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Remarks on LBI-subalgebras of C(X)

MEHDI PARSINIA

Abstract. Let A(X) denote a subalgebra of C(X) which is closed under local
bounded inversion, briefly, an LBI-subalgebra. These subalgebras were first
introduced and studied in Redlin L., Watson S., Structure spaces for rings of
continuous functions with applications to realcompactifications, Fund. Math.
152 (1997), 151-163. By characterizing maximal ideals of A(X), we generalize
the notion of zg—ideals, which was first introduced in Acharyya S.K., De D., An
interesting class of ideals in subalgebras of C(X) containing C*(X), Comment.
Math. Univ. Carolin. 48 (2007), 273-280 for intermediate subalgebras, to the
LBI-subalgebras. Using these, it is simply shown that the structure space of
every LBI-subalgebra is homeomorphic with a quotient of SX. This gives a dif-
ferent approach to the results of Redlin L., Watson S., Structure spaces for rings
of continuous functions with applications to realcompactifications, Fund. Math.
152 (1997), 151-163 and also shows that the Banaschewski-compactification of
a zero-dimensional space X is a quotient of 3X. Finally, we consider the class
of complete rings of functions which was first defined in Byun H.L., Redlin L.,
Watson S., Local invertibility in subrings of C*(X), Bull. Austral. Math. Soc.
46(1992), 449-458. Showing that every such subring is an LBI-subalgebra, we
prove that the compactification of X associated to each complete ring of func-
tions, which is identified in Byun H.L., Redlin L., Watson S., Local invertibility
in subrings of C*(X), Bull. Austral. Math. Soc. 46(1992), 449-458 via the
mapping Z4, is in fact, the structure space of that subring. Henceforth, some
statements in Byun H.L., Redlin L., Watson S., Local invertibility in subrings
of C*(X), Bull. Austral. Math. Soc. 46(1992), 449-458 could be proved in
a different way.

Keywords: local bounded inversion; structure space; zi—ideal; complete ring of
functions

Classification: 54C30, 46E25

1. Introduction

Throughout this paper all topological spaces are assumed to be completely
regular and Hausdorff. For a given topological space X, C(X) denotes the alge-
bra of all real-valued continuous functions on X, C*(X) denotes the subalgebra
of C'(X) consisting of all bounded continuous functions. For each f € C(X),
Z(f) = {z € X : f(z) = 0} denotes the zero-set of f and Coz(f) denotes the
complement of Z(f) with respect to X. For each element f of an intermediate
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subalgebra A(X) (i.e., C*(X) C A(X) C C(X)), Za(f) denotes {F € Z(X) :
Jg € A(X) : fglx\g = 1} (refer to [6] for more details about the mapping Z4).
By a realcompactification of X we mean a realcompact space containing X as a
dense subspace. For a topological space X, 8X is the Stone-Cech compactification
of X and vX is the Hewitt-realcompactification of X. Every f € C(X) may be
considered as a continuous function from X into the one-point compactification
R* =R U {oo} of R and thus it has a Stone extension f*: X — R*. Clearly, if
f is bounded, then f* is the same as 7. The set of all points in 3X where f* takes
real values is denoted by v; X, ie., vy X = {p € X : f*(p) # oo}. For a subring
Rof O(X) we set vpX = {p € BX : f*(p) <00,Vf € R} =(;cpvsX. It follows
that veX = vX and ve- X = 6X. Also, vX C vrX for each subring R of C(X),
see [1] for more details. A maximal ideal M of a subalgebra A(X) is called real
maximal, if A(X)/M = R. If the field A(X)/M properly contains a copy of R,
then M is called a hyper-real maximal ideal. A subalgebra A(X) of C(X) is called
closed under bounded inversion, briefly, a BI-subalgebra, if f is invertible in A(X)
whenever f € A(X) with f > 1. Also, A(X) is called a S-subalgebra, if the struc-
ture space of A(X) is homeomorphic with X ([13, Definition 2.5]). It is shown
in [13, Theorem 2.8] that every (-subalgebra is a BI-subalgebra. However, the
converse is not true, in general. For example, let p,q € BX \vX and I = MPNM9,
then [17, Remark 1.7 and Remark 4.1] and [13, Theorem 2.9] show that I +R is a
BlI-subalgebra which is not a G-subalgebra. It is easy to see that every intermedi-
ate subalgebra A(X) is a 3-subalgebra. However, a (-subalgebra need not be an
intermediate subalgebra. For example, whenever p € X \ vX, then M? + R is a
B-subalgebra which is not an intermediate subalgebra (refer to [13] and [17]). Note
that [13, Theorem 2.9] shows that the S-subalgebras which are also closed under
uniform topology are precisely the intermediate subalgebras. A subalgebra A(X)
of C(X) is called closed under local bounded inversion, briefly, L BI-subalgebras,
if whenever f € A(X) is bounded away from zero on some cozero-set E, then f is
E-regular in A(X); i.e., if f > ¢ > 0 on E, then there exists g € A(X) such that
fgle = 1. These subalgebras were introduced and studied in [15]. It is easy to
see that every LBI-subalgebra is a BI-subalgebra. However, the converse of this
statement does not hold, in general (see Example 2.2 in the next section). In [13,
Theorem 2.8] it is stated that the collection of all maximal ideals of a G-subalgebra
A(X)is {M% :p e X}, in which MY = {f € A(X): (fg)*(p) =0,Vg € A(X)}.
Moreover, it follows from [13, Proposition 2.7] that every maximal ideal of a
BlI-subalgebra A(X) is of the form MY, for some p € X. Following [13] we
set Sa(f) = {p € BX : (fg9)"(p) = 0,Vg € A(X)} for each f in a subal-
gebra A(X); thus, MY = {f € A(X) : p € Sa(f)}. It is easy to see that
Sa(fg) = Sa(f)USalg), Sa(f*+g%) = Sa(f) N Salg) and Sa(f™) = Sa(f), for
each f,g € A(X) and each n € N. Furthermore, clgxZ(f) C Sa(f) C Z(f*) and
thus Sa(f)NX = Z(f). Itis evident that Sc(f) = clgx Z(f) and Sc-(f) = Z(f?).
For terms and notations not defined here we follow the standard text [9].

