental form. In
particular, they extended the main theorem of [7] for the context of Qn+1

c .
Meanwhile, Li, Suh and Wei [12] considered the so-called linear Weingarten

hypersurfaces immersed in Sn+1, that is, hypersurfaces of Sn+1 whose mean cur-
vature H and normalized scalar curvature R satisfy R = aH+b, for some a, b ∈ R.
In this setting, they showed that if Mn is a compact linear Weingarten hypersur-
face with nonnegative sectional curvature immersed in Sn+1 such that R = aH +b

with (n− 1)a2 +4n(b− 1) ≥ 0, then Mn is either totally umbilical or isometric to
a Clifford torus. More recently, the first, second and fourth authors [6] obtained
another characterization result concerning complete linear Weingarten hypersur-
faces immersed in Qn+1

c . Under the assumption that the mean curvature attains
its maximum and supposing an appropriate restriction on the norm of the trace-
less part Φ of the second fundamental form, they showed that such a hypersurface
must be either totally umbilical or isometric to an isoparametric hypersurface of
Qn+1

c .
Motivated by the works described above, in this article we deal with complete

linear Weingarten hypersurfaces Mn immersed in a wide class of Riemannian
manifolds, namely locally symmetric Riemannian manifolds. We recall that a
Riemannian manifold is said to be locally symmetric when all the covariant de-
rivative components R̄ABCD;E of its curvature tensor vanish identically.

Given a hypersurface Mn immersed in a locally symmetric Riemannian man-

ifold M
n+1

we will assume that, for certain constants c1 and c2, the sectional

curvature K of M
n+1

satisfies the following standard conditions:

(1.1) K(η, v) =
c1

n
,

for vectors η ∈ T⊥M and v ∈ TM ; and

(1.2) K(u, v) ≥ c2,

for vectors u, v ∈ TM . In particular, we note that space forms Qn+1
c of constant

sectional curvature c satisfy conditions (1.1) and (1.2) for c1

n
= c2 = c. On the

other hand, we also observe that such kind of curvature constrains already appear
in the current literature (see, for instance, [16], [17] and [19]).

Denoting by R̄AB the components of the Ricci tensor of a locally symmetric

Riemannian manifold M
n+1

satisfying condition (1.1), the scalar curvature R̄ of
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M
n+1

is given by

R̄ =

n+1
∑

A=1

R̄AA =

n
∑

i,j=1

R̄ijij + 2

n
∑

i=1

R̄(n+1)i(n+1)i =

n
∑

i,j=1

R̄ijij + 2c1.

Moreover, it is well known that the scalar curvature of a locally symmetric Rie-
mannian manifold is constant. So, R = 1

n(n−1)

∑

i,j R̄ijij is a constant naturally

attached to a locally symmetric Riemannian manifold satisfying condition (1.1).
Now, we are in the position to state our first result.

Theorem 1. Let M
n+1

, n ≥ 3, be a locally symmetric Riemannian manifold

satisfying conditions (1.1) and (1.2). Let Mn be a complete linear Weingarten

hypersurface immersed in M
n+1

such that R = aH + b with b > R. Setting

c = 2c2 −
c1

n
, suppose that R ≥ R− c when c ≤ 0, and R > R− 2

n
c when c > 0.

If H attains its maximum on Mn and

sup
M

|Φ|2 ≤
n(n − 1) (R + c −R)

2

(n − 2) (nR + 2c − nR)
,

then Mn is either totally umbilical or an isoparametric hypersurface with two

distinct principal curvatures one of which is simple.

We want to point out that, when the ambient space M
n+1

is a Riemannian
space form Qn+1

c , from the last part of the proof of Theorem 1.1 of [6] we see that
the isoparametric hypersurfaces of Qn+1

c with two distinct principal curvatures,

one of which is simple, are such that |Φ|2 ≡ n(n−1)R2

(n−2)(nR−(n−2)c) . Hence, taking into

account that in this case R = c, we conclude that our restriction on |Φ| is, in fact,
a mild hypothesis.

Afterwards, we derive another characterization result concerning the case that
the ambient space is an Einstein manifold. In what follows, L1(M) stands for the
space of Lebesgue integrable functions on Mn.

