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Finite actions on the Klein

four-orbifold and prism manifolds

John Kalliongis, Ryo Ohashi

Abstract. We describe the finite group actions, up to equivalence, which can act
on the orbifold Σ(2, 2, 2), and their quotient types. This is then used to consider
actions on prism manifolds M(b, d) which preserve a longitudinal fibering, but
do not leave any Heegaard Klein bottle invariant. If ϕ : G → Homeo(M(b, d))
is such an action, we show that M(b, d) = M(b, 2) and M(b, 2)/ϕ fibers over
a certain collection of 2-orbifolds with positive Euler characteristic which are
covered by Σ(2, 2, 2). For the standard actions, we compute the fundamental
group of M(b, 2)/ϕ and indicate when it is a Seifert fibered manifold.

Keywords: finite group action; prism 3-manifold; equivalence of actions; orbifold;
Klein four-group

Classification: Primary 57M99; Secondary 57S99

1. Introduction

Let M be a manifold and let G be a finite group. A G-action on M is
a monomorphism ϕ : G → Homeo (M) where Homeo (M) is the group of self
homeomorphisms of M . Two group actions ϕ : G → Homeo (M) and ϕ′ : G′ →
Homeo (M ′) are equivalent if there is a homeomorphism h : M → M ′ such that
ϕ′(G′) = h◦ϕ(G)◦h−1. If ϕ : G→ Homeo (M) is an action, we obtain an orbifold
covering map νϕ : M →M/ϕ, and the orbifold M/ϕ is referred to as the quotient
type of the action.

Let ϕ : G→ S2 be a finite orientation preserving geometric action on the two-
sphere S

2. If G is isomorphic to the Klein four-group Z2 × Z2, then the quotient
space S2/ϕ is called the Klein four-orbifold , and is denoted by Σ(2, 2, 2). There
are numerous references discussing the Klein four-group, such as [1].

In this work we begin by classifying, up to equivalence, the finite groups which
act on the Klein four-orbifold Σ(2, 2, 2) and their quotient types. The orbifold
fundamental group of Σ(2, 2, 2) is the Klein four-group Z2 ×Z2. We show that if
ϕ : G→ Homeo (Σ(2, 2, 2)) is a G-action on Σ(2, 2, 2), then G is isomorphic to one
of the following groups: Z2, Z2 × Z2, Z3, Z6, Dih(Z3) or Dih(Z6). Furthermore,
there is only one equivalence class for each quotient type.

We then consider finite group actions on prism manifolds M(b, d) which pre-
serve the longitudinal fibering. With this fibering, M(b, d) fibers over the orbifold
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Σ(2, 2, d). In [2] we classified these actions, together with their quotient types,
when the actions leave a Heegaard Klein bottle invariant. Actions can fail to pre-
serve a Heegaard Klein bottle when d = 2 and the induced action on Σ(2, 2, 2) is
either Z3, Z6, Dih(Z3) or Dih(Z6). We consider these actions, and show that the
orbifold quotients fiber over the following 2-orbifolds: Σ(2, 3, 3), T h, Σ(2, 3, 4),
T v, or Oh, all of which are covered by Σ(2, 2, 2). For the standard actions, Z3,
Z6, Dih(Z3) and Dih(Z6) on M(b, 2), we compute the fundamental groups of the
quotient orbifolds. In certain cases, these orbifold quotients are Seifert fibered
manifolds, and these are described as well.

We now define a prism manifold. Let T = S1 ×S1 be a torus where S1 = {z ∈
C : |z| = 1} is viewed as the set of complex numbers of norm 1 and I = [0, 1]. The
twisted I-bundle over a Klein bottle is the quotient space W = T × I/(u, v, t) ≃
(−u, v̄, 1−t). Let D2 be a unit disk with ∂D2 = S1 and let V = S1×D2 be a solid
torus. Then the boundary of both V andW is a torus S1×S1. For relatively prime
integers b and d, there exist integers a and b such that ad− bc = −1. The prism

manifold M(b, d) is obtained by identifying the boundary of V to the boundary
of W by the homeomorphism ψ : ∂V → ∂W defined by ψ(u, v) = (uavb, ucvd)
for (u, v) ∈ ∂V = S1 × S1. The integers b and d determine M(b, d), up to
homeomorphism. An embedded Klein bottle K in M(b, d) is called a Heegaard

Klein bottle if for any regular neighborhood N(K) of K, N(K) is a twisted I-
bundle over K and the closure of M(b, d) −N(K) is a solid torus.

There are five orientable 2-orbifolds with a positive Euler number. All of them
have underlying space a 2-sphere with the cone points indicated in the notation
(see [7]). They are Σ(2, 2, n) = Dn, Σ(2, 3, 3) = T , Σ(2, 3, 4) = O, Σ(2, 3, 5) = I,
and Σ(n, l) = Cn,l.

The following is a list of all the nine non-orientable 2-orbifolds with a positive
Euler characteristic.
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2. Finite group actions on Σ(2, 2, 2)

In this section, we classify the finite groups (up to equivalence) which act on the
orbifold Σ(2, 2, 2) and their quotient types. It is convenient to view all topological
spaces in the PL-category. Thus, all homeomorphisms map a vertex to a vertex,
an edge to an edge, and a face to a face. In this sense, we initially view S2 as
a tetrahedron which has four triangles or faces: △124, △314, △234 and △321.
Then each triangle is further subdivided (barycentric subdivision) in order to
describe several finite group actions on S2. See Figure 1.
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Figure 1

We view S4 as a group generated by a = (1, 2)(6, 7)(10, 11)(13, 14) and b =
(2, 4, 3)(5, 7, 8) (9, 11, 13)(10, 12, 14) in S14. We can see that a is a reflection on
the circle containing vertices 4, 5, 9, 8, 3 and 12 in S2. On the other hand, b
is a 120◦ rotation about the axis passing through vertices 1 and 6. It is easy
to check ab = (1, 2, 4, 3)(5, 6, 7, 8)(9, 10, 12, 13)(11, 14). Although ab reverses an
orientation, the map ab is called an improper rotation. The group generated by
a and b is isomorphic to the symmetric group on 4 letters and we write S4 =
〈a, b|a2 = b3 = (ab)4 = 1〉.

Consider an antipodal map i= (1, 6)(2, 7)(3, 5)(4, 8)(9, 12)(10, 13)(11, 14) on S2.
It is easy to check that

ia = (1, 7)(2, 6)(3, 5)(4, 8)(9, 12)(10, 14)(11, 13) = ai and
ib = (1, 6)(2, 8, 3, 7, 4, 5)(9, 14, 13, 12, 11, 10) = bi.

As a result, a, b and i generate a group S4 × Z2 = 〈a, b, i|a2 = b3 = (ab)4 =
i2 = 1, [a, i] = [b, i] = 1〉.
Lemma 1. Let O = 〈ai, b〉. Then O is a normal subgroup of S4 ×Z2 isomorphic

to S4, but not conjugate to S4.

Proof: Since [a, i] = [b, i] = 1, it is easy to check (ai)2 = b3 = [(ai)b]4 = 1, show-
ing O is isomorphic to S4. To show normality, note that aba−1 = (ai)b(ai)−1 ∈ O.
Notice that a and i are orientation reversing maps on S2, and hence the element
ai preserves the orientation. Since b preserves orientation, O consists of all orien-
tation preserving elements whereas S4 contains a which is orientation reversing.
This shows that the groups are not conjugate. �

Lemma 2. The group 〈b, (ab)2〉 is a normal subgroup in S4 × Z2 isomorphic to

the alternating group on four letters, and we write A4 = 〈b, (ab)2〉.
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Proof: Notice that (ab)2 = (1, 4)(2, 3)(5, 7)(6, 8)(9, 12)(10, 13) and b(ab)2 =
(1, 3, 4) (5, 8, 6) (9, 14, 10)(11, 13, 12). Thus, [(ab)2]2 = b3 = [b(ab)2]3 = 1 showing
〈b, (ab)2〉 isomorphic to the alternating group on four letters. To show normal-
ity, observe that aba−1 = aba = ababb−1 = (ab)2b−1 and a(ab)2a−1 = baba =
bababb−1 = b(ab)2b−1 are both elements of A4. Since [a, i] = [b, i] = 1, A4 is a
normal subgroup of S4 × Z2. �

Lemma 3. Let T = 〈b, [(ai)b]2〉. Then T = A4 and T is a normal subgroup of O
and S4.

Proof: Since [(ai)b]2 = (ab)2, it follows that T = A4. As for normality, T = A4

is actually normal in S4 ×Z2 by Lemma 1, and since T ≤ O ≤ S4 ×Z2, the result
follows. �

Lemma 4. The group 〈x = (ab)2, y = a(ab)2a−1〉 is the unique normal Klein

four-subgroup of S4 × Z2 isomorphic to Z2 × Z2. Furthermore, 〈x = (ab)2, y =
a(ab)2a−1〉 is contained in 〈b, (ab)2〉 = A4.

