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On Hattori spaces

A. Bouziad, E. Sukhacheva

Abstract. For a subset A of the real line R, Hattori space H(A) is a topological
space whose underlying point set is the reals R and whose topology is defined
as follows: points from A are given the usual Euclidean neighborhoods while
remaining points are given the neighborhoods of the Sorgenfrey line. In this
paper, among other things, we give conditions on A which are sufficient and
necessary for H(A) to be respectively almost Čech-complete, Čech-complete,

quasicomplete, Čech-analytic and weakly separated (in Tkacenko sense). Some
of these results solve questions raised by V.A. Chatyrko and Y. Hattori.
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1. Introduction

Following a well-known process on linearly ordered sets that leads to generalized
ordered spaces (see, for instance, Faber [8]), Hattori [11] has recently considered
a poset of topologies having the reals R as the underlying point set by matching
each A ⊂ R to a topological space, denoted here by H(A). The space H(A)
is defined as follows: a basis of neighborhoods for x ∈ A is given by the usual
Euclidean neighborhoods of x and a basis for x 6∈ A is given by the right open
intervals [x, y[, x < y, y ∈ R. Beside [11], the spaces H(A) were studied by
Chatyrko and Hatori in [3] where several properties of H(A) (shared by all A or
not) are established. In particular, for any A ⊂ R, H(A) is regular, hereditarily
Lindelöf, hereditarily separable and Baire space. Moreover, if A is closed in R,
then H(A) is homeomorphic to the Sorgenfrey line S if and only if A is countable.
Recall that a basis of the space S is given by right open intervals [x, y[, x, y ∈ R.
It is also proved in [3, Proposition 2.3] that H(A) is 0-dimensional and nowhere
locally compact for every A such that R \A is countable and dense in R.

In this paper, we continue the work of Chatyrko and Hattori by proving addi-
tional information about the spaces H(A), A ⊂ R. We show that H(A) is weakly
separated in the sense of Tkacenko (the definition is given below) if and only if
A is left scattered. (It is well-known and easy to see that the Sorgenfrey line is
weakly separated.) We also have that H(A) is almost Čech-complete iff A is a
residual subset of R. Several completeness type properties of H(A) among them
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quasi-completeness (in Creede sense), Čech-analycity, Čech-completeness and be-
ing p-space (in Arhangel’skǐı sense) are shown to be equivalent to the countability
of R\A. In particular, H(A) is homeomorphic to the usual space of the irrationals
if and only if R\A is countable and dense in R, answering another question in [3].

We previously thought that H(A) is homeomorphic to S if and only if the
closure of A in S is countable. However there was a gap in our proof pointed
out by the referee. We learned from the referee that J. Kulesza recently proved
in an independent work [12] that H(A) is homeomorphic to S if and only if A is
scattered. We include here a proof (extracted from the submitted version of our
paper) of the “only if” part of Kulesza’s theorem. Some results of Kulesza are
quiet similar to the results in the present paper.

The remaining of this paper is organized as follows. Section 2 concerns spaces
H(A) that are topologically near to the Sorgenfrey line, roughly speaking. In
Section 3, we study the interplay between A, as a subspace of R, and various
completeness type properties of H(A). Section 2 includes also some properties of
H(A) that are crucial in this paper, as for example the fact that H(A) is always
hereditarily Baire. We refer to [7] for undefined terms.

2. When H(A) is close to S

It is well-known that the Sorgenfrey line is hereditarily Baire. In what follows
we shall use the fact that H(A) is hereditarily Baire for each A ⊂ R. Baireness
of the space H(A) has been proved in [3].

Proposition 2.1. For any A ⊂ R, the space H(A) is hereditarily Baire.

Proof: Since H(A) is regular and first countable, it suffices by [5] to show that
each closed countable subspace of H(A) is scattered. Let F be a closed countable
subspace of H(A). Since F is closed in S, it is a Gδ-set in R, so it is scattered in
R hence scattered in H(A). �

Proposition 2.2. Let X be a subspace of H(A) and f : X → H(B) be
a continuous function. Then f(X ∩A) \B is countable.

Proof: Since the subspace X ∩ A of H(A) is second countable, f(X ∩ A) has
a countable network, and so is f(X ∩ A) \B. Note that H(B) and S induce the
same topology on R \ B, in particular on f(X ∩ A) \ B. To conclude, recall the
well-known fact that every subspace of the Sorgenfrey line having a countable
network is countable (see e.g. [13, Lemma 2.10]). �

It follows from Proposition 2.2 that if H(A) is homeomorphic to S, then A is
countable, a result observed in [3] under a descriptive condition on A. Indeed,
since S = H(∅), if f : H(A) → S is an homeomorphism then f(A) is countable
and so is A.

A space X is said to be totally imperfect if each compact subspace of X is
countable. Recall that every Polish totally imperfect space is countable. It is also
well-known that S is totally imperfect.
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Proposition 2.3. Let A ⊂ R. Then H(A) is totally imperfect if and only if A is
totally imperfect.