Theorem 2. Let M
n+1

, n ≥ 3, be a locally symmetric Einstein manifold satis-

fying conditions (1.1) and (1.2). Let Mn be a complete linear Weingarten hyper-

surface immersed in M
n+1

such that R = aH + b with (n− 1)a2 +4n(b−R) > 0.

Setting c = 2c2 −
c1

n
, suppose that R ≥ R− c when c ≤ 0, and R > R− 2

n
c when

c > 0. If H is bounded, |∇H | ∈ L1(M) and

sup
M

|Φ|2 ≤
n(n − 1) (R + c −R)

2

(n − 2) (nR + 2c − nR)
,

then Mn is either totally umbilical or an isoparametric hypersurface with two

distinct principal curvatures one of which is simple.

This paper is organized in the following way: in Section 2 we recall standard
facts related to hypersurfaces immersed in a locally symmetric Riemannian man-
ifold and establish a suitable Simons type formula concerning such hypersurfaces.
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Besides, in Section 3 we quote some key lemmas that will be essential in the proofs
of our results. Finally, in Section 4 we present the proofs of Theorems 1 and 2.

2. A Simons type formula

In this section we will introduce some basic facts and notations that will appear
in the paper. In what follows, we will suppose that all considered hypersurfaces
are orientable and connected.

Let Mn be an n-dimensional hypersurface in a Riemannian manifold M
n+1

.

We choose a local field of orthonormal frame {eA} in M
n+1

with dual coframe
{ωA} such that, at each point of Mn, e1, . . . , en are tangent to Mn and en+1 is
normal to Mn. We will use the following convention for the indices:

1 ≤ A, B, C, . . . ≤ n + 1, 1 ≤ i, j, k, . . . ≤ n.

In this setting, denoting by {ωAB} the connection forms of M
n+1

, we have

that the structure equations of M
n+1

are given by:

dωA = −
∑

i

ωAi ∧ ωi − ωAn+1 ∧ ωn+1, ωAB + ωBA = 0,(2.1)

dωAB = −
∑

C

ωAC ∧ ωCB +
1

2

∑

C,D

R̄ABCDωC ∧ ωD.(2.2)

Here, R̄ABCD, R̄CD and R̄ denote respectively the Riemannian curvature tensor,

the Ricci tensor and the scalar curvature of the Riemannian manifold M
n+1

.
In this setting, we have

R̄CD =
∑

B

R̄BCDB, R̄ =
∑

A

R̄AA.

Moreover, the components R̄ABCD;E of the covariant derivative of the Riemannian

curvature tensor of M
n+1

are defined by
∑

E

R̄ABCD;EωE = dR̄ABCD −
∑

E

(R̄EBCDωEA

+R̄AECDωEB + R̄ABEDωEC + R̄ABCEωED).

Next, we restrict all the tensors to Mn. First of all, ωn+1 = 0 on Mn, so
∑

i ωn+1i ∧ ωi = dωn+1 = 0 and by Cartan’s Lemma we can write

(2.3) ωn+1i =
∑

j

hijωj, hij = hji.

This gives the second fundamental form of Mn, h =
∑

ij hijωiωjen+1 and its

square length S =
∑

i,j h2
ij . Furthermore, the mean curvature H of Mn is defined

by H = 1
n

∑

i hii.
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The structure equations of Mn are given by

dωi = −
∑

j

ωij ∧ ωj , ωij + ωji = 0,(2.4)

dωij = −
∑

k

ωik ∧ ωkj +
1

2

∑

k,l

Rijklωk ∧ ωl.(2.5)

Using the structure equations we obtain the Gauss equation

(2.6) Rijkl = R̄ijkl + (hikhjl − hilhjk),

where Rijkl are the components of the curvature tensor of Mn.
The Ricci curvature and the normalized scalar curvature of Mn are given,

respectively, by

(2.7) Rij =
∑

k

R̄ikjk + nHhij −
∑

k

hikhkj

and

(2.8) R =
1

n(n − 1)

∑

i

Rii.

From (2.7) and (2.8) we obtain

(2.9) n(n − 1)R =
∑

i,j

R̄ijij + n2H2 − S.