Proof: Note that x = (ab)2 = (1, 4)(2, 3)(5, 7)(6, 8)(9, 12)(10, 13) and y =
a(ab)2a−1 = (1, 3)(2, 4)(5, 6)(7, 8)(9, 12)(11, 14). Letting

z = (1, 2)(3, 4)(5, 8)(6, 7)(10, 13)(11, 14),

we see that z = xy = yx showing that x and y generate Z2×Z2. It is also easy to
check axa−1 = y, aya−1 = x, bxb−1 = y and byb−1 = z. Since [a, i] = [b, i] = 1,
the group generated by x and y is normal in S4 × Z2. The group 〈x, y〉 is the
unique Z2×Z2 in S4. (See [1].) Since y = a(ab)a−1 = baba = b(ab)2b−1, it follows
that 〈x, y〉 is contained in 〈b, (ab)2〉 = A4.

Suppose N is a normal subgroup of S4 × Z2 isomorphic to Z2 × Z2 and not
contained in S4. We may write N = 〈u, vi〉 or 〈ui, vi〉 where u and v are in S4.
Note that since i commutes with every element in S4, it follows that 〈u, v〉 is
isomorphic to Z2 × Z2. Furthermore, using normality of N , it can be shown
that 〈u, v〉 is a normal subgroup of S4, and therefore 〈u, v〉 = 〈x, y〉. Thus N
is either 〈xi, y〉, 〈x, yi〉 or 〈xi, yi〉. Since a(xi)a−1 = yi, a(yi)a−1 = xi and
b−1(xy)b = y, we see that none of these groups are normal in S4×Z2, thus giving
a contradiction. �

Corollary 5. The group 〈x, y, i〉 is isomorphic to Z2 × Z2 × Z2 and is a normal

subgroup of A4 × Z2 and of S4 × Z2 where Z2 = 〈i〉.
Lemma 6. The orbifold quotient S2/(〈x〉 × 〈y〉) = Σ(2, 2, 2) where 〈x〉 × 〈y〉 ∼=
Z2 × Z2.

Proof: Notice that S2 is tiled by △123 under this group action. For instance,
x(△123) = △432, y(△432) = △214 and x(△214) = △341. Thus, we may choose
△123 for a fundamental region for Σ(2, 2, 2). Now, the vertex 9 is fixed under
z = xy, the vertex 13 is fixed under y and the vertex 14 is fixed under x creating
three each cone points of order two. The edge 2, 9 is identified to the edge 1, 9 by
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using z. Likewise, the edges 3, 13 and 1, 13 are identified via y and 2, 14 and 3, 14
are identified via x. �

Lemma 7. The orbifold quotient S2/(〈x〉×〈y〉×〈i〉) = Dh
2 where 〈x〉×〈y〉×〈i〉 ∼=

Z2 × Z2 × Z2.

Proof: Since 〈x〉 × 〈y〉 × 〈i〉 contains the Klein four-group generated x and y,
the antipodal map i on S2 induces a map i on Σ(2, 2, 2). Since i is an orientation
reversing involution on the underlying space of Σ(2, 2, 2) which is a 2-sphere, it
follows that i is either a reflection or the antipodal map. We claim that i is a
reflection on Σ(2, 2, 2) fixing all cone points of order two. Observe that yi(9) = 9
and yi(14) = 14. This implies i is a reflection on Σ(2, 2, 2) fixing all cone points
of order two. Thus Σ(2, 2, 2)/〈i〉 = Dh

2 . �

Proposition 8. Let ϕ : Z2 → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Dh
2 . Then ϕ(Z2) is conjugate to 〈i〉.

Proof: Let ν : Σ(2, 2, 2)→ Σ(2, 2, 2)/〈x, y〉=Dh
2 and η : Σ(2, 2, 2)→ Σ(2, 2, 2)/ϕ

be the orbifold covering maps to the quotient spaces. By assumption there
exists a homeomorphism h : Dh

2 → Σ(2, 2, 2)/ϕ. Since ν∗(π1(Σ(2, 2, 2))) and
η∗(π1(Σ(2, 2, 2))) are the unique orientation preserving subgroups of π(Dh

2 )
and π1(Σ(2, 2, 2)/ϕ) respectively, it follows that h∗(ν∗(π1(Σ(2, 2, 2)))) =
η∗(π1(Σ(2, 2, 2))). Lifting h to Σ(2, 2, 2) conjugates the two actions. �

Lemma 9. The orbifold quotient S2/[(〈x〉 × 〈y〉) ◦ 〈a〉] = Dv
2 where (〈x〉 × 〈y〉) ◦

〈a〉 ∼= (Z2 × Z2) ◦ Z2 and axa−1 = y and aya−1 = x.

Proof: Recall x = (ab)2 and y = a(ab)2a−1 where the two elements generate the
Klein four-group Z2 ×Z2. As axa−1 = y and aya−1 = x, we obtain 〈x, y〉 ◦ 〈a〉 =
(Z2 × Z2) ◦ Z2 where Z2 × Z2 corresponds to Σ(2, 2, 2). Further, an orientation
reversing map a on S2 induces a reflection map a on Σ(2, 2, 2). In addition,
a(9) = 9, a(13) = 14 and a(14) = 13 showing a fixes one cone point but it
exchanges the remaining cone points on Σ(2, 2, 2). A fundamental region for
Dv

2 is a triangle △239 lying on △123 containing points 8 and 14. Notice that
xya(2) = 2 and a fixes vertices 3, 8, 9 on S2. Because the edges 2, 14 and 3, 14
are identified in Σ(2, 2, 2), a loop [2, 9, 8, 3] is a fixed set under a. As a result,
Dv

2 = Σ(2, 2, 2)/〈a〉 where 〈a〉 = Z2. �

Proposition 10. Let ϕ : Z2 → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Dv
2 . Then ϕ(Z2) is conjugate to 〈a〉.

Proof: The proof is similar to Proposition 8. �

Remark 11. Note that the Z2-actions on Σ(2, 2, 2) in Proposition 8 and Propo-
sition 10 are not equivalent because these two quotient spaces of Σ(2, 2, 2) by
Z2-actions are topologically distinct orbifolds.

Proposition 12. The orbifold quotient S2/A4 = Σ(2, 3, 3) where A4 = 〈b, x〉.
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Proof: Since 〈x, y〉 is a normal subgroup of A4 = 〈b, x = (ab)2〉, we have

〈b, x〉/〈x, y〉 = 〈b| b3 = 1〉 ∼= Z3. Thus b induces an orientation preserving homeo-

morphism b on Σ(2, 2, 2) with b
3

= id, such that Σ(2, 2, 2)/〈b〉 = S2/A4. Observe

that xyb(9) = 14, xyb(14) = 13 and b(13) = 9. Therefore, b is a 120◦ rotation ope-
rating on Σ(2, 2, 2) permuting the cone points. Now, xyb(8) = 8 and yb(2) = 2,

so that these two vertices become distinct cone points of order 3 in Σ(2, 2, 2)/〈b〉.
This implies that Σ(2, 2, 2)/〈b〉 = Σ(2, 3, 3) proving the result. �

As above using the uniqueness of 〈x, y〉 in 〈b, x〉, we have the following corollary:

Corollary 13. Let ϕ : Z3 → Homeo (Σ(2, 2, 2)) be an action such that Σ(2, 2, 2)/ϕ

is homeomorphic to Σ(2, 3, 3). Then ϕ(Z3) is conjugate to 〈b〉.

Remark 14. It follows that A4 = 〈b, x〉 is a normal subgroup of O = 〈ai, b〉.

Proposition 15. The orbifold quotient S2/O = Σ(2, 3, 4) where O = 〈ai, b〉.

Proof: Since 〈x, y〉 is a normal subgroup of O = 〈ai, b〉, we consider the group
O/〈x, y〉 = 〈ai, b〉 acting on S2/〈x, y〉 = Σ(2, 2, 2). Now ai is an orientation
preserving involution, and b is also an orientation preserving homeomorphism of
order three. Since (ai)b(ai)−1b = x, we obtain a dihedral action 〈b〉 ◦−1 〈ai〉 ≃
Dih(Z3) on Σ(2, 2, 2). By Proposition 12, S

2/A4 = Σ(2, 3, 3) where A4 = 〈b, x〉,
and we obtain an orientation preserving involution ai on Σ(2, 3, 3), which must be

a rotation. Note that Σ(2, 2, 2)/[〈b〉◦−1 〈ai〉] = Σ(2, 3, 3)/〈ai〉 = S2/O. The vertex
14 ∈ S2 projects to an order two cone point in S2/A4 = Σ(2, 3, 3), and the vertices
2 and 8 in S2 project to the cone points of order three. Since bxb(ai)(14) = 14,

the cone point of order two is fixed under the involution ai on Σ(2, 3, 3). On the

other hand, (bx)−1(ai)(2) = 8 showing that ai exchanges the two cone points of

order three in Σ(2, 3, 3). This implies Σ(2, 3, 3)/〈ai〉 = Σ(2, 3, 4). �

Corollary 16. Let ϕ : Dih(Z3) → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Σ(2, 3, 4). Then ϕ(Dih(Z3)) is conjugate to

〈b〉 ◦−1 〈ai〉.