The aim of this paper is to investigate a different approach to the results of [5]
and [15]. This is done via characterizing maximal ideals of the subalgebras which
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are considered in the mentioned papers. Moreover, we generalize the notion of
zﬁ-ideals, which was first defined in [2] for intermediate subalgebras, to the LBI-
subalgebras. Furthermore, we show that zﬁ—ideals coincide with z-ideals in LBI-
subalgebras. Note that an ideal I in a commutative ring R is called a z-ideal, if
My C I whenever f € I, where My is the intersection of all maximal ideals of R
containing f. This paper consists of three sections. Section 1 is the introduction
as we have already noticed. In Section 2, we consider the class of L BI-subalgebras
of C(X). By characterizing maximal ideals of these subalgebras, we generalize the
notion of zf‘—ideals to the L BI-subalgebras. Using these, we give another proof of
the fact that the structure space of each LBI-subalgebra is homeomorphic with
a quotient of BX, which is proved in [15] via the mapping Z4. In Section 3, we
consider the class of complete rings of functions which is introduced in [5]. It
simply follows that every complete ring of functions is an LBI-subalgebra and
thus the compactification associated with each complete ring of functions, which
is identified in [5] via the mapping Z4, is just the structure space of that subring.
Thus, some results of [5] could be achieved in a different way.

2. LBI-subalgebras of C(X)

As noted in the introduction, every LBI-subalgebra is a BI-subalgebra. Thus,
[13, Proposition 2.7] implies that each maximal ideal of an L BI-subalgebra A(X)
has the form M for some p € BX. The following statement shows that in an
LBI-subalgebra A(X), the ideal M% is always maximal for each p € 3X. Note
that in this paper LBI-subalgebras are assumed to separate points and closed
sets of X.

Lemma 2.1. For each p € X, the ideal M} is maximal in the LBI-subalgebra
A(X).