Proof: Suppose that A is totally imperfect. Let K be a compact subspace of
H(A). Then the topology of K in H(A) is the Euclidean topology, so the function
x ∈ K ⊂ R→ x ∈ H(A) is continuous. It follows from Proposition 2.2 that K \A
is countable, thus K ∩ A is a Gδ-set of K hence it is a Polish space. Since A is
totally imperfect, K ∩A is totally imperfect hence countable.

The converse is obvious. �

A neighborhood assignment of a space X is a collection (Vx)x∈X of sets such
that each Vx is a neighborhood (not necessarily open) of x in X . Following [15],
a Hausdorff space X is said to be weakly separated if there is a neighborhood
assignment (Vx)x∈X of X such that for every x, y ∈ X , if (x, y) ∈ Vy × Vx then
x = y. A typical example of weakly separated space is the Sorgenfrey line. As
we shall show in Theorem 2.7, weakly separatedness of Hattori spaces is more
subtle. In particular, it follows from Theorem 2.7 that for each somewhere dense
subset A of R, the corresponding Hattori space H(A) is not weakly separated,
hence cannot be homeomorphic to S, which answers a question in [3].

Proposition 2.4. Let X be a weakly separated space and B a second category
subspace of H(A). Then for every continuous function f : B → X , there is a
nonempty open subset W of B such that for each x ∈ W ∩A, there is ε > 0 such
that f(]x− ε, x] ∩B) ⊂ {f(x)}.

Proof: Let (Vx)x∈X be any neighborhood assignment of X . Following an idea
from [6], for n ≥ 1, let

Fn = {x ∈ B : (y ∈ B andx ≤ y < x +
1

n
)⇒ f(y) ∈ Vf(x)}.

Then B =
⋃

n≥1 Fn (by continuity of f). Since B is a second category space,

there are n ∈ N and a nonempty open subset W of B such that W ⊂ Fn (in this
proof, all closures are in B). Let x ∈ W ∩ A. There is 0 < ε < 1

n
such that

]x− ε, x + ε[∩B ⊂W and f(]x− ε, x + ε[∩B) ⊂ Vf(x). Put V =]x− ε, x[ and let

y ∈ V ∩Fn. Then y < x < y+ε ≤ y+ 1
n
, hence f(x) ∈ Vf(y). Assume now that X

is weakly separated by (Vx)x∈X . Since f(y) ∈ Vf(x), it follows that f(x) = f(y),
therefore f(V ∩ Fn) ⊂ {f(x)}. Since f is continuous and

V ∩B ⊂ V ∩ Fn ⊂ V ∩ Fn,

it follows that f(]x− ε, x] ∩B) ⊂ {f(x)}. �

Let (X, τ) be a topological space and let V = (Vx)x∈X be an assignment of X ,
that is, a collection of subsets of X (not necessarily related to τ) such that for
each x ∈ X , x ∈ Vx. We shall say that a subspace A of X is V-scattered if for
each nonempty subset F of A, there are x ∈ F and an open set U ⊂ X such
that x ∈ U ∩ F ⊂ Vx. The V-derivative of A is defined by transfinite induction
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as follows: A0 = A, Aβ+1, where β is an ordinal, is the set of x ∈ Aβ such that
for each neighborhood U of x in (X, τ), U ∩ Aβ 6⊂ Vx. If α is a limit ordinal,
then Aα =

⋂

β<α Aβ . As for the classical Cantor-Bendixson derivative, A is V-

scattered if and only if there is an ordinal, denoted rkV (A) (or simply rk(A)),
such that Ark(A) = ∅, and for each β < γ < rk(A), Aβ \ Aγ 6= ∅. Moreover, for
each x ∈ A, there exist a unique αx < rk(A) (the rank of x) and a neighborhood
Ux of x in (X, τ) such that x ∈ Ux ∩Aαx ⊂ Vx.

Lemma 2.5. Let X be a space and V = (Vx)x∈X an assignment of X . Let A ⊂ X

be such that the subspaces A and X \ A of X are V-scattered. Then, there is
a neighborhood assignment (Wx)x∈X of X such that if (x, y) ∈ Wy × Wx and

χA(x) 6= χA(y) then (x, y) ∈ Vy × Vx.

Proof: Put B = X \ A, and consider the V-derivative sequences (Aα)α<rk(A)

and (Bα)α<rk(B) of A and B respectively, as described above. We shall define
Wx for x ∈ A, Wx is defined analogously when x ∈ B. Let αx be the rank of x

and choose an open neighborhood Ux of x in X such that x ∈ Ux ∩Aαx ⊂ Vx. If
x ∈

⋂

α<rk(B) Bα, let Wx = Ux. If x 6∈
⋂

α<rk(B) Bα, let βx = min{β < rk(B) :

x 6∈ Bβ} and define Wx = Ux \Bβx .
Let (x, y) ∈ Wy ×Wx be such that χA(x) 6= χA(y), say x ∈ A and y 6∈ A.