Proposition 17. The orbifold quotients S2/[〈a, b〉 × 〈i〉] = Σ(2, 3, 4)/〈̂i〉 =
S2/[S4 × Z2] = Σ(2, 2, 2)/Dih(Z6) = Oh.

Proof: We know that the orientation reversing map i commutes with a and b

on S
2, hence it induces an orientation reversing involution î on Σ(2, 3, 4) = S

2/O

where O = 〈ai, b〉. Since each cone point must be left fixed, it follows that î

is a reflection. This implies that Σ(2, 3, 4)/〈̂i〉 = Oh, and since [〈a, b〉 × 〈i〉] =

〈ai, b〉 × 〈i〉 it follows that S2/[〈a, b〉 × 〈i〉] = Σ(2, 3, 4)/〈̂i〉 = Oh.
Inasmuch as 〈x, y〉 is a normal subgroup of 〈ai, b〉× 〈i〉, we obtain a 〈b, ai〉× 〈i〉

action on Σ(2, 2, 2) such that Σ(2, 2, 2)/[〈b, ai〉 × 〈i〉] = Oh. Now 〈b, ai〉 × 〈i〉 =

〈b, i〉 ◦−1 〈ai〉 = (Z3 × Z2) ◦−1 Z2 = Dih(Z6) proving the result. �
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Corollary 18. Let ϕ : Dih(Z6) → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Oh. Then ϕ(Dih(Z6)) is conjugate to [〈bi〉 ◦−1

〈ai〉].

Proposition 19. The orbifold quotients Σ(2, 3, 3)/〈i〉 = S2/[〈b, (ab)2〉 × 〈i〉] =

S2/[A4 × Z2] = Σ(2, 2, 2)/Z6 = T h where i is an involution on Σ(2, 3, 3) induced

by i.

Proof: The map i induces an orientation reversing involution i on Σ(2, 3, 3) =
S2/A4. The vertex 14 in S2 projects to the cone point of order two and the vertices
2 and 8 in S2 each project to a cone point of order 3. Recall 〈x, y〉 ✂ A4. Now,

yi(14) = 14 and yi(8) = 2, which indicates that the induced map i fixes the order
two cone point but the order three cone points are exchanged. This implies that

Σ(2, 3, 3)/〈i〉 = S2/[〈b, (ab)2〉 × 〈i〉] = S2/[A4 × Z2] = T h. Observe also that b

and i induce homeomorphisms b and i on Σ(2, 2, 2) = S2/〈x, y〉 respectively, such

that Σ(2, 2, 2)/〈b, i〉 = Σ(2, 3, 3)/〈i〉 = S2/[〈b, (ab)2〉 × 〈i〉] = T h. Now 〈b, i〉 =
Z3 × Z2 = Z6 = 〈bi〉. �

Corollary 20. Let ϕ : Z6 → Homeo (Σ(2, 2, 2)) be an action such that Σ(2, 2, 2)/ϕ

is homeomorphic to T h. Then ϕ(Z6) is conjugate to 〈bi〉.

Proposition 21. There exist an orientation reversing involution a on Σ(2, 3, 3)
and a dihedral action Dih(Z3) on Σ(2, 2, 2) such that Σ(2, 3, 3)/〈a〉 =
Σ(2, 2, 2)/Dih(Z3) = T v.

Proof: Since 〈x, y〉 ✂ 〈a, b〉, the maps a and b on S2 induce actions a and b on

Σ(2, 2, 2) respectively. We therefore have 〈a, b〉/〈x, y〉 = 〈a, b|a2 = b
3

= 1, aba−1 =

b
−1〉 = [〈b〉 ◦−1 〈a〉] = Dih(Z3) acting on Σ(2, 2, 2). Furthermore, a induces an

orientation reversing involution a on Σ(2, 3, 3) = Σ(2, 2, 2)/〈b〉. Now a must
leave the cone point of order two fixed, and hence is a reflection. This implies
Σ(2, 3, 3)/〈a〉 = T v. Since Σ(2, 3, 3)/〈a〉 = Σ(2, 2, 2)/〈a, b〉, the result follows. �

Corollary 22. Let ϕ : Dih(Z3) → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to T v. Then ϕ(Dih(Z3)) is conjugate to 〈a, b〉.

Remark 23. This Dih(Z3)-action on Σ(2, 2, 2) is not conjugate to the dihedral
action in Corollary 16, since we have different quotient orbifolds. We remark that
π1(T

v) = S4 ✂ π1(O
h).

We will now consider the dihedral groupDih(Zm) = 〈r, s|rm = s2 = 1, srs−1 =
r−1〉. In [4], we illustrated a dihedral actionDih(Zm) on S2 such that S2/Dih(Zm)
= Σ(2, 2,m). It is known that when m is odd, the only distinct normal subgroups
of Dih(Zm) are of the form 〈rd〉 where d|m. When m is even, we have the previous
listed groups together with the groups 〈r2, s〉 and 〈r2, rs〉. Suppose N is a normal
subgroup of Dih(Zm) isomorphic to Z2 ×Z2. This implies that N is either 〈r2, s〉
or 〈r2, rs〉, and since r4 = 1 we have m = 4.
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For this case, we triangulate the 2-sphere S2 in a different manner from all of
the cases above. We locate the vertices 1 through 8 on the equator line. The
vertices 9 and 10 are placed onto its (north/south) poles. We define two kinds
of rotations r and s by r = (1, 3, 5, 7)(2, 4, 6, 8) and s = (1, 5)(2, 4)(6, 8)(9, 10).
An antipodal map is defined by i = (1, 5)(2, 6)(3, 7)(4, 8)(9, 10) and a reflection
map l is defined by l = (1, 2)(3, 8)(4, 7)(5, 6). It is easy to check that srs−1 = r−1

and [r, i] = [s, i] = [i, l] = 1. In addition we also have lrl−1 = r−1 and lsl−1 = rs.
To obtain Σ(2, 2, 2), we consider the normal subgroup 〈r2, s〉 = 〈r2〉 × 〈s〉 =

Z2×Z2. Observe that the union of the four triangles △129∪△239∪△349∪△459
is a fundamental region for the 〈r2, s〉-action on S

2. Note that vertex 9 is fixed
by r2, vertices 1 and 5 are fixed by r2s, and vertex 3 is fixed by s. The map s
identifies 1, 2 and 4, 5, also 2, 3 and 4, 3. Furthermore, r2 identifies 1, 9 and 5, 9.
Therefore S2/[〈r2〉×〈s〉] = Σ(2, 2, 2). Let r be the induced map on Σ(2, 2, 2), and
note that r is an orientation preserving involution. The vertices 9, 1 and 3 project
to distinct cone points of order two in Σ(2, 2, 2). Since r fixes the vertex 9 and
sends vertex 1 to 3, r is a rotation fixing a cone point of order two and exchanging
the other two cone points of order two. This implies Σ(2, 2, 2)/〈r〉 = Σ(2, 2, 4).
We have the following proposition.

Proposition 24. The orbifold quotients S2/〈r, s〉 = Σ(2, 2, 4), S2/〈r2, s〉 =
Σ(2, 2, 2), and for the induced map r on Σ(2, 2, 2) we obtain Σ(2, 2, 2)/r =
Σ(2, 2, 4). Moreover, Σ(2, 2, 2) does not cover Σ(2, 2,m) for m 6= 4.

Observe that π1(Σ(2, 2, 4)) = 〈r, s|r4 = s2 = 1, srs−1 = r−1〉 and if
ν : Σ(2, 2, 2) → Σ(2, 2, 2)/〈r〉 = Σ(2, 2, 4) is the orbifold covering map, then this
is the covering corresponding to the normal subgroup 〈r2, s〉.

We now consider the subgroup 〈r2, rs〉. Now rs = (1, 7)(2, 6)(3, 5)(9, 10), which
is a rotation about an axis passing through the vertices 4 and 8. As above, we
obtain S

2/〈r2, rs〉 = Σ(2, 2, 2), an induced orientation preserving involution s on
Σ(2, 2, 2), and an orbifold covering map ν′ : Σ(2, 2, 2) → Σ(2, 2, 2)/〈s〉 = Σ(2, 2, 4)
corresponding to the subgroup 〈r2, rs〉. Recall that lsl−1 = rs, [l, i] = 1 and
lrl−1 = r−1. Thus l is in the normalizer of both the groups [〈r〉◦−1 〈s〉] = Dih(Z4)
and [〈r〉 ◦−1 〈s〉] × 〈i〉 = Dih(Z4) × Z2.

Proposition 25. Let ϕ : Z2 → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Σ(2, 2, 4). Then ϕ(Z2) is conjugate to 〈r〉.

Proof: We will begin by showing r and s are conjugate. Recall π1(Σ(2, 2, 4)) =
〈r, s|r4 = s2 = 1, srs−1 = r−1〉. Now ν : Σ(2, 2, 2) → Σ(2, 2, 2)/〈r〉 = Σ(2, 2, 4)
is the covering corresponding to 〈r2, s〉 and ν′ : Σ(2, 2, 2) → Σ(2, 2, 2)/〈s〉 =
Σ(2, 2, 4) is the covering corresponding to 〈r2, rs〉. Since l is in the norma-

lizer of 〈r, s〉, the map l induces a homeomorphism l̂ : Σ(2, 2, 4) → Σ(2, 2, 4).