The first covariant derivatives hijk of hij satisfy

(2.10)
∑

k

hijkωk = dhij −
∑

k

hkjωki −
∑

k

hikωkj .

Then, by exterior differentiation of (2.3), we obtain the Codazzi equation

(2.11) hijk − hikj = −R̄(n+1)ijk.

Similarly, the second covariant derivatives hijkl of hij are given by

(2.12)
∑

l

hijklωl = dhijk −
∑

l

hljkωli −
∑

l

hilkωlj −
∑

l

hijlωlk.

By exterior differentiation of (2.10), we can get the following Ricci formula

(2.13) hijkl − hijlk =
∑

m

himRmjkl +
∑

m

hjmRmikl.
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At this point, we will assume that the ambient space M
n+1

is a locally sym-
metric Riemannian manifold. Thus, we have that

(2.14) R̄(n+1)ijkl = R̄(n+1)i(n+1)khjl + R̄(n+1)ij(n+1)hkl −
∑

m

R̄mijkhml,

where R̄(n+1)ijkl denotes the covariant derivative of R̄(n+1)ijk as a tensor on Mn

so that

∑

l

R̄(n+1)ijklωl = dR̄(n+1)ijk −
∑

l

R̄(n+1)ljkωli

−
∑

l

R̄(n+1)ilkωlj −
∑

l

R̄(n+1)ijlωlk.

The Laplacian ∆hij of hij is defined by ∆hij =
∑

k

hijkk. Thus, from equations

(2.11), (2.13) and (2.14) we deduce that

∆hij = (nH)ij + nHR̄(n+1)i(n+1)j + nH
∑

k

hikhkj

−
∑

k

hijR̄(n+1)k(n+1)k(2.15)

−Shij +
∑

k,m

(hmiR̄mkjk + hmjR̄mkik + 2hkmR̄mijk).

Since ∆S = 2
(

∑

i,j hij∆hij +
∑

i,j,k h2
ijk

)

, taking a local orthonormal frame

{e1, . . . , en} on Mn such that hij = λiδij , from equation (2.15) we obtain the
following Simons type formula

1

2
∆S =

∑

i,j,k

h2
ijk +

∑

i

λi(nH),ii + nH
∑

i

λ3
i − S2

+nH
∑

i

λiR̄(n+1)i(n+1)i − S
∑

i

R̄(n+1)i(n+1)i(2.16)

+
1

2

∑

i,j

(λi − λj)
2R̄ijij .

Now, let Ψ =
∑

i,j Ψijωi ⊗ ωj be a symmetric tensor on Mn defined by

Ψij = nHδij − hij .

Following Cheng-Yau [10], we introduce an operator � associated to Ψ acting on
any smooth function f by



On complete linear Weingarten hypersurfaces 521

(2.17) �f =
∑

i,j

Ψijfij =
∑

i,j

(nHδij − hij)fij .

Setting f = nH in (2.17) and taking again a local frame field {e1, . . . , en} on
Mn such that hij = λiδij , from equation (2.9) we obtain the following:

�(nH) = nH∆(nH) −
∑

i

λi(nH),ii

=
1

2
∆(nH)2 −

∑

i

(nH)2,i −
∑

i

λi(nH),ii

=
n(n − 1)

2
∆R +

1

2
∆S − n2|∇H |2 −

∑

i

λi(nH),ii.

Consequently, taking into account equation (2.16), we get

�(nH) =
n(n − 1)

2
∆R +

∑

i,j,k

h2
ijk − n2|∇H |2 + nH

∑

i

λ3
i − S2

+nH
∑

i

λiR̄(n+1)i(n+1)i − S
∑

i

R̄(n+1)i(n+1)i(2.18)

+
1

2

∑

i,j

(λi − λj)
2R̄ijij .

Remark 1. Concerning the previous computation of �(nH), when the ambient
space is a Riemannian space form, we also would like to suggest the readers to
see Corollary 3.3 (case r = 1) in [8].

3. Key lemmas

In this section, we will quote some key lemmas which will be essential in order to
prove our classifications of linear Weingarten hypersurfaces in locally symmetric
Riemannian manifolds. The first one is a classic algebraic lemma due to M.
Okumura in [13], and completed with the equality case in [1] by H. Alencar and
M. do Carmo.

