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Compactness theorems for the Bakry-Emery

Ricci tensor on semi-Riemannian manifolds

M.S. Santos

Abstract. In this manuscript we provide new extensions for the Myers theorem
in weighted Riemannian and Lorentzian manifolds. As application we obtain
a closure theorem for spatial hypersurfaces immersed in some time-like manifolds.
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1. Introduction

Given a semi-Riemannian manifold (Mn, g) and a smooth function f on Mn,
the weighted manifold Mn

f associated to Mn and f is the triple (Mn, g, dµ =

e−fdν), where dν is the volume element of M . In the literature it is also called
smooth metric space. The analysis of the weighted geometry in Mf is deeply
related with a family of Ricci tensors introduced by Bakry and Emery in [1] given
by

Ric k
f = Ric + Hess f − 1

k
df ⊗ df,

where k ∈ (0,∞).
In the Riemannian context, the classical Myers compactness theorem [15] was

extended for weighted manifolds in many ways. See for instance, [2], [5], [11],
[12], [13], [14], [16], [17], [21], [24]. Exploring a Riccati inequality obtained from
the Bochner formula we get the following improved version of weighted Myers
theorem in the spirit of the Sprouse theorem in [20].

Theorem 1.1. Let Mn
f be a weighted complete Riemannian manifold. Then for

any δ > 0, and a > 0, there exists an ǫ = ǫ(n, a, δ) satisfying the following:

If there is a point p such that along each geodesic γ emanating from p, the

Ric k
f curvature satisfies

(1.1)

∫ ∞

0

max
{

(n − 1)a − Ric k
f (γ′, γ′), 0

}

dt < ǫ(n, a, δ)

then M is compact with diam (M) ≤ π
√

(n−1)a
n+k−1

+ δ.
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Recently, the geometry of weighted Lorentzian manifold has been subject of
great interest. For instance in [4], J. Case has shown that certain aspects of
the Bakry-Emery comparison theory can be adapted to a Lorentzian manifold,
allowing him to prove a Bakry-Emery version of the Hawking-Penrose singularity
theorem for general relativity. This result leads to a Hawking-Penrose theorem for
scalar-tensor gravitation theories. In this same context, we can mention Rupert
and Woolgar in [19], Woolgar in [22] and Galloway and Woolgar in [9].

Motivated by the ideas of Yun in [23] we obtain an extension of Theorem 1.1
for weighted globally hyperbolic space-time (see Section 2.2). The main tool in our
approach is a Raychaudhuri type inequality raised by Case in [4]. Precisely, we
obtain the following result:

Theorem 1.2. Let Mn
f be a weighted globally hyperbolic space-time. Then for

any δ > 0, a > 0, there exists an ǫ = ǫ(n, a, δ) satisfying the following:

If there is a point p such that along each future directed time-like geodesic

γ emanating from p, with l(γ) = sup{t ≥ 0, d(p, γ(t)) = t} the Ric k
f curvature

satisfies
∫ l(γ)

0

max
{

(n − 1)a − Ric k
f (γ′, γ′), 0

}

dt < ǫ(n, a, δ)

then the time-like diameter satisfies diam(M) ≤ π
√

(n−1)a
n+k−1

+ δ.

Theorem 1.1 can be applied in the context of space-time manifolds. Namely,
suppose that M̄n+1 is a space-time and Mn is a spatial hypersurface of M̄ . It
is an interesting problem to inquire under which conditions M is compact. In
this sense, the works of Galloway in [8] and Galloway and Frankel in [7] are
very successful. Recently, Cavalcante, Oliveira and the author [5] generalized the
closure theorems of [7] and [8] in the weighted case. Here, using Theorem 1.1 we
are able to improve Theorem 4.3 of [5] as follows:

Theorem 1.3. Let Mn be a spatial hypersurface in M̄n+1
f and assume that M

is complete in the induced metric. Then for any δ > 0, a > 0, there exists an

ǫ = ǫ(n, a, δ) satisfying the following:

If there is a point p ∈ M such that along each geodesic γ in M emanating

from p, the condition

∫ ∞

0

max
{

(n − 1)a − Ric
k

f (X, X)− 〈v(X), X〉Hf + 〈a(X), X〉, 0
}

dt < ǫ(n, a, δ)

is satisfied, where X = γ′, then M is compact and diam (M) ≤ π
√

(n−1)a
n+k−1

+ δ.

2. Weighted Myers theorems

2.1 The Riemannian case. Given a weighted manifold Mn
f the weighted Lapla-

cian operator can be defined by ∆fu = ∆u − 〈∇f,∇u〉, for functions u of class
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C2 on M . It is a remarkable fact that the weighted Laplacian satisfies a Bochner
type inequality (see [10] or [21]).