Note that l−1sl = rs and lrl−1 = r−1 implies that l̂ lifts to a homeomorphism
l : S

2/〈r2, s〉 → S
2/〈r2, rs〉 which conjugates r to s.
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Now any covering Σ(2, 2, 2) → Σ(2, 2, 4) must either correspond to the sub-
group 〈r2, s〉 or 〈r2, rs〉. The argument above can be used to show that any
Z2-action on Σ(2, 2, 2) must be conjugate to 〈r〉. �

In [4], we showed how an action Dih(Zm) × Z2 on S2 for m even gave the
quotient type S2/(Dih(Zm) × Z2) = Dh

m. For m odd, we obtained the action
Dih(Zm) ◦ Z2 on S2 such that S2/(Dih(Zm) ◦ Z2) = Dh

m. The dihedral group
consists of orientation preserving elements, and the Z2 subgroup is generated by
an orientation reversing element. If η : Σ(2, 2, 2) → Dh

m is a regular covering, then
η∗(π1(Σ(2, 2, 2))) ⊂ Dih(Zm) is a normal subgroup, and hence m = 4.

We now show how to obtain the quotient Dh
4 . Since i commutes with both r

and s, it induces an orientation reversing involution î on S2/〈r, s〉 = Σ(2, 2, 4).

To obtain Dh
4 , notice that î is a reflection on Σ(2, 2, 4) fixing all cone points since

si(1) = 1, r2i(3) = 3 and si(5) = 5. Thus Dh
4 = Σ(2, 2, 4)/〈̂i〉 and π1(D

h
4 ) =

〈r, s〉 × 〈i〉 = Dih(Z4) × Z2. Furthermore i induces an involution i on Σ(2, 2, 2)
such that Σ(2, 2, 2)/〈r, i〉 = Σ(2, 2, 2)/(Z2 × Z2) = Dh

4 .

Proposition 26. The orbifold quotients S2/[〈r, s〉 × 〈i〉] = Dh
4 , and for the in-

duced maps r and i on Σ(2, 2, 2) = S
2/〈r2, s〉 we obtain Σ(2, 2, 2)/〈r, i〉 = Dh

4 .

Furthermore, Σ(2, 2, 2) is not a regular cover of Dh
m for m 6= 4.

Proposition 27. Let ϕ : Z2 × Z2 → Homeo (Σ(2, 2, 2)) be an action such that

Σ(2, 2, 2)/ϕ is homeomorphic to Dh
4 . Then ϕ(Z2 × Z2) is conjugate to 〈r, i〉.

Proof: The proof is similar to that of Proposition 25. Since l is in the normali-
zer of [〈r〉 ◦−1 〈s〉] × 〈i〉 = Dih(Z4) × Z2 = π1(D

h
4 ), it induces a homeomorphism

l̂ : Dh
4 → Dh

4 . Moreover since l〈r2, s〉l−1 = 〈r2, rs〉, the proof follows as in Propo-
sition 25. �

Again in [4], we showed how to obtain a Dih(Zm)×Z2-action on S2 which gave
the quotient type S2/[Dih(Zm)×Z2] = Dv

m for m odd. For m even, we obtained
a Dih(Zm) ◦Z2-action on S2 such that S2/[Dih(Zm) ◦Z2] = Dv

m. The Z2 groups
are generated by orientation reversing involutions, and thus if Σ(2, 2, 2) → Dv

m is
a covering, it follows that m = 4.

Proposition 28. The orbifold quotient S2/[Dih(Z4)◦Z2] = S2/[〈r, s〉◦ 〈l〉] = Dv
4

where l−1sl = rs and lrl−1 = r−1 . Furthermore, Σ(2, 2, 2) is not a regular cover

of Dv
m.

Proof: A fundamental region for the dihedral action Dih(Z4) = 〈r〉◦−1 〈s〉 on S
2

consists of the union of the triangles △129 ∪△239. The edge 1, 9 is identified to
the edge 3, 9 via r and the edge 1, 2 is identified to the edge 3, 2 by s. The vertex 9
projects to the cone point of order four since r has order four and fixes vertex 9.
The vertices 1 and 2 project to distinct cone points, each of order two. This
follows since vertex 1 is fixed by sr and vertex 2 is fixed by s, and each of these
homeomorphisms have order two. The reflection l induces an orientation reversing

involution l̂ on Σ(2, 2, 4) = S
2/〈r, s〉, which must also be a reflection. Now l(9) = 9
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and l(1) = 2. This implies l̂ leaves the cone point of order four fixed and exchanges

the cone points of order two. Hence S2/[〈r, s〉 ◦ 〈l〉] = Σ(4, 2, 2)/〈l̂〉 = Dv
4 .

We have already seen that if ν : Σ(2, 2, 2) → Dv
m is a regular covering, then it

follows that ν∗(π1(Σ(2, 2, 2))) is contained in Dih(Zm) and m = 4. Furthermore
ν∗(π1(Σ(2, 2, 2))) = 〈r2, s〉 or 〈r2, rs〉. However lrl−1 = rs /∈ 〈r2, s〉, and lrsl−1 =
r−1rs = s /∈ 〈r2, rs〉. Thus ν∗(π1(Σ(2, 2, 2))) cannot be a normal subgroup of
π1(D

v
4) = Dih(Z4) ◦ Z2, and thus Σ(2, 2, 2) is not a regular cover of Dv

m. �

Theorem 29. Let ϕ : G→ Homeo (Σ(2, 2, 2)) be a G-action on Σ(2, 2, 2). Then

G is isomorphic to one of the following groups: Z2, Z2 × Z2, Z3, Z6, Dih(Z3) or

Dih(Z6). There is only one equivalence class for each quotient type.

(1) If G = Z2, then (Σ(2, 2, 2))/Z2 is either Dh
2 , Dv

2 or Σ(2, 2, 4).
(2) If G = Z2 × Z2, then (Σ(2, 2, 2))/(Z2 × Z2) is Dh

4 .

(3) If G = Z3, then (Σ(2, 2, 2))/Z3 is Σ(2, 3, 3).
(4) If G = Z6, then (Σ(2, 2, 2))/Z6 is T h.

(5) If G = Dih(Z3), then (Σ(2, 2, 2))/Dih(Z3) is either Σ(2, 3, 4) or T v.

(6) If G = Dih(Z6), then (Σ(2, 2, 2))/Dih(Z6) is Oh.

Proof: There are 14 closed 2-orbifolds B, with positive Euler characteristic
χ(B) > 0. The proof will follow when we show that Σ(2, 2, 2) cannot cover
the remaining closed 2-orbifolds with positive Euler characteristic not covered
above. These orbifolds are as follows: Σ(2, 3, 5), Ih, S2m, Zm

h , Σ(0,m,m) and
Cv

m,m. Now π1(Σ(2, 3, 5)) = I is the icosahedral group, which is a simple group.
Hence, π1(Σ(2, 2, 2)) = Z2 × Z2 cannot be a normal subgroup of I. The groups
π1(I

h) = I×Z2 and π1(C
v
m,m) = Zm◦−1Z2, where the Z2 subgroup in both cases is

generated by an orientation reversing map. This implies π1(Σ(2, 2, 2)) = Z2 ×Z2

must be a normal subgroup of I or Zm, which is impossible. For all m ∈ N,
π1(S

2m) = Z2m, π1(Σ(0, 2, 2)) = Zm and π1(Z
m
h ) = Zm × Z2 where Z2 is gen-

erated by an orientation reversing map. Again π1(Σ(2, 2, 2)) would have to be a
subgroup of Z2m or Zm, which is impossible. �

Let Ψ: Homeo (Σ(2, 2, 2)) → Out(π1(Σ(2, 2, 2))) be the homomorphism which
sends any homeomorphism to the outer automorphism that it induces.

Corollary 30. If ϕ : G → Homeo (Σ(2, 2, 2)) is a finite group action such that

Σ(2, 2, 2)/ϕ = Σ(2, 3, 4), then ϕΨ: G → Out(π1(Σ(2, 2, 2))) is an isomorphism.

Thus every subgroup of Out(π1(Σ(2, 2, 2))) is realizable by a finite subgroup of

Homeo (Σ(2, 2, 2)).

Proof: If Σ(2, 2, 2)/ϕ = Σ(2, 3, 4), then G = Dih(Z3) and by Corollary 16

we may assume ϕ(G) = 〈b〉 ◦−1 〈ai〉. It follows that only the identity element
in this group induces the identity outer automorphism, and thus ϕΨ: G →
Out(π1(Σ(2, 2, 2))) is one-to-one. Since Out(π1(Σ(2, 2, 2))) = Aut(π1(Σ(2, 2, 2)))
= Aut(Z2 × Z2) = S3 = Dih(Z3), the result follows. �



Finite actions on the Klein four-orbifold and prism manifolds 59

3. Prism manifolds fibering over Σ(2, 2, 2)

In this section, we consider the finite group actions on a prism manifold M(b, d)
which preserve a longitudinal fibering, but do not leave any Heegaard Klein bottle
invariant. Actions which leave a Heegaard Klein bottle invariant are said to
split, and these were classified in [3]. We consider the orbifold quotients for
these actions, and show that they fiber over certain of the orbifolds mentioned
in Section 1. Under certain conditions, these quotient spaces are Seifert fibered
manifolds and these are identified as well. In addition, we compute the orbifold
fundamental groups of certain quotient spaces.