Lemma 1. Let µ1, ..., µn be real numbers such that
∑

i

µi = 0 and
∑

i

µ2
i = β2,

where β ≥ 0. Then

(3.1) −
(n − 2)

√

n(n − 1)
β3 ≤

∑

i

µ3
i ≤

(n − 2)
√

n(n − 1)
β3,

and equality holds if and only if at least (n − 1) of the numbers µi are equal.
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To obtain the second lemma, we can argue as in the proof of either Lemma 2.1
of [12] or Lemma 3.2 of [6]. In what follows, as before, R = 1

n(n−1)

∑

i,j R̄ijij .

Lemma 2. Let Mn be a linear Weingarten hypersurface in a locally symmetric

Riemannian manifold M
n+1

satisfying condition (1.1) such that R = aH + b for

some a, b ∈ R. Suppose that

(3.2) (n − 1)2a2 + 4n(n − 1)(b −R) ≥ 0.

Then we have

(3.3)
∑

i,j,k

h2
ijk ≥ n2|∇H |2.

Moreover, if the inequality (3.2) is strict and the equality holds in (3.3) on Mn,

then H is constant on Mn.

Proof: Since we are supposing that R = aH + b, from equation (2.9) we get

2
∑

i,j

hijhijk =
(

2n2H − n(n − 1)a
)

H,k.

Thus, we get

4
∑

k





∑

i,j

hijhijk





2

=
(

2n2H − n(n − 1)a
)2

|∇H |2.

Consequently, using Cauchy-Schwartz inequality, we obtain that

4S
∑

i,j,k

h2
ijk = 4





∑

i,j

h2
ij









∑

i,j,k

h2
ijk



(3.4)

≥ 4
∑

k





∑

i,j

hijhijk





2

=
(

2n2H − n(n − 1)a
)2

|∇H |2.

On the other hand, since R = aH + b, from equation (2.9) we easily see that

(

2n2H − n(n − 1)a
)2

= n2(n − 1)2a2 + 4n3(n − 1)b

−4n3(n − 1)R + 4n2S.(3.5)

Consequently, from (3.2), (3.4) and (3.5) we have

S
∑

i,j,k

h2
ijk ≥ n2S|∇H |2.
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Therefore, we obtain either S = 0 and
∑

i,j,k h2
ijk = n2|∇H |2, or

∑

i,j,k h2
ijk ≥

n2|∇H |2. Moreover, if inequality (3.2) is strict, from (3.5) we get that

(

2n2H − n(n − 1)a
)2

> 4n2S.

Now, let us assume in addition that the equality holds in (3.3) on Mn. In this case,
we wish to show that H is constant on Mn. Suppose, by contradiction, that it does
not occur. Consequently, there exists a point p ∈ Mn such that |∇H(p)| > 0. So,
one deduces from (3.4) that 4S(p)

∑

i,j,k h2
ijk(p) > 4n2S(p)|∇H(p)|2 and, since

∑

i,j,k h2
ijk(p) = n2|∇H(p)|2 > 0, we arrive at a contradiction. Hence, in this

case, we conclude that H must be constant on Mn. �

In what follows, we will consider the Cheng-Yau’s modified operator

(3.6) L = � −
n − 1

2
a∆.

Related to such operator, we have the following sufficient criteria of ellipticity
which extends Lemma 3.3 of [6].

Lemma 3. Let Mn be a linear Weingarten hypersurface immersed in a locally

symmetric Riemannian manifold M
n+1

such that R = aH + b with b > R. Then,

L is elliptic.

Proof: From equation (2.9), since R = aH + b with b > R = 1
n(n−1)

∑

i,j R̄ijij ,

we easily see that H cannot vanish on Mn and, by the choice of an appropriate
orientation, we may assume that H > 0 on Mn.

Let us consider the case that a = 0. Since R = b > R, from equation (2.9), if
we choose a local orthonormal frame {e1, . . . , en} on Mn such that hij = λiδij ,
we have that

∑

i<j λiλj > 0. Consequently,

n2H2 =
∑

i

λ2
i + 2

∑

i<j

λiλj > λ2
i

for every i = 1, . . . , n and, hence, we have that nH−λi > 0 for every i. Therefore,
in this case, we conclude that L is elliptic.