PROOF: Assume that M’ is not a maximal ideal. As A(X) is an LBI-subalgebra,
there exists ¢ € X such that M is a maximal ideal in A(X) and MY C M§.
Let f € M4\ MY, thus, there exists g € A(X) such that (fg)*(p) # 0; ie,
p ¢ Z((fg)*). Therefore, there exists h € C(X) such that p € clgxZ(h) and
cpxZ(h)NZ((fg)*) = 0. It follows that h € M? and f(z)g(z) > ¢ > 0 for
each x € Z(h) where c € RZ0. Set F = {r € X : f(z)g(x) > c}, clearly, F is a
cozero-set containing Z(h) on which fg is bounded away from zero. Thus, there
exists k € A(X) such that fgk|p = 1, since A(X) is an LBI-subalgebra. Hence,
fgk|zp) = 1 which implies that 1 — fgk|z) = 0. As p € clgxZ(h), we have
(1 — fgk)*(p) = 0 and hence for each ¢t € A(X) we have ((1 — fgk)t)*(p) = 0,
since Z(h) C Z((1 — fgk)t) and thus if p ¢ Z(((1 — fgk)t)*). Then there exists
l € C(X) such that p € clgxZ(l) and Z(I) N Z((1 — fgk)t) = 0. This implies
that Z(I) N Z(h) = 0, however, [,h € MP which is a contradiction. Therefore,
1— fgk € M4 C M% and thus 1 € M% which is a contradiction. O
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Note that Lemma 2.1 does not hold for BI-subalgebras, in general, as the
following example shows. This example investigates a BI-subalgebra which is not
an LBI-subalgebra.

Ezample 2.2. Let X be a topological space and p,q € X \ vX with p # q. Also,
let I =MPNM?and Ay = I* +R. Tt follows from [17, Lemma 2.2] that Ay is a
BlI-subalgebra. Moreover, using [16, Lemma 5.1], we have M? C Mﬁl and thus
I € M} . Therefore, if M) is maximal in A7, then [17, Theorem 2.7] implies that
MY = I'* which means that (MP)* = (M?)*. This contradicts p # q. Therefore,
M ZI is not maximal in A7 and hence we can infer from Lemma 2.1 that A is not
an LBI-subalgebra.

The concept of zﬁ—ideal was first introduced in [2] for intermediate subalgebras.
It follows from Lemma 2.1 that this concept could be applied for L BI-subalgebras,
see Definition 2.5 in the following. The next statement generalizes [2, Lemma 2.2]
to LBI-subalgebras.

Notation. For a subalgebra A(X) of C(X), S(A) denotes {Sa(f): f € A(X)};
for an ideal I of A(X), Sa[I] denotes {Sa(f) : f € I} and for a subcollection F
of S(A), S;'[F] denotes {f € A(X) : Sa(f) € F}.

Lemma 2.3. Let A(X) be an LBI-subalgebra of C(X), then Sa(f) = 0 if and
only if f is an invertible element in A(X).

PROOF: It is clear that if f is invertible in A(X), then Sa(f) = 0. Let f € A(X)
and Sa(f) = 0, therefore, f ¢ MY for each p € 8X. As A(X) is an LBI-
subalgebra, [13, Proposition 2.7] implies that f misses each maximal ideal of
A(X). Hence, f is invertible in A(X). O

Definition 2.4. A non-empty subcollection F of S(A) is called a zi—ﬁlter on
(X, whenever

1) 0 ¢ F;

2) if Sy, S5 are in F, then S; NSy € F;

3) if Sy e F, S, € S(A) and S; C S, then S5 € F.

Also, zﬁ—ultraﬁlters and prime zﬁ—ﬁlters are defined similarly to z-ultrafilters
and prime z-filters, respectively.

Definition 2.5. An ideal I in an LBI-subalgebra A(X) is called a zﬁ-ideal if
Sy1Sall] = I in which S;*Sa[l] = {f € A(X) : Sa(f) € Sa[I]}.

The definition of zﬁ—ideal, evidently, implies that every maximal ideal of A(X)
is a zﬁ-ideal. The next statement, which is a generalization of [2, Theorem 2.3
and Theorem 2.6] to LBI-subalgebras, indicates the close connection between
zﬁ—ideals and zﬁ—ﬁlters.

Proposition 2.6. Let A(X) be an LBI-subalgebra of C(X), then
1) if I is a proper ideal of A(X), then S4[I] is a zﬁ—ﬁ]ter on BX;
2) if F is a 25-filter on BX, then S7 [ F] is a 2-ideal in A(X);
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3) if M is a maximal ideal in A(X), then Sa[M] is a zﬁ—u]traﬁ]ter on BX;
4) ifU is a 25 -ultrafilter on BX, then S7 U] is a maximal ideal in A(X).

ProOOF: Using Lemmas 2.1 and 2.3, and also [2, Theorem 2.3 and Theorem 2.6],
the proof is straightforward. ([

The next statement gives an algebraic characterization of zﬁ—ideals which re-
veals that the class of zf‘—ideals of an LBI-subalgebra A(X) coincides with the
class of z-ideals of A(X). This statement is a generalization of [2, Theorem 3.8]
to LBI-subalgebras.