Let S3 be the 3-sphere viewed as the set of quaternions {u+ vj | u, v ∈ C and
|u|2+ |v|2 = 1}. Many of the computations in this paper use the formulae uj = ju
and (u+ vj)−1 = u− vj.

Let σ : S3 × S3 → Isom+(S3) be the map to the orientation preserving isome-
tries defined by σ(q1, q2)(q) = q1qq

−1
2 for the elements q, q1, q2 ∈ S3. The kernel

of σ is 〈(−1,−1)〉 ≃ Z2.
We begin by considering actions which preserve the longitudinal fibering

hl : M(b, d) → Σ(2, 2, d), which is induced by the fibering Fl = 〈pS1〉p∈S3 on
S3 with Hl : S3 → S2 defined by Hl(u + vj) = u/v̄. By Theorem 13 in [2], if
ϕ : G → Diff(M(b, d)) is an action which preserves a longitudinal fibering and
does not split, then d = 2 and G/G0 is either Z3, Z6, Dih(Z3), or Dih(Z6), where
G0 is the subgroup of G consisting of elements which leave every longitudinal
fiber invariant. Hence we consider only the prism manifolds M(b, 2). Note that

M(b, 2) = S3/〈σ(i, 1), σ(j, 1), σ(1, e
2πi

b )〉. Now σ(j, 1)(peiθ) = j(ueiθ + ve−iθj) =
ūe−iθj + v̄eiθj2 = −v̄eiθ + ūe−iθj, and therefore Hlσ(j, 1)(peiθ) = Hl(−v̄eiθ +

ūe−iθj) = −v̄eiθ/ūe−iθ = −v̄/u. For the induced action σ̄(j, 1) on S2, we have
σ̄(j, 1)(u/v̄) = −v̄/u. Hence for any z ∈ S2, it follows that σ̄(j, 1)(z) = −1/z.

A similar computation shows that σ̄(i, 1)(z) = −z and σ̄(1, e
2πi

b ) = idS2 . The
fixed-point sets are as follows: fix(σ̄(i, 1)) = {0,∞}, fix(σ̄(j, 1)) = {i,−i}, and
fix(σ̄(ij, 1)) = {1,−1}. Note that the points in each fixed-point set are being
identified under the 〈σ̄(i, 1), σ̄(j, 1)〉-action on S2. It follows that S2/〈σ̄(i, 1),
σ̄(j, 1)〉 = Σ(2, 2, 2) where each fixed-point set projects to a cone point of order 2.
We obtain the following commutative diagram:

S3 Hl−−−−→ S2

yν

yν̄

M(b, 2)
hl−−−−→ Σ(2, 2, 2)

where the maps ν and ν̄ are covering maps.

It follows that a Klein bottle K in M(b, 2) is a fibered Heegaard Klein bottle
if and only if hl(K) is an arc in Σ(2, 2, 2) whose endpoints contain exactly two of
the cone points.
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Consider the element y = 1√
2
e

πi
4 (1 + j) in S3. A computation shows that

y2 = 1√
2
e

πi
4 (i + j) and y3 = −1. Furthermore yiy−1 = j and yjy−1 = ij. Thus

(y, j) is in the normalizer of the group 〈(i, 1), (j, 1), (1, e
2πi

b )〉 in S3 × S3, and thus
σ(y, j) induces an isometry σ̂(y, j) on M(b, 2). It was shown in [3] that σ̂(y, j)
has order 6, and thus we obtain a fiber-preserving Z6-action on M(b, 2).

We consider σ(y, j)2 = σ(y2,−1) which induces the same Z3-action on M(b, 2)

as σ(y2, 1). Now σ(y2, 1)(u+ vj) = 1√
2
e

πi
4 (i+ j)(u+ vj) = 1√

2
e

πi
4 [(iu− v̄)+ (iv+

ū)j] = [ 1√
2
e

πi
4 (iu− v̄) + 1√

2
e

πi
4 (iv + ū)j].

Lemma 31. The isometry σ(y2, 1) is fixed-point free on S3.

Proof: Suppose σ(y2, 1)(u + vj) = [ 1√
2
e

πi
4 (iu − v̄) + 1√

2
e

πi
4 (iv + ū)j] = u+ vj.

Then 1√
2
e

πi
4 (iu − v̄) = u and 1√

2
e

πi
4 (iv + ū) = v. Considering the first of these

two equations, we have 1√
2
e

πi
4 (iu − v̄) = 1

2 (1 + i)(iu − v̄) = u, which simplifies

to v̄ = −(1 − 2i)u. Similarly the second equation simplifies to ū = (1 − 2i)v.

Consider now the quotient ū
v̄

= (1−2i)v
−(1−2i)u = v

−u
, which implies 0 = uū+ vv̄ giving

a contradiction. �

We now want to investigate the induced map on S2. We see that

Hl(σ(y2, 1)(u+ vj)) =

1√
2
e

πi
4 (iu− v̄)

1√
2
e

−πi
4 (−iv̄ + u)

=
i(iu− v̄)

−iv̄ + u
=

−u− iv̄

−iv̄ + u
=

−u
v̄
i+ 1

u
v̄
i+ 1

.

This implies that if σ̄(y2, 1) is the induced map on S
2, then σ̄(y2, 1)(z) = 1−iz

1+iz
.

Solving the equation 1−iz
1+iz

= z to find the fixed points, we see that z = (1 −
i)(−1±

√
3

2 ). We have the following lemma.

Lemma 32. The map σ(y2, 1) leaves two fibers F± = {u + vj | u
v̄

=

(1 − i)(−1±
√

3
2 )} in S3 invariant.

The map σ̄(y2, 1) induces a Z3-action on Σ(2, 2, 2) = S2/〈σ̄(i, 1), σ̄(j, 1)〉, which
we denote by ̂̄σ(y2, 1). Since σ̄(y2, 1)(z) = 1−iz

1+iz
, we see that σ̄(y2, 1) permutes the

fixed-point sets of σ̄(i, 1), σ̄(j, 1) and σ̄(ij, 1). Thus ̂̄σ(y2, 1) permutes the three
cone points of order two in Σ(2, 2, 2), and Σ(2, 2, 2)/〈̂̄σ(y2, 1)〉 = Σ(2, 3, 3). Fur-
thermore, since ν̄ ◦Hl = hl ◦ ν, it follows that ν(F±) are regular fibers in M(b, 2).

Proposition 33. The induced map σ̂(y2, 1): M(b, 2) → M(b, 2) is fixed point

free if and only if b 6≡ 0(mod 3). Furthermore fix(σ̂(y2, 1)) = ν(F+) ∪ ν(F−) if

and only if b ≡ 0(mod 3).

Proof: Since the only fixed points of ̂̄σ(y2, 1) are ν̄((1 − i)(−1±
√

3
2 )), it follows

that σ̂(y2, 1) will leave invariant only the two fibers ν(F±). Now the only e-
lements of the group of covering translations leaving F± invariant are of the

form σ(1, e
2πi

b )k = σ(1, e
2πik

b ) where 0 < k < b. Suppose σ(1, e
2πik

b )(u + vj) =
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σ(y2, 1)(u + vj) for u + vj ∈ F+. Thus ue
−2πik

b + ve
2πik

b j = [ 1√
2
e

πi
4 (iu − v̄) +

1√
2
e

πi
4 (iv + ū)j]. Consider first ue

−2πik
b = 1√

2
e

πi
4 (iu − v̄) = 1

2 (1 + i)(iu − v̄).

We obtain the equation 2ue
−2πik

b = (−u + iu) − (v̄ + iv̄), and dividing by v̄ and

rearranging yields u
v̄
[2e

−2πik
b +(1−i)] = −(1+i). Substituting u

v̄
= (1−i)(−1+

√
3

2 )

and simplifying, we obtain e
−2πik

b = −1
2 −

√
3

2 . Setting ve
2πik

b = 1√
2
e

πi
4 (iv + ū)

and using a similar argument as above gives e
2πik

b = −1
2 +

√
3

2 . This is true if and
only if 3 divides b. The case when u+ vj ∈ F− is similar. �

Recall that the manifold N = {m; (o1, 0) : (2, 1), (3, β2), (3, β3)} where b =
6m+3+2(β2+β3), m is the obstruction class, and g.c.d.{b, 12} = 1, is a tetrahedral
manifold fibering over Σ(2, 3, 3) with fundamental group T ∗ × Zb. (See [6] and
note that b and m have been exchanged.)