Now, suppose that a 6= 0. From equation (2.9) we get that

a = −
1

n(n − 1)H

(

S − n2H2 + n(n − 1)(b −R)
)

.
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Consequently, for every i = 1, . . . , n, with a straightforward algebraic computation
we verify that

nH − λi −
n − 1

2
a = nH − λi +

1

2nH

(

S − n2H2 + n(n − 1)(b −R)
)

=
1

2nH





∑

j 6=i

λ2
j + (

∑

j 6=i

λj)
2 + n(n − 1)(b −R)



 .

Therefore, since we are assuming that b > R, we also conclude in this case that
L is elliptic. �

To close this section, we quote a generalized maximum principle due to Cam-
inha (cf. Proposition 2.1 of [9]; see also the Theorem of Karp [11]). In what
follows, divX denotes the divergence of a smooth vector field X ∈ TM .

Lemma 4. Let X be a smooth vector field on a complete oriented Riemannian

manifold Mn, such that divX does not change sign on Mn. If |X | ∈ L1(M), then

divX = 0.

4. Proofs of Theorems 1 and 2

Now, we are in position to prove Theorem 1.

Proof of Theorem 1: From (2.18) and (3.6), if we choose a local orthonormal
frame {e1, . . . , en} on Mn such that hij = λiδij , we get

L(nH) =
∑

i,j,k

h2
ijk − n2|∇H |2 + nH

∑

i

λ3
i − S2

+
∑

i

R̄(n+1)i(n+1)i(nHλi − S) +
∑

i,j

(λi − λj)
2R̄ijij .

(4.1)

Thus, from Lemma 2, we have

L(nH) ≥ H
∑

i

λ3
i − S2 +

∑

i

R̄(n+1)i(n+1)i(nHλi − S)

+
∑

i,j

(λi − λj)
2R̄ijij .

(4.2)

Setting Φij = hij − Hδij , we will also consider the following symmetric tensor

Φ =
∑

i,j

Φijωi ⊗ ωj.
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Let |Φ|2 =
∑

i,j

Φ2
ij be the square of the length of Φ. It is easy to check that Φ is

traceless and, recalling that R = 1
n(n−1)

∑

i,j R̄ijij , from (2.9) we get

(4.3) |Φ|2 = S − nH2 = n(n − 1)H2 + n(n − 1)(R− R).

Moreover, if we take a local frame field e1, . . . , en at p ∈ Mn, such that

hij = λiδij and Φij = µiδij ,

it is straightforward to check that

∑

i

µi = 0,
∑

i

µ2
i = |Φ|2 and

∑

i

µ3
i =

∑

i

λ3
i − 3H |Φ|2 − nH3.

Consequently, by applying Lemma 1 to the real numbers µ1, . . . , µn, we get

nH
∑

i

λ3
i − S2 = −(|Φ|2 + nH2)2 + n2H4 + 3nH2|Φ|2 + nH

∑

i

µ3
i

≥ −|Φ|4 + nH2|Φ|2 −
n(n − 2)
√

n(n − 1)
H |Φ|3.(4.4)

On the other hand, using curvature conditions (1.1) and (1.2), we get

(4.5)
∑

i

R̄(n+1)i(n+1)i(nHλi − S) = c1(nH2 − S) = −c1|Φ|2

and
∑

i,j

(λi − λj)
2R̄ijij ≥ c2

∑

i,j

(λi − λj)
2

= 2nc2(S − nH2) = 2nc2|Φ|2.(4.6)

Hence, setting c = 2c2 −
c1

n
, from (4.2), (4.4), (4.5) and (4.6) we obtain that

(4.7) L(nH) ≥ |Φ|2

(

−|Φ|2 + nH2 −
n(n − 2)
√

n(n − 1)
H |Φ| + nc

)

.

From (4.3), we obtain

(4.8) n(n − 1)H2 = n(n − 1)(R −R) + |Φ|2.