Proposition 2.7. Let A(X) be an LBI-subalgebra and f,g € A(X), then
Sa(g) C Sa(f) if and only if My(A) C My(A).

PrOOF: As A(X) is an LBI-subalgebra, f € My(A) if and only if Sa(g) € Sa(f).
Now, let My(A) C My(A) and p € Sa(g), then g € MY and f € Ms(A) C
My(A) € MY. Thus, p € Sa(f), which implies that Sa(g) € Sa(f). Conversely,
assume the contrary that Sa(g) C Sa(f) but M(A) € My(A). Therefore, there
exists h € My(A) such that h ¢ M,(A). Hence, there exists some M € Maz(A)
such that h ¢ M and g € M. As A(X) is an LBI-subalgebra, M = MY, for
some p € $X. Hence, g € M% and h ¢ MY, which means that p € Sa(g) and
p ¢ Sa(f). This contradiction shows that M;(A) C M,(A). O

It follows from the above proposition that an ideal I in an LBI-subalgebra
A(X) is a zi—ideal if and only if it is a z-ideal. Therefore, from well-known
properties of z-ideals, it follows that every maximal ideal in A(X) is a zﬁ—ideal,
every zﬁ-ideal is an intersection of prime ideals, every minimal prime ideal over
a zﬁ-ideal is also a zﬁ-ideal and hence every minimal prime ideal of A(X) is
a zﬁ—ideal. These facts are generalizations of [2, Theorem 3.2, Theorem 3.3,
Theorem 5.5 and Theorem 3.8] to LBI-subalgebras. Using the notion of zﬁ—
ideals, we show that the structure space of each LBI-subalgebra is Hausdorff.
Let A(X) be an LBI-subalgebra, then it is clear that S(A) constitutes a base for
the closed subsets of a topology on X which we call S(A)-topology and denote
by Tg(4). X is a dense subspace of (38X, Tg(a)), since A(X) separates points and
closed sets in X. If 7 denotes the usual topology on 83X, then, clearly, 75(4) C 7.
Therefore, (83X, Tg(a)) is compact. This fact leads to the next statement which is
a reformulation of [15, Theorem 3.5].

Theorem 2.8. The structure space of an L BI-subalgebra A(X) is homeomorphic
with CXTse)
~A

PROOF: Define ~4 on X as follows p ~4 ¢ if M4 = MY, where p,q € fX.

Clearly, ~4 defines an equivalence relation on X. Therefore, E—)j is a quotient

of fX. Now, define ¢ : W — Max(A) by ¢(p) = M. We show that this
mapping is a homeomorphism. Let M; = {M € Maxz(A) : f € M} be a basic
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closed set in Maz(A) and p & ¢~ 1 (M), thus, MY ¢ My and hence p & Sa(f).
Therefore, there exists g € A(X) such that p ¢ Sa(g) and Sa(f) € Sa(g).
Thus, p ¢ Sa(g) and =1 (M) C Sa(g) which means that ¢ is continuous. It
is clear that ¢ is also one-one and onto. By showing that ¢ is a closed mapping
the proof is completed. Let Sa(f) be a basic closed set and M4 ¢ @(Sa(f)).
Thus, p ¢ Sa(f) and hence there exists g € A(X) such that S4(f) C Sa(g) and
p ¢ Sa(g). Therefore, ¢(Sa(f)) € M, and MY ¢ M,. Hence, ¢ is a closed
mapping and we are done. (Il

The next statement follows from Theorem 2.8 which is a reformulation of [15,
Theorem 3.6].

Theorem 2.9. The structure space of each L BI-subalgebra of C'(X) is a quotient
(BX,Ts(4))
~ A N

of BX; precisely, Max(A) is homeomorphic with

PROOF: Let A(X) be an LBI-subalgebra of C(X). At first, we show that {ZX)
is a compact Hausdorff space. Evidently, this space is compact. Now, assume that
p and ¢ are two distinct points 53X where X is equipped with the S(A)-topology
and the equivalence relation ~ 4 is defined on it. It follows that M% and M are
two distinct maximal ideals in A(X). We claim that there exists f € M and
g € MY such that Sa(f) N Sa(g) = 0. Otherwise, Sa[M%4] U Sa[MF] constitutes
a base for a zﬁ—ﬁlter on SX, let F be this zﬁ—ﬁlter. Then clearly Sgl[]-"] is an

ideal in A(X) containing both M¥% and M which is a contradiction. Therefore,

W is Hausdorff. Now, the identity mapping i : (8X,7) — (8X,7g(4)) is

continuous and hence so is the identity mapping 7 : £ fj) 8 X’:i(‘“)). Thus,

7 is a homeomorphism as it is a continuous bijective mapping to a compact
Hausdorff space. Therefore, by Theorem 2.8, we are done. O