Fixed p ∈ M let r(x) = d(x, p) denote the distance function and let mf (r)
be the weighted Laplacian of the distance function. From the Bochner inequality
for the weighted Laplacian one can verify that mf satisfies the following Riccati
inequality (see Appendix A of [21]):

(2.1) m′
f +

m2
f

n + k − 1
≤ −Ric k

f (γ′, γ′), for all t ≥ 0,

where γ is a geodesic emanating from p and m′
f stands for the derivative of mf

with respect to r. The inequality (2.1) is the main tool in the proof of our first
result.

Proof of Theorem 1.1: For any small positive ǫ < a2 to be determined later,
consider the following sets

E1 =
{

t ∈ [0,∞); Ric k
f (γ′(t), γ′(t)) ≥ (n − 1)(a −

√
ǫ)

}

and

E2 =
{

t ∈ [0,∞); Ric k
f (γ′(t), γ′(t)) < (n − 1)(a −

√
ǫ)

}

.

From the inequality (2.1) we have on E1

(2.2)

m′

f

n+k−1

(
mf

n+k−1 )2 + (n−1)(a−
√

ǫ)
n+k−1

≤ −1.

On the other hand, on E2 we have

(2.3)

m′

f

n+k−1

(
mf

n+k−1 )2 + (n−1)(a−
√

ǫ)
n+k−1

≤
a −√

ǫ − Ric k
f (γ′, γ′)/(n − 1)

a −√
ǫ

.

Now, using the assumption (1.1) on the Bakry-Emery Ricci tensor we get

ǫ >

∫ ∞

0

max
{

(n − 1)a − Ric k
f (γ′(t), γ′(t)), 0

}

>

∫

E2

{

(n − 1)a − Ric k
f (γ′(t), γ′(t))

}

dt

>

∫

E2

{

(n − 1)a − (n − 1)(a −
√

ǫ)
}

dt

= µ(E2)(n − 1)
√

ǫ.

That is, we have

(2.4) µ(E2) <

√
ǫ

n − 1
,
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where µ is the Lebesgue measure on R.
Using inequalities (2.2)−(2.4) we obtain

∫ r

0

m′

f

n+k−1

(
mf

n+k−1 )2 + (n−1)(a−
√

ǫ)
n+k−1

dt ≤
∫

[0,r]∩E1

m′

f

n+k−1

(
mf

n+k−1 )2 + (n−1)(a−
√

ǫ)
n+k−1

dt

+

∫

[0,r]∩E2

m′

f

n+k−1

(
mf

n+k−1 )2 + (n−1)(a−
√

ǫ)
n+k−1

dt

≤ −µ {[0, r] ∩ E1} +
ǫ

(n − 1)(a −√
ǫ)

≤ −r + µ {[0, r] ∩ E2} +
ǫ

(n − 1)(a −√
ǫ)

≤ −r +

√
ǫ

n − 1
+

ǫ

(n − 1)(a −√
ǫ)

.

Define τ(ǫ) =
√

ǫ

n−1 + ǫ
(n−1)(a−

√
ǫ)

. The integral of the left hand side can be

computed explicitly and therefore we get

arctan

(

mf (r)

(n + k − 1)a(ǫ)

)

≤ a(ǫ)(−r + τ(ǫ)) +
π

2
,

where a(ǫ) =
√

(n−1)(a−
√

ǫ)
n+k−1 .

So we get

mf (r) ≤ −(n + k − 1)a(ǫ) cot(a(ǫ)(−r + τ(ǫ))),

for any r such that τ(ǫ) < r < π
a(ǫ) + τ(ǫ).

In particular, mf (γ(r)) goes to −∞ as r → ( π
a(ǫ) + τ(ǫ))+. It implies that γ

cannot be minimal beyond π
a(ǫ) +τ(ǫ). Otherwise mf would be a smooth function

at r = π
a(ǫ) + τ(ǫ). Taking ǫ explicitly so that π

a(ǫ) + τ(ǫ) = π
√

(n−1)a
n+k−1

+ δ and using

the completeness of M we have the desired result. �

2.2 The Lorentzian case. Now let us discuss the Lorentzian version of the
Theorem 1.1. Let M be a time-oriented Lorentzian manifold. Given p ∈ M we
set

J+(p) = {q ∈ M : there exist a future pointing causal curve from p to q},

called the causal future of p. The causal past J−(p) is defined similarly. We say
that M is globally hyperbolic if the set J(p, q) := J+(p)∩J−(q) is compact for all
p and q joined by a causal curve (see [3]). Mathematically, global hyperbolicity
often plays a role analogous to geodesic completeness in Riemannian geometry.

Let γ : [a, b] −→ M be a future-directed time-like unit-speed geodesic. Given
{E1, E2, . . . , En} an orthonormal frame field along γ, and for each i ∈ {1, . . . , n}
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we let Ji be the unique Jacobi field along c such that Ji(a) = 0 and J ′
i(0) = Ei.

Denote by A the matrix A = [J1J2 . . . Jn], where each column is just the vector
for Ji in the basis defined by {Ei}. In this situation, we have that A(t) is invertible
if and only if γ(t) is not conjugate to γ(a).

