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On dicyclic groups as inner mapping groups of finite loops

Emma Leppälä, Markku Niemenmaa

Abstract. Let G be a finite group with a dicyclic subgroup H. We show that
if there exist H-connected transversals in G, then G is a solvable group. We
apply this result to loop theory and show that if the inner mapping group I(Q)
of a finite loop Q is dicyclic, then Q is a solvable loop. We also discuss a more
general solvability criterion in the case where I(Q) is a certain type of a direct
product.
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1. Introduction

If Q is a loop, then we have two permutations La and Ra on Q defined by
La(x) = ax and Ra(x) = xa for each a ∈ Q. The permutation group M(Q) =
〈La, Ra | a ∈ Q〉 is called the multiplication group of the loop Q. The stabilizer of
the neutral element of Q is called the inner mapping group of Q and denoted by
I(Q). A loop Q is solvable if it has a series 1 = Q0 ⊆ · · · ⊆ Qn = Q, where Qi−1

is a normal subloop of Qi and Qi/Qi−1 is an abelian group for each 1 ≤ i ≤ n.
In 1996 Vesanen [9] proved the following

Theorem 1.1. Let Q be a finite loop. If M(Q) is a solvable group, then Q is

a solvable loop.

After this we are naturally interested in those properties of I(Q) which lead
to the solvability of M(Q) and hence, in the finite case, of the loop Q itself. The
best results include the following: if the inner mapping group I(Q) of a finite loop
Q is nilpotent, dihedral or has order pq, where p and q are prime numbers, then
M(Q) is solvable, and hence Q is solvable, too.

The purpose of this paper is to show that if I(Q) is a dicyclic group (see
Section 3 for the definition), then Q is again a solvable loop. Furthermore, in
Section 4, we prove a more general solvability criterion in the case where I(Q) is
a certain type of a direct product.
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2. Connected transversals

Let G be a group, H ≤ G and let A and B be left transversals to H in G. We
say that A and B are H-connected , if [A, B] ≤ H . We denote by HG the core

of H in G (i.e. the largest normal subgroup of G contained in H).
If Q is a loop, then A = {La | a ∈ Q} and B = {Ra | a ∈ Q} are I(Q)-

connected transversals in M(Q), M(Q) = 〈A, B〉 and I(Q)M(Q), the core of I(Q)
in M(Q), is trivial.

The link between loops and connected transversals is given by

Theorem 2.1. A group G is isomorphic to the multiplication group of a loop if

and only if there exist a subgroup H and H-connected transversals A and B such

that HG = 1 and G = 〈A, B〉.

For the proof, see [8, Theorem 4.1].
In the following two lemmas, which we need later, we assume that H ≤ G and

A and B are H-connected transversals in G.

Lemma 2.2. If C ⊆ A ∪ B and K = 〈H, C〉, then C ⊆ KG.

Lemma 2.3. Assume that H > 1, HG = 1 and H ∩ Ha = 1 for some a ∈ A.

Then A = B and a ∈ Z(〈A〉).

For the proofs, see [8, Lemma 2.5] and [5, Lemma 2.8].

Theorem 2.4. Let G be a finite group and H ≤ G, where H is nilpotent,

dihedral or a nonabelian group of order pq (p 6= q are prime numbers). If there

exist H-connected transversals A and B in G, then G is solvable.

For the proof, see [6], [7, Theorem 3.1], [2, Corollary 4.7] and [4, Theorem 2.7].

3. The dicyclic case

Definition 3.1. The dicyclic group Dicn of order 4n is given by the presentation

Dicn = 〈a, x | a2n = 1, x2 = an, x−1ax = a−1〉.

The dicyclic group has a unique involution u = x2 which generates the center
of the group. Every normal subgroup of a dicyclic group is cyclic or dicyclic
and every quotient is cyclic, dicyclic or dihedral. When n is a power of 2, the
dicyclic group is isomorphic to the generalized quaternion group. It is clear that
all dicyclic groups are solvable.

In the proof of Theorem 3.3 we need the following solvability criterion by
J.G. Carr from 1976 [1].

Theorem 3.2. Let G = LN be a finite group and L and N subgroups of G. If L
is abelian and N has a nilpotent subgroup of index at most 2, then G is solvable.

Theorem 3.3. Let G be a finite group and H ≤ G dicyclic. If there exist

H-connected transversals A and B in G, then G is solvable.



On dicyclic groups as inner mapping groups of finite loops 551

Proof: Let G be a minimal counterexample. If HG > 1, then we consider G/HG

and its subgroup H/HG, where H/HG is either dicyclic, cyclic or dihedral. By
using induction or Theorem 2.4, it follows that G/HG is solvable, hence G is
solvable.

Thus we may assume that HG = 1. If H is not maximal in G, then there
exists a subgroup T such that H < T < G. By Lemma 2.2, TG > 1 and we may
consider G/TG and its subgroup HTG/TG = T/TG. As HTG/TG

∼= H/H ∩ TG,
we may again conclude that G/TG is solvable. Since T is solvable by induction,
we conclude that G is solvable.