Thus, from (4.7) and (4.8) we get

(4.9) L(H) ≥
1

n(n − 1)
|Φ|2PR (|Φ|) ,
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where

PR(x) = −(n − 2)x2 − (n − 2)x
√

x2 + n(n − 1)(R −R)

+n(n − 1)(R + c −R).(4.10)

Our restrictions on R guarantee that PR(0) > 0 and the function PR(x) is
strictly decreasing for x ≥ 0, with PR(x∗) = 0 at

x∗ = (R + c −R)

√

n(n − 1)

(n − 2) (nR + 2c − nR)
> 0.

Thus, our hypothesis on |Φ| guarantees that

(4.11) L(H) ≥
1

n(n − 1)
|Φ|2PR (|Φ|) ≥ 0.

Consequently, since Lemma 3 guarantees that L is elliptic and as we are sup-
posing that H attains its maximum on Mn, from (4.11) we conclude that H is
constant on Mn. Thus, taking into account equation (4.1), we get

∑

i,j,k

h2
ijk = n2|∇H |2 = 0,

and it follows that λi is constant for every i = 1, . . . , n.
If |Φ| < x∗, then from (4.11) we have that |Φ| = 0 and, hence, Mn is totally

umbilical. If |Φ| = x∗, since the equality holds in (3.1) of Lemma 1, we conclude
that Mn is either totally umbilical or an isoparametric hypersurface with two
distinct principal curvatures one of which is simple. �

Now, we present the proof of Theorem 2.

Proof of Theorem 2: From (2.17) we have that

�f = trace(P1 ◦ ∇
2f),

where ∇2f stands for the self-adjoint linear operator metrically equivalent to the
hessian of f and, denoting by I the identity in the algebra of smooth vector fields
on Mn,

(4.12) P1 = nHI − h.
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Thus, by using the standard notation 〈 , 〉 for the induced metric of Mn, we get

�f =
∑

i

〈P1(∇ei
∇f), ei〉,

where {e1, . . . , en} is a local orthonormal frame on Mn. Consequently, we have
that

div(P1(∇f)) =
∑

i

〈(∇ei
P1)(∇f), ei〉 +

∑

i

〈P1(∇ei
∇f), ei〉

= 〈divP1,∇f〉 + �f,(4.13)

where

divP1 := trace (∇P1) =
∑

i

(∇ei
P1) (ei).

On the other hand, since M
n+1

is an Einstein manifold with n ≥ 3, there exists
a parameter λ ∈ R such that Ric = λ〈 , 〉, where Ric denotes the Ricci tensor of

M
n+1

. Thus, denoting by R the curvature tensor of M
n+1

, from Lemma 25 of [5]
(see also Lemma 3.1 of [2]) we have

〈divP1,∇f〉 =
∑

i

〈R(η, ei)∇f, ei〉 = Ric(η,∇f) = λ〈η,∇f〉 = 0,

where η stands for the unit normal vector field on Mn.
Hence, from (4.13), we conclude that

(4.14) �f = div(P1(∇f)).

From (4.14), we have that

(4.15) L(nH) = div(P (∇H)),

where

(4.16) P = nP1 +
n(n − 1)

2
aI.

Moreover, since H is supposed to be bounded on Mn, from equation (2.9) we
have that h is also bounded on Mn. Consequently, from (4.12) and (4.16) we see
that there exists a positive constant C such that |P | ≤ C. Thus, since we are also
assuming that |∇H | ∈ L1(M), we obtain that

(4.17) |P (∇H)| ≤ |P ||∇H | ≤ C|∇H | ∈ L1(M).

Thus, from (4.11), (4.15), (4.17), we can apply Lemma 4 to obtain that
L(nH) = 0 on Mn. Consequently, taking into account that all the inequali-
ties that we have obtained along the proof of Theorem 1 are, in fact, equalities,
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from equation (4.1) we have that

∑

i,j,k

h2
ijk = n2|∇H |2.

Hence, since we are assuming (n − 1)a2 + 4n(b −R) > 0, where

R =
1

n(n − 1)

∑

i,j

R̄ijij ,

by applying Lemma 2 we get that H is constant on Mn.
Therefore, in a similar way as in the last part of the proof of Theorem 1 we

conclude that Mn is either totally umbilical or an isoparametric hypersurface with
two distinct principal curvatures one of which is simple. �
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