Now we define Bf = A′A−1− 1
n−1(f ◦γ)′E wherever A is invertible, where E(t)

is the identity map on (γ′(t))⊥. The f -expansion function is a smooth function
defined by θf = trBf (see [4, Definition 2.6]). Note that, if |θf | → ∞ as t → t0,
where t0 ∈ [a, b], then γ(t0) is conjugate to γ(a).

Recently, Case in [4] obtained the following relation between the Bakry-Emery
Ricci tensor and the f -expansion function θf :

Lemma 2.1. Under the above notations,

(2.5) θ′f ≤ −Ric k
f (γ′, γ′) −

θ2
f

k + n − 1
.

The inequality (2.5) is called (k, f)-Raychaudhuri inequality. This inequality is
a generalization of the well known Raychaudhuri inequality (see for instance [6]).

The distance between two time-like related points is the supremum of lengths
of causal curves joining the points. It follows that the distance between any two
time-like related points in a globally hyperbolic space-time is the length of such
a maximal time-like geodesic. The time-like diameter , diam (M), of a Lorentzian
manifold is defined to be the supremum of distances d(p, q) between points of M .

Proof of Theorem 1.2: Let ǫ(n, a, δ) be the explicit constant in the previ-
ous theorem. Assume by contradiction that there are two points p and q with
d(p, q) > π

√

(n−1)a
n+k−1

+ δ. On the other hand, since M is globally hyperbolic, there

exists a maximal time-like geodesic γ joining p and q such that ℓ(γ) = d(p, q).
Following the steps of the proof of Theorem 1.1 using the (k, f)-Raychaudhuri
inequality (2.5) we get

lim
t→t

+
0

θf (t) = −∞,

where t0 = π
a(ǫ) + τ(ǫ). So, we conclude that γ cannot be maximal beyond

π
√

(n−1)a
n+k−1

+ δ which is a contradiction. �

An immediate consequence of Theorem 1.2 is the Lorentzian version of the
original weighted Myers theorem obtained by Qian in [16]. Namely:

Corollary 2.2. Let Mn
f be a weighted globally hyperbolic space-time. Let a be

a positive constant and assume that

Ric k
f (v, v) ≥ (n − 1)a,

for all unit time-like vector field v ∈ TM . Then the time-like diameter satisfies
diam (M) ≤ π

√

(n−1)a
n+k−1

.
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3. Application

Let M̄n+1 be an (n+1)-dimensional space-time manifold. Let Mn be a spatial
hypersurface immersed in M̄n+1. That is, the metric induced in Mn by M̄n+1

is a Riemannian metric. Then the unit tangent vectors to the future directed
time-like geodesics orthogonal to M define a smooth unit time-like vector field u

in a neighborhood of M . For the sake of simplicity we will omit the dimension
super index and we always use a bar for geometric objects related to M̄ .

Let X be a vector field tangent to M . Extend X along the flow lines generated
by u, and suppose that X is invariant under the flow generated by u, i.e, [X,u] =
0, where [, ] is the Lie bracket. The velocity and acceleration of X along the flow
generated by u are given respectively by

v(X) = ∇uX and a(X) = ∇u∇uX.

The second fundamental form of M as a hypersurface of M̄ is defined by
b(X) = −∇Xu. Let H denote its mean curvature function. We point out that
H = −divu, that is, the averaged Hubble expansion parameter at points of M in
relativistic cosmology (see [18, §3.3.1] or [6, p. 161]).

The f -mean curvature or weighted mean curvature of M is defined by

Hf = H − (∇f)⊥,

where (∇f)⊥ is a normal projection of ∇f on M .
We will use the following technical lemma obtained in [7] (see also [5]).

Lemma 3.1. Under the above conditions, let γ(s) be a normalized geodesic in

M and set X = γ′. Then

(3.1)

Ric(X, X) = Ric(X, X) − 〈a(X), X〉 + 〈v(X), X〉H + 〈v(X), X〉2

+

n
∑

j=2

〈v(X), ej〉2,

where {e1 = X, e2, . . . , en} is an orthonormal basis of TpM .

Finally, we are in position to prove our closure theorem.

Proof of Theorem 1.3: Taking into account that X is invariant under the
flow, we get v(X) = −b(X). Then

(3.2)

Hess f(X, X) = 〈∇X∇f, X〉
= Hess f(X, X) + 〈∇f,u〉〈b(X), X〉
= Hess f(X, X)− 〈∇f,u〉〈v(X), X〉.

From equations (1), (3.1) and (3.2) we get easily

Ric k
f (X, X) ≥ Ric

k

f (X, X) − 〈a(X), X〉 + 〈v(X), X〉Hf ,
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for all k > 0. Thus

(n − 1)a − Ric k
f (X, X) ≤ (n − 1)a − Ric

k

f (X, X) + 〈a(X), X〉 − 〈v(X), X〉Hf .

Applying Theorem 1.1 we have the desired result. �
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