We thus assume that H is a maximal subgroup of G. Assume that there exists
an element a ∈ A such that H ∩Ha = 1. By Lemma 2.3, we conclude that A = B
and a ∈ Z(〈A〉). If H∗ = 〈A〉 ∩ H is nontrivial, then 1 < H∗ ≤ H ∩ Ha = 1,
a contradiction. Thus 〈A〉 ∩ H = 1 and hence A = 〈A〉 is a group. Now A′ =
[A, A] ≤ A ∩ H = 1, thus A is an abelian group and G = AH . By Theorem 3.2,
we conclude that G is solvable.

Now D = H ∩ Ha > 1 and G = 〈H, Ha〉 for every a ∈ A \ H . If an odd prime
p divides |D|, then a subgroup P ≤ D of order p is normal in H and in Ha,
hence P E G, which is not possible as HG = 1. Thus |D| is even, and the unique
involution u of H is in D. But then u ∈ Z(〈H, Ha〉) = Z(G), hence 〈u〉 E G,
which gives us our final contradiction. �

By combining Theorem 3.3 with Theorem 2.1 and Theorem 1.1, we get the
following loop theoretical consequence.

Corollary 3.4. Let Q be a finite loop. If I(Q) is dicyclic, then M(Q) is a solvable

group and Q is a solvable loop.

In 2002 Drápal [2] proved that generalized quaternion groups never occur as
inner mapping groups of loops.

Open problem 3.5. Are there loops with dicyclic inner mapping groups?

4. A more general solvability criterion

In the proof of the main result of this section we need the following theorem
by Wielandt (see [3, Satz 5.8, p. 285]).

Theorem 4.1. Let G be a finite group with a nilpotent Hall ω-subgroup H .

Then every ω-subgroup of G is contained in a conjugate of H .

We define a class of finite groups

Definition 4.2. We say that H ∈ S∗ if the following holds: if K is isomorphic
to any quotient of H and G is a finite group with K-connected transversals A and
B in G, then G is solvable.

Remark. It follows that if H ∈ S∗, then H is solvable.
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Theorem 4.3. Let G be a finite group, H ≤ G and H = S × L, where S ∈ S∗,

L is abelian and (|S|, |L|) = 1. If there exist H-connected transversals A and B
in G, then G is solvable.

Proof: Let G be a minimal counterexample. If HG > 1, then we consider G/HG

and its subgroup H/HG. By induction, G/HG is solvable. As S ∈ S∗ is solvable,
we conclude that G is solvable, too.

Thus we may assume that HG = 1. If H is not maximal in G, then there exists
a subgroup T such that H < T < G. By Lemma 2.2, TG > 1 and we may consider
G/TG and its subgroup T/TG = HTG/TG. By induction, G/TG is solvable. Now
T is solvable by induction, hence G is solvable.

We thus assume that H is a maximal subgroup of G. We may assume that
L is nontrivial. Let P be a Sylow p-subgroup of L for a prime number p. As
HG = 1, we conclude that P is a Sylow p-subgroup of G. Thus it follows that L is
a Hall subgroup of G. Clearly, NG(P ) = H = CG(P ) and by Burnside normal p-
complement theorem, there is a normal p-complement in G for each prime divisor
p of |L|. It follows that G = LK, where K is normal in G and (|L|, |K|) = 1.

If 1 6= a ∈ A, then a = lk, where l ∈ L and k ∈ K. Then aK = lK
and (aK)d = K, where d divides |L|. Thus ad ∈ K, hence (ad)t = 1, where t
divides |K|. It follows that (at)d = 1, hence |at| divides |L|. Since L is an abelian
Hall subgroup of G, we may apply Theorem 4.1 and it follows that at ∈ Lg for
some g ∈ G. As Lg is abelian, 〈at〉 is normal in 〈Hg, a〉 = G. As HG = 1, we
conclude that at = 1. Since (d, t) = 1, there exist integers m and n such that
md + nt = 1. Thus a = amd+nt = (ad)m(at)n = (ad)m ∈ K.

We may conclude that A ∪ B ⊆ K. Clearly S ≤ K and thus K = AS = BS.
By the definition of S∗, K is a solvable group. It follows that G = LK is solvable,
too. �

From Theorems 2.4 and 3.3 we know that dihedral and dicyclic groups and
groups of order pq (p 6= q are prime numbers) all belong to S∗. Thus we get

Corollary 4.4. Let G be a finite group, H ≤ G and H = S × L, where S is

dihedral, dicyclic or a group of order pq (p 6= q are prime numbers), L is abelian

and (|S|, |L|) = 1. If there exist H-connected transversals A and B in G, then G
is solvable.

By applying Theorems 2.1 and 1.1 we obtain the loop theoretical consequence

Corollary 4.5. Let Q be a finite loop. If I(Q) = S × L, where S is dihedral,

dicyclic or a group of order pq (p 6= q are prime numbers), L is abelian and

(|S|, |L|) = 1, then Q is solvable.
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