An immediate consequence of the above statements is the characterization
of maximal ideals of invertible lattice-ordered subalgebras of C(X). We call a
subalgebra R of C'(X) an invertible subalgebra, if f~1 € R whenever f € R with
Z(f) = 0. Some well-known examples of invertible lattice-ordered subalgebras are
I+ R, where I is an absolutely convex ideal in C(X) (refer to [17, Remark 1.8 and
Remark 4.1]) and C.(X), the subalgebra of C'(X) consisting of all functions with
countable image (refer to [8]). It is easy to see that every invertible lattice-ordered
subalgebra R of C'(X) is an LBI-subalgebra. Indeed, it is clear that this kind of
subalgebras are BI-subalgebras and if f € R and f > ¢ > 0 on a cozero-set E,
then g = ¢V f is in R and clearly is bounded away from zero on X and hence, has
an inverse h in R, and it follows that fh|g = 1. Therefore, the collection of all the
maximal ideals of an invertible lattice-ordered subalgebra R is {M?%, : p € X},
also, it is easy to see that M} = MP N R for each p € $X. Hence, whenever I is
an absolutely convex ideal in C'(X), then the collection of all the maximal ideals
of I+Ris {MPN (I +R):pe X} and clearly M7, , = M] p if and only if
p,q € 0(I), where 0(I) = ﬂfe] clgxZ(f). Therefore, I + R is a (-subalgebra if
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and only if I is contained in a unique maximal ideal. Applying these facts for the
subalgebra Cx (X) + R, where Cx(X) denotes the ideal of C(X) consisting of all
functions with compact support (refer to [9, 4D]), implies that Cx (X)+R has the
unique free maximal ideal Ck(X). Thus, whenever X is locally compact, then
Max(Cg(X) + R) is homeomorphic with the one-point compactification of X.
Furthermore, the unique free maximal ideal of Cy(X) + R is Cy(X), in which
Cy(X) denotes the ideal of C(X) consisting of all functions with pseudocompact
support (refer to [11]). Hence, whenever X is locally compact, then Max(Cy (X )+
R) is homeomorphic with the one-point pseudocompactification of X. This means
that the one-point compactification and the one-point pseudocompactification of
locally compact spaces are homeomorphic with quotients of 5X.

Similarly, the characterization of maximal ideals of the subalgebra C.(X) fol-
lows from Lemma 2.1. As earlier noted, C.(X) is an invertible lattice-ordered
subalgebra of C(X) and thus, the collection of all the maximal ideals of C.(X) is
{MPNC.(X):pe pBX}. It is well-known that whenever X is a zero-dimensional
space, then Max(C.(X)) is homeomorphic with the Banaschewski compactifi-
cation of X which is denoted by (G,X (refer to [3]). Therefore, C.(X) is a (-
subalgebra if and only if X is strongly zero-dimensional. Moreover, if X is a
zero-dimensional space, then (X is homeomorphic with a quotient of X in
fact, if we define ~. on X as p ~. ¢ if and only if M¢ = M¢{ , then GoX is
homeomorphic with ﬂN—X

Note that a subring R of C(X) is called a C-ring, if R is isomorphic with
C(Y) for some completely regular Hausdorff space Y (see [15]). R is called an
intermediate C-algebra, if it is an intermediate subalgebra which is also a C-ring.
Intermediate C-algebras of C'(X) are in a 1 — 1 correspondence with realcompact-
ifications of X according to the following proposition which is a restatement of
[15, Theorem 4.7].

Proposition 2.10 ([15, Theorem 4.7]). There exists a 1 — 1 correspondence
between realcompactifications of X and intermediate C-algebras of C(X).