Theorem 34. The quotient orbifold M(b, 2)/〈σ̂(y2, 1)〉 fibers over Σ(2, 3, 3), and

is a tetrahedral manifold N if and only if g.c.d.{b, 6} = 1. When g.c.d.{b, 6} 6= 1,

ν(F+)∪ν(F−) projects to the only non-manifold points in M(b, 2)/〈σ̂(y2, 1)〉, and

each projects to a cone point of order 3 in Σ(2, 3, 3). The orbifold fundamental

group π1(M(b, 2)/〈σ̂(y2, 1)〉) ≃ T ∗×Zb where T ∗ is the binary tetrahedral group.

Proof: Since b is odd, b 6≡ 0(mod 3) is equivalent to g.c.d.{b, 6} = 1. The first
two statements follow from Proposition 33 and the above discussion. To compute
the fundamental group, note that

M(b, 2)/〈σ̂(y2, 1)〉 = S
3/〈σ(i, 1), σ(j, 1), σ(1, e

2πi
b ), σ(y2, 1)〉.

A computation using y3 = −1 shows that y2jy4 = −y2jy = i. Hence the group
〈i, j, y2〉 = 〈j, y〉 ≃ T ∗. This implies the quotient space

S
3/〈σ(i, 1), σ(j, 1), σ(y2, 1), σ(1, e

2πi
b )〉 = S

3/〈σ(j, 1), σ(y, 1), σ(1, e
2πi

b )〉,

and thus the result follows. �

Corollary 35. Let M(b, 2) be a prism manifold with g.c.d.{b, 6} = 1. Then we

may write b = 6m+ 7 or b = 6m+ 11.

(1) If b = 6m+ 7, then M(b, 2)/〈σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 1), (3, 1)}.
(2) If b = 6m+11, then M(b, 2)/〈σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 2), (3, 2)}.

Remark 36. Since y3= −1, it follows thatM(b, 2)/〈σ̂(y2, 1)〉= M(b, 2)/〈σ̂(y, 1)〉.
In both [5] and [6], M is a tetrahedral manifold if and only if M fibers over

Σ(2, 3, 3), π1(M) ≃ T ∗ × Zb and g.c.d.{b, 6} = 1. We have shown that when b is
odd and g.c.d.{b, 6} 6= 1, there exists an orbifold N which fibers over Σ(2, 3, 3)
with fundamental group T ∗ × Zb.

We now consider the isometry σ(y, j) which induces a Z6-action σ̂(y, j) on

M(b, 2). Now σ(y, j)(u + vj) = 1√
2
e

πi
4 (1 + j)(u + vj)j−1 = 1

2 (1 + i)[(v + ū) +

(v̄ − u)j]. Since σ(y, j)2 is fixed-point free, σ(y, j) does not have a fixed-point.
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To compute the induced map σ̄(y, j) on S2, we see that Hl(σ(y, j)(u + vj)) =
1

2
(1+i)(v+ū)

1

2
(1−i)(v−ū)

= i(v+ū)
(v−ū) =

i(1+ ū
v
)

(1− ū
v
)
. For z ∈ S2, this implies that σ̄(y, j)(z) = i(1+z̄)

(1−z̄) .

As σ(y, j)3 = σ(1, j), we obtain σ(1, j)(u + vj) = (u + vj)j−1 = (v − uj). Thus
Hl(σ(y, j)3(u + vj)) = v

−ū
and σ̄(y, j)3(z) = −1

z̄
. A computation shows that

σ̄(y, j)4(z) = 1−z
i(1+z) and σ̄(y, j)5(z) = −1+iz̄

1+iz̄
.

Proposition 37. The maps σ̄(y, j), σ̄(y, j)3, σ̄(y, j)5 are fixed-point free on S2.

However σ̄(y, j)2 and σ̄(y, j)4 have the same fixed-point set consisting of the points

(1 − i)(−1±
√

3
2 ).

Proof: Suppose σ̄(y, j)(z) = z, and so we obtain the equation i(1+ z̄) = z− zz̄.
Substituting z = a + bi into this equation and simplifying, yields −1 = a2 + b2,
giving a contradiction. Since −1

z̄
= z implies −1 = zz̄ which is impossible, it

follows that σ̄(y, j)3 is fixed-point free. If σ̄(y, j)5(z) = z, then we obtain the
equation −1 + iz̄ = z + izz̄. Again substituting z = a+ bi gives a contradiction.
Finally suppose that σ̄(y, j)4(z) = z, and so we obtain the equation 1 − z =

zi(1 + z). By solving this equation, we obtain z = (1 − i)(−1±
√

3
2 ). �

Since σ̄(y, j)(z) = i(1+z̄)
(1−z̄) , we see that σ̄(y, j) permutes the fixed-point sets of

σ̄(i, 1), σ̄(j, 1) and σ̄(ij, 1). Thus if ̂̄σ(y, j) is the induced map on Σ(2, 2, 2), then
̂̄σ(y, j) permutes the three cone points of order two in Σ(2, 2, 2) and ̂̄σ(y, j)3 =

̂̄σ(1, j) fixes each cone point. Observe that σ̄(1, j)((1− i)(−1+
√

3
2 )) = −2

(1+i)(−1+
√

3)

= −(1−i)

−1+
√

3
= (1 − i)(−1−

√
3

2 ).

We recall the definition of an amalgamated direct product. A group G is a
direct product of the groups A and B with amalgamated subgroup C if G = A∪B,

A ∩B = C, and the centralize of A in G contains B. We write G = A×C B.
For the tetrahedral group T ∗ = 〈x0, y0|x2

0 = y3
0 = (x0y0)

3 = −1〉 and the group
Z4 = 〈z0|z2

0 = −1〉 form the amalgamated direct product T ∗ ×Z2
Z4. Now form

the group Zb ◦ (T ∗×Z2
Z4) as follows: if w generates Zb, then [w, x0] = [w, y0] = 1

and z0wz
−1
0 = w−1.

Theorem 38. The quotient orbifold M(b, 2)/〈σ̂(y, j)〉 fibers over T h. The orbi-

fold fundamental group π1(M(b, 2)/〈σ̂(y, j)〉) ≃ Zb ◦ (T ∗ ×Z2
Z4).

Proof: Note that Z6 = 〈σ̂(y, j)〉 = 〈σ̂(y, j)2, σ̂(y, j)3〉 = 〈σ̂(y, 1), σ̂(1, j)〉 ≃ Z3 ×
Z2. We have seen in Theorem 34 that the orbifold quotientO = M(b, 2)/〈σ̂(y2, 1)〉
fibers over Σ(2, 3, 3) where Σ(2, 3, 3) = Σ(2, 2, 2)/〈̂̄σ(y2, 1)〉. Now σ̂(1, j) on
M(b, 2) induces a map s(1, j) on O, which projects to a map s̄(1, j) on Σ(2, 3, 3).
Note that ̂̄σ(1, j) fixes each cone point of order two, and σ̄(1, j) exchanges the

points (1 − i)(−1+
√

3
2 ) and (1 − i)(−1−

√
3

2 ) in S2, which are the points that
project to the order three cone points in Σ(2, 3, 3). This implies that s̄(1, j)
is a reflection leaving the cone point of order two fixed and exchanging the
two cone points of order 3. Thus Σ(2, 3, 3)/〈s̄(1, j)〉 = T h. We therefore have
M(b, 2)/〈σ̂(y, j)〉 = O/〈s(1, j)〉 fibering over T h.
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As in Theorem 34, to compute the fundamental group notice that

M(b, 2)/〈σ̂(y, j)〉 = S
3/〈σ(j, 1), σ(y, j), σ(1, e

2πi
b )〉

= S
3/〈σ(j, 1), σ(y, 1), σ(1, j), σ(1, e

2πi
b )〉.

Setting σ(j, 1) = x0, σ(y, 1) = y0, σ(1, j) = z0 and σ(1, e
2πi

b ) = w, proves the
result. �

We will now consider certain dihedral groups acting on M(b, 2). Let x =
1√
2
(i + j) ∈ S3. A computation shows that xix−1 = j, xjx−1 = i and (xy)2 =

−i. Therefore we see that both σ(x, 1) and σ(x, j) induce involutions σ̂(x, 1)
and σ̂(x, j) on M(b, 2) respectively. Denote by σ̄(x, 1) and σ̄(x, j) the induced
involutions on S2. A further computation shows that xyx−1y = i, and so we obtain
the following two dihedral actions on M(b, 2): Dih1(Z3) = 〈σ̂(y, 1)〉 ◦−1 〈σ̂(x, 1)〉
and Dih2(Z3) = 〈σ̂(y, 1)〉 ◦−1 〈σ̂(x, j)〉.

We consider first Dih1(Z3) = 〈σ̂(y, 1)〉 ◦−1 〈σ̂(x, 1)〉. Now σ̂(x, 1)(u + vj) =
1√
2
(i+ j)(u + vj) = 1√

2
[(iu− v̄) + (iv + ū)j].

Lemma 39. The isometry σ(x, 1) is fixed-point free on S3.