PROOF: We first note that every realcompactification of X is homeomorphic with
a realcompactification of X which is a subset of X, In fact, let Y be a realcom-
pactification of X and set Ay (X) = {f € C(X) : f has an extension to Y}.
As stated in the proof of part (b) of [14, Theorem 4.6.], Ay (X) = C(Y) and
Y ~ va, X. Also, clearly, va, X C X. Therefore, it suffices to consider the
realcompactifications which are subsets of 3X. Now, it is evident that if A(X)
is an intermediate C-algebra of C'(X), then v4X is a realcompactification of X.
Also, whenever K is a realcompactification of X, then C'(K) is isomorphic with
the intermediate subalgebra A (X) = {f|x : f € C(K)} of C(X). It follows that
Ak (X) is an intermediate C-algebra of C(X) and va, X ~ K. O

For each T C X, let By denote {f € C(X) : f*(p) < oo,¥p € T}, we
use B, instead of By,y. It is stated in [7, Theorem 1.2] that an intermediate
subalgebra A(X) is a C-algebra if and only if there exists a subset T' of X such

267



268

Parsinia M.

that A(X) = By. It is clear that Br = [ oy B, for each subset T of SX. The
next statement shows that, for each p € X, B, is the intermediate subalgebra
generated by the maximal ideal M? of C'(X).

Proposition 2.11. For each p € 8X, we have B, = M? + C*(X).

PrOOF: It is clear that M? + C*(X) C B,. It follows from [13, Theorem 2.9]
that each intermediate subalgebra is uniformly closed, thus, (M?)* + C*(X) =
M?P + C*(X). Moreover, [16, Lemma 5.1] implies that (M?)* ={f e C(X):p €
Z(f*)}. Therefore, if f € By, then f*(p) = r for some r € R, hence, (f —r)*(p) =
0 and thus, f —r € (MP)“ which clearly implies that f € MP + C*(X). This
completes the proof. (I

It follows from the above proposition and [7, Theorem 1.2] that each inter-
mediate C-algebra is an intersection of intermediate subalgebras generated by a
family of maximal ideals. In fact, whenever A(X) is an intermediate C-algebra,
then A(X) = ﬂpET(MjZ + C*(X)), for some T C 5X.

3. Complete ring of functions

Following [5] a subring A(X) of C*(X) is called a complete ring of functions if
A(X) is a uniformly closed subset of C*(X), contains the constants and separates
points and closed sets in X. Throughout this section A(X) denotes a subalgebra
of C*(X) which is a complete ring of functions. It follows from Lemma 2.1 and
part (c) of [5, Lemma 1.2] that every complete ring of functions is an LBI-
subalgebra of C'(X). As an example of such rings, let I be a free z-ideal in C'(X),
then it is easy to see that (I* + R) N C*(X) is a complete ring of functions.

Lemma 3.1. Every maximal ideal in a complete ring of functions A(X) has the
form MY = M*P N A(X), for some p € 3X. Moreover, all such ideals are distinct
if and only if A(X) = C*(X).

PROOF: As noted above, every complete ring of functions is an L BI-subalgebra.
Therefore, the collection of all the maximal ideals of A(X) is {M% : p € BX}.
Moreover, as every complete ring of functions A(X) is a subring of C*(X),
Sa(f) € Z(fP), for all f € A(X). Thus, every maximal ideal in A(X) has
the form M*? N A(X) = MY, for some p € 3X. Also, as such subrings are uni-
formly closed, [13, Theorem 2.9.] implies that the only complete ring of functions
which is a @-subalgebra is C*(X). O

As every complete ring of functions is an L BI-subalgebra, the structure space of
each complete ring of functions is a compactification of X and hence is a quotient
of BX. This means that the compactification which is characterized in [5] via the

mapping Z4 for a complete ring of functions A(X) is, in fact, the structure space
of A(X).

Proposition 3.2. Every complete ring of functions is a C-ring of C*(X).
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PROOF: Every complete ring of functions is, clearly, a uniformly closed ®-algebra.
Thus, by [10, 3.2], we have A(X) = C(Max(A)) and hence we are done. O

In [5], the equivalence relation ~ 4 is defined on X as p ~4 ¢ if Z;l[l/lp] =
Zzl[l/lq], in which, U, is the unique z-ultrafilter on X containing p and Z;l =
{f € A(X): Za(f) CU,}. Tt is easy to see that p ~4 ¢ if and only if M4 = M.
Therefore, S4X (= %) >~ Maxz(A). Using this fact, [5, Theorem 2.3] can be
proved in a different way.

Theorem 3.3 ([5, Theorem 2.3]). Let f € C*(X), then f has an extension f*
to BaX if and only if f € A(X).

PROOF: As A(X) = C(Max(A)) = C(SaX)), the statement is clear. O
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