Proof: Suppose σ̂(x, 1)(u + vj) = u + vj. We obtain the following equations:
1√
2
(iu − v̄) = u and 1√

2
(iv + ū) = v. Solving the first of these equations for u

we obtain u = −v̄

i−
√

2
, and substituting this into the second equation yields v = 0.

This implies u = 0 giving a contradiction. �

We now investigate the induced map σ̄(x, 1) on S2. The projection

Hl(σ(x, 1)(u + vj)) = Hl(
1√
2
[(iu− v̄) + (iv + ū)j]) =

iu− v̄

−iv̄ + u
=
iu

v̄
− 1

u
v̄
− i

.

Thus for z ∈ S2 we have σ̄(x, 1)(z) = iz−1
z−i

. Solving the equation iz−1
z−i

= z to find

the fixed points, we see that z = (1 ±
√

2)i. This gives the following lemma.

Lemma 40. The map σ(x, 1) leaves two fibers E± = {u+ vj| u
v̄

= (1±
√

2)i} in

S3 invariant.

Recall that the induced maps σ̄(i, 1) and σ̄(j, 1) on S
2 are defined by σ̄(i, 1)(z) =

−z and σ̄(j, 1)(z) = −1
z

, and S2/〈σ̄(i, 1), σ̄(j, 1)〉 = Σ(2, 2, 2). We next con-

sider the dihedral action 〈σ̄(y, 1)〉 ◦−1 〈σ̄(x, 1)〉 on S2. Now σ̄(ij, 1)((1 +
√

2)i) =
1

(1+
√

2)i
= (1 −

√
2)i, and thus ν̄((1 +

√
2)i) = ν̄((1 −

√
2)i) = w0 in Σ(2, 2, 2).

Let ν̄({0,∞}) = [0], ν̄({i,−i}) = [i] and ν̄({1,−1}) = [1]. In addition for the

fixed points (1 − i)(−1±
√

3
2 ) of σ̄(y, 1), let ν̄((1 − i)(−1+

√
3

2 )) = w+ and ν̄((1 −
i)(−1−

√
3

2 )) = w−. Observe that σ̄(x, 1)({0,∞}) = {i,−i} and σ̄(x, 1)({1,−1}) =

{1,−1}. This implies that if ̂̄σ(y, 1) and ̂̄σ(x, 1) are the induced maps on Σ(2, 2, 2),
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then ̂̄σ(x, 1)([1]) = [1], ̂̄σ(x, 1)([0]) = [i] and ̂̄σ(x, 1)(w0) = w0. A computa-

tion shows that σ̄(x, 1)((1 − i)(−1+
√

3
2 )) = (1 + i)(1−

√
3

2 ), and since σ̄(ij, 1)((1 +

i)(1−
√

3
2 )) = (1 − i)(−1−

√
3

2 ), it follows that ̂̄σ(x, 1)(w+) = w−.
Consider the orbifold M(b, 2)/〈σ̂(y, 1)〉 = O which we see fibers over the space

Σ(2, 3, 3) = Σ(2, 2, 2)/〈̂̄σ(y, 1)〉. Denote by µ : M(b, 2) → M(b, 2)/〈σ̂(y, 1)〉 and
µ̄ : Σ(2, 2, 2) → Σ(2, 3, 3) the orbifold covering maps.

The maps σ̂(x, 1) and ̂̄σ(x, 1) induce maps s(x, 1) and s̄(x, 1) onO and Σ(2, 3, 3)
respectively. It follows by the above that s̄(x, 1) exchanges the two cone points of
order three, µ̄(w+) and µ̄(w−). Furthermore the fixed-point set of s̄(x, 1) consists
of µ̄([1]), which is a cone point of order two, and the manifold point µ̄(w0). This
implies that Σ(2, 3, 3)/〈s̄(x, 1)〉 = Σ(2, 3, 4).

Recall that the manifold N = {m; (o1, 0) : (2, 1), (3, β2), (4, β3)} where b =
12m + 6 + 4β2 + 3β3, m is the obstruction class, and g.c.d.{b, 24} = 1, is a
octahedral manifold fibering over Σ(2, 3, 4) with fundamental group O∗ × Zb.
(See [6] and note that b and m have been exchanged.)

We therefore have the following theorem.

Theorem 41. The quotient orbifold M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉 fibers over

Σ(2, 3, 4) and is an octahedral manifold N if and only if g.c.d.{b, 6} = 1. The

orbifold fundamental group π1(M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉) ≃ O∗ × Zb where O∗ is

the binary octahedral group.

Proof: By the above we have seen that M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉 = O/〈s(x, 1)〉,
and that O/〈s(x, 1)〉 fibers over Σ(2, 3, 3)/〈s̄(x, 1)〉 = Σ(2, 3, 4), proving the
beginning of the first statement. As for the fundamental group, notice that
π1(M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉) is isomorphic to the group

〈σ(i, 1), σ(j, 1), σ(1, e
2πi

b ), σ(x, 1), σ(y, 1)〉.

Since j = yiy−1 and (xy)2 = −i, we see that

〈σ(i, 1), σ(j, 1), σ(1, e
2πi

b ), σ(x, 1), σ(y, 1)〉 = 〈σ(x, 1), σ(y, 1), σ(1, e
2πi

b )〉,

which is isomorphic to O∗ × Zb.
By Theorem 34, we see that M(b, 2)/〈σ̂(y, 1)〉 = O is a manifold if and only if

g.c.d.{b, 6} = 1. We need only show that the map s(x, 1) on O is fixed-point free
to finish the proof. Let F1 be the fiber in S

3 such that Hl(F1) = 1 ∈ S
2. Now

µν(E+) projects to µ̄(w0) and µν(F1) projects to µ̄ν̄(1), which are the fixed points
of s̄(x, 1). Therefore the only fibers left invariant by s(x, 1) in O are µν(E±) = E
and µν(F1) = F . For u+vj ∈ S3, we have σ(x, 1)(u+vj) = 1√

2
[(ui−v̄)+(vi+ū)j].

We first show s(x, 1)|E is fixed point free. Let u+ vj ∈ E+, and thus u
v̄

= (1 +√
2)i. If s(x, 1)(u+vj) = u+vj, we have the following equations: 1√

2
(ui− v̄) = u

and 1√
2
(vi+ū) = v. Dividing first equation by v̄ and multiplying by

√
2, we obtain

u
v̄
i− 1 =

√
2u

v̄
. Using u

v̄
= (1+

√
2)i, we see that the left side of this equation is a

real number but the right side is a complex number, giving a contradiction. Since
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σ(i, 1), σ(j, 1), σ(ij, 1) and σ(y, 1) do not leave E+ invariant, we need only check

that σ(x, 1)(u+ vj) 6= σ(1, e
2kπi

b )(u+ vj) for some 0 < k < b where u+ vj ∈ E+.

Now σ(1, e
2kπi

b )(u+ vj) = ue−
2kπi

b + ve
2kπi

b j. If σ(x, 1)(u+ vj) = σ(1, e
2kπi

b )(u+

vj), then we obtain the equations ue−
2kπi

b = 1√
2
(ui− v̄) and ve

2kπi
b = 1√

2
(vi+ ū).

Simplifying the first equation and substituting u
v̄

= (1+
√

2)i, we get the equation

e−
2kπi

b = i. Since b is odd, this is impossible. Thus s(x, 1)|E is fixed point free.
We now show s(x, 1)|F is fixed point free. Note that σ(x, 1) does not leave F1

invariant, and so we consider σ(i, 1) ◦ σ(x, 1) which does leave F1 invariant. For
u+vj ∈ S3, σ(i, 1)◦σ(x, 1)(u+vj) = 1√

2
[(−u− iv̄)+(−v+ iū)j]. For u+vj ∈ F1,

we have u
v̄

= 1. If σ(i, 1) ◦ σ(x, 1)(u + vj) = u + vj, we obtain the equations
1√
2
(−u − iv̄) = u and 1√

2
(−v + iū) = v. Dividing by v̄ and substituting u

v̄
= 1

gives a contradiction. As above, we need only see if σ(i, 1) ◦ σ(x, 1)(u + vj) =

σ(1, e
2kπi

b )(u + vj) for some 0 < k < b. In this case, we obtain the equations

ue−
2kπi

b = 1√
2
(−u − iv̄) and ve

2kπi
b = 1√

2
(−v + iū). Dividing the first equation

by v̄ and using u
v̄

= 1, we obtain e−
2kπi

b = 1√
2
(−1− i), which is impossible. Thus

s(x, 1)|F is fixed point free, completing the proof. �

Corollary 42. Let M(b, 2) be a prism manifold with g.c.d.{b, 6} = 1. Then we

may write b = 12m+ r where r = 13, 17, 19, or 23.

(1) If r = 13, then M(b, 2)/〈σ̂(x, 1), σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 1), (4, 1)}.
(2) If r = 17, then M(b, 2)/〈σ̂(x, 1), σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 2), (4, 1)}.
(3) If r = 19, then M(b, 2)/〈σ̂(x, 1), σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 1), (4, 3)}.
(4) If r = 23, then M(b, 2)/〈σ̂(x, 1), σ̂(y2, 1)〉 = {m; (o1, 0) : (2, 1), (3, 2), (4, 3)}.

We now consider the dihedral group Dih2(Z3) = 〈σ̂(y, 1), σ̂(x, j)〉 acting on
M(b, 2). By Theorem 34, M(b, 2)/〈σ̂(y, 1)〉 fibers over

Σ(2, 3, 3) = Σ(2, 2, 2)/〈σ̄(y, 1)〉.

Since the subgroup generated by σ̂(y, 1) in Dih2(Z3) is a normal subgroup of
Dih2(Z3), the map σ̂(x, j) induces s(x, j) on M(b, 2)/〈σ̂(y, 1)〉. Likewise, σ̄(x, j)
on S2 induces ̂̄σ(x, j) and s̄(x, j) on Σ(2, 2, 2) and Σ(2, 3, 3) respectively.

We will show that the induced map s̄(x, j) on Σ(2, 3, 3) fixes all cone points
on this orbifold space. Observe first that s̄(x, j) is orientation reversing and must
fix the cone point of order two. To show that s̄(x, j) fixes the other cones points,
we find σ̄(x, j) acting on S2. Notice that for u + vj ∈ S3, σ(x, j)(u + vj) =
1√
2
(i+ j)(u + vj)j−1 = 1√

2
[(ū + vi) + (−ui+ v̄)j]. Hence,

Hl(σ(x, j)(u + vj)) =

1√
2
(ū + vi)

1√
2
(ūi+ v)

=
( ū

v
+ i)

( ū
v
i+ 1)

.



66 Kalliongis J., Ohashi R.

As a result, we obtain σ̄(x, j)(z) = z̄+i
z̄i+1 . A computation shows that σ̄(x, j)((1 −

i)(−1+
√

3
2 )) = (−1+

√
3)(1+i)

2(2−
√

3)
and σ̄(ij, 1)( (−1+

√
3)(1+i)

2(2−
√

3)
) = (1 − i)(−1+

√
3

2 ). Thus

s̄(x, j) fixes the cone point ν̄µ̄((1− i)(−1+
√

3
2 )) of order three, and hence must fix

the other cone point of order three. Therefore s̄(x, j) is a reflection fixing all the
cone points. This implies T v = Σ(2, 3, 3)/〈s̄(x, j)〉 = Σ(2, 2, 2)/〈σ̄(y, 1), σ̄(x, j)〉
and M(b, 2)/〈σ̂(y, 1), σ̂(x, j)〉 is fibered over the base space T v.

Let H = 〈x0, y0|x2
0 = 1, (x0y0)

4 = y3
0 = −1〉. Form the group Zb ◦H as follows:

if w generates Zb, then x0wx
−1
0 = w−1 and [y0, w] = 1.

We have the following theorem:

Theorem 43. The quotient orbifold M(b, 2)/〈σ̂(y, 1), σ̂(x, j)〉 is fibered over the

base space T v. The orbifold fundamental group π1(M(b, 2)/〈σ̂(y, 1), σ̂(x, j)〉) ≃
Zb ◦H .

Proof: Identifying x0, y0 and w with σ(x, j), σ(y, 1) and σ(1, e
2πi

b ) respectively
proves the result. �

Consider now the dihedral group

Dih(Z6) = 〈σ̂(y, j), σ̂(x, 1)〉 = 〈σ̂(y, 1), σ̂(x, 1), σ̂(1, j)〉

acting on M(b, 2). By an earlier argument, M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉 fibers over
Σ(2, 3, 4), where Σ(2, 3, 4) = Σ(2, 2, 2)/〈̂̄σ(y, 1), ̂̄σ(x, 1)〉. The map σ(1, j) com-
mutes with σ(y, 1) and σ(x, 1), hence the map σ(1, j) on S3 induces a map σ̂(1, j)
on M(b, 2) and s(1, j) on M(b, 2)/〈σ̂(y, 1), σ̂(x, 1)〉. Moreover, σ̄(1, j) on S2 in-
duces a map ̂̄σ(1, j) on Σ(2, 2, 2) and s̄(1, j) on Σ(2, 3, 4). Note that s(1, j) also
induces s̄(1, j). Observe that σ(1, j)(u+vj) = v−uj, hence Hl(σ(1, j)(u+vj)) =
Hl(v − uj) = v

−ū
. Thus σ̄(1, j)(z) = − 1

z̄
. Since σ̄(1, j) is an orientation reversing

map, so is s̄(1, j) on Σ(2, 3, 4). Since the cone points in Σ(2, 3, 4) have different
orders, they are left invariant by s̄(1, j). We conclude that s̄(1, j) is a reflection
through a circle containing all the cone points. Thus Σ(2, 3, 4)/〈s̄(1, j)〉 = Oh and
we have the following theorem.

For the octahedral group O∗ = 〈x0, y0, z0|x2
0 = y3

0 = (x0y0)
4 = −1〉 and the

group Z4 = 〈z0|z2
0 = −1〉 form the amalgamated direct product O∗ ×Z2

Z4. Now
form the group Zb ◦ (O∗ ×Z2

Z4) as follows: if w generates Zb, then [w, x0] =
[w, y0] = 1 and z0wz

−1
0 = w−1.

Theorem 44. The quotient orbifold M(b, 2)/〈σ̂(y, j), σ̂(x, 1)〉 is fibered over the

base space Oh. The orbifold fundamental group π1(M(b, 2)/〈σ̂(y, j), σ̂(x, 1)〉) ≃
Zb ◦ (O∗ ×Z2

Z4).

Proof: To obtain the fundamental group, identify σ(x, 1), σ(y, 1), σ(1, j) and

σ(1, e
2πi

b ) with x0, y0, z0 and w respectively. �

Next we will state a result from [3], which will be used in the proof of the
theorem below.
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Theorem 45 ([3]). Let G be a finite group of isometries operating on M(b, d)
preserving the longitudinal fibering, and suppose G does not preserve any Hee-

gaard Klein bottle. Denote G to be the induced action on Σ(2, 2, d). Then

M(b, d) = M(b, 2), G ≃ Z3, Z6, Dih(Z3) or Dih(Z6). Moreover, G is one of the

following groups.

(1) G = 〈σ̂(y, e
pπi

q )〉 or G = 〈σ̂(y, e
pπi

q ), σ̂(1, e
πi
n )〉 when G ≃ Z3.

(2) G = 〈σ̂(y, eiθj)〉 or G = 〈σ̂(y, 1)〉, σ̂(1, e
πi
q ), σ̂(1, eiθj)〉 when G ≃ Z6.

(3) G = 〈σ̂(x, e
πi
q ), σ̂(y, e

pπi

n )〉, G = 〈σ̂(x, e
πi
q ), σ̂(y, e

pπi

n ), σ̂(1, e
πi
m )〉, G =

〈σ̂(x, eiθj), σ̂(y, e
pπi

n )〉 or G = 〈σ̂(x, eiθj), σ̂(y, e
pπi

n ), σ̂(1, e
πi
m )〉 when G ≃

Dih(Z3).

(4) G = 〈σ̂(x, e
πi
q ), σ̂(y, e

pπi

n ), σ̂(1, eiθj)〉 or

G = 〈σ̂(x, e
πi
q ), σ̂(y, e

pπi

n ), σ̂(1, eiθj), σ̂(1, e
πi
m )〉 when G ≃ Dih(Z6).

Theorem 46. Let G be a finite group of isometries acting on M(b, d) which

preserves the longitudinal fibering and does not leave any Heegaard Klein bottle

invariant. Denote by G0 the normal subgroup of G consisting of those elements

which leave each fiber invariant. Then M(b, d) = M(b, 2), and G/G0 is either Z3,

Z6, Dih(Z3) or Dih(Z6).

(1) If G/G0 is Z3, then the quotient orbifold M(b, 2)/G fibers over Σ(2, 3, 3).
(2) If G/G0 is Z6, then the quotient orbifold M(b, 2)/G fibers over T h.

(3) If G/G0 is Dih(Z3), then the quotient orbifold M(b, 2)/G fibers over

Σ(2, 3, 4) or T v.

(4) If G/G0 is Dih(Z6), then the quotient orbifold M(b, 2)/G fibers over Oh.

Proof: Noting that G = G/G0, the first part follows from the theorem above.

Suppose G/G0 is Z3. Then G = 〈σ̂(y, e
pπi

q )〉 or G = 〈σ̂(y, e
pπi

q ), σ̂(1, e
πi
n )〉. We

obtain a commutative diagram

M(b, 2)
hl−−−−→ Σ(2, 2, 2)

yν′

yν̄′

M(b, 2)/G
h̄l−−−−→ Σ(2, 2, 2)/G

where ν, ν̄′ are orbifold covering maps, and hl, h̄l are maps identifying fibers to
points.

The induced action G on Σ(2, 2, 2) is 〈̂̄σ(y, 1)〉, and we have seen that
Σ(2, 2, 2)/〈̂̄σ(y, 1)〉 = Σ(2, 3, 3). Thus M(b, 2)/G fibers over Σ(2, 3, 3). The proof
for all other cases is similar. �
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