Then x ∈ Wy ∩Aαx , hence y ∈ Aαx , because otherwise βy would be defined and
satisfies βy ≤ αx, thus Wy ∩ Aαx ⊂ Wy ∩ Aβy = ∅, which is impossible. Since
Ux ∩Aαx ⊂ Vx and y ∈ Ux, it follows that

y ∈ Ux ∩Aαx ⊂ Ux ∩Aαx ⊂ Vx.

Similarly, x ∈ Vy .
�

Proposition 2.6. Let (X, τ) be a space which is weakly separated by a neigh-
borhood assignment V = (Vx)x∈X of (X, τ). Let τ1 be a topology on X such that
each Vx is τ1-closed and suppose that there is A ⊂ X such that the subspaces
A and X \ A of (X, τ1) are V-scattered and weakly separated. Then (X, τ1) is
weakly separated.

Proof: Since the subspaces A and X \A of (X, τ1) are weakly separated, there
exists a neighborhood assignment (Ux)x∈X of (X, τ1) such that x = y whenever
(x, y) ∈ Uy×Ux and χA(x) = χA(y). By Lemma 2.5, there is also a neighborhood
assignment (Wx)x∈X of (X, τ1) such that (x, y) ∈ Vy × Vx whenever (x, y) ∈
Wy×Wx and χA(x) 6= χA(y). Then (Ux∩Wx)x∈X is a neighborhood assignment
of (X, τ1) satisfying x = y whenever (x, y) ∈ (Uy ∩Wy)× (Ux ∩Wx). �

Now we are ready to determinate for what A ⊂ R, Hattori space H(A) is weakly
separated. Recall that a subset A ⊂ R is said to be left scattered if A is scattered
as a subspace of the left Sorgenfrey line (the reals with the topology generated by
the intervals ]x, y], x, y ∈ R). Right scattered sets are defined analogously. Every
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left scattered set is countable and every left and right scattered set is scattered
(as a subspace of R).

Theorem 2.7. The space H(A) is weakly separated if and only if A is left scat-
tered.

Proof: Suppose that H(A) is weakly separated. Let E ⊂ A be a nonempty
set. Since H(A) is hereditarily Baire (Proposition 2.1), Proposition 2.4 applied to
B = E (closure in H(A)) and the identity mapping x ∈ B → x ∈ H(A) gives us
an open set W ⊂ B such that W ∩E 6= ∅ and for each x ∈W ∩E, there is ε > 0
such that ]x− ε, x] ∩ E = {x}. Clearly, every x ∈ W ∩ E is left isolated in E.

Conversely, suppose that A is left scattered and let us show that H(A) is
weakly separated by applying Proposition 2.6. Let X = R, τ be the Sorgenfrey
topology and τ1 the topology of H(A). Put Vx = [x, +∞[, x ∈ R. The space
(X, τ) is weakly separated by the neighborhood assignment V = (Vx)x∈R and
each Vx is closed in (X, τ1). Clearly, the subspace R \A of (X, τ1) is V-scattered
and weakly separated. Moreover, the subspace A of (X, τ1) is V-scattered if (and
only if) for each nonempty subspace B of A, there are x ∈ B and ε > 0, such that
]x−ε, x+ε[∩B ⊂ [x, +∞[. This means exactly that A is left scattered as assumed.
Finally, since H(A) is a T1 space and A is countable (because left scattered), the
subspace A of H(A) is weakly separated. It follows from Proposition 2.6 that
H(A) is weakly separated. �

It is proved in [3] that for every closed countable subspace A of R, H(A) is
homeomorphic to S. The authors ask if their result remains true if A has countable
closure in R. The following gives a complete answer and is due to Kulesza [12,
Theorem 6]:

Theorem 2.8. H(A) is homeomorphic to S if and only if A is scattered.

We shall give an alternative proof of the necessity condition (Proposition 2.11
below) of Kulesza’s theorem based on Ščepin’s concept of capacity space [14].

Let (X, τ) be topological space. A function φ : X × τ → [0, +∞[ is said to be
a precapacity if the following conditions hold:

(i) for each x ∈ X and U, V ∈ τ such that V ⊂ U , φ(x, U) ≤ φ(x, V ),
(ii) for each x ∈ X and each totally ordered collection (Ui)i∈I ⊂ τ , we have

φ(x,
⋃

i∈N
Ui) = infi∈I φ(x, Ui).

A capacity (in Ščepins’s sense) on X is a precapacity φ satisfying the additional
conditions:

(iii) for each x ∈ X and U ∈ τ , x ∈ U iff φ(x, U) = 0,
(iv) for each U ∈ τ , the function φ(·, U) : X → R is continuous.

It is well-known and easy to check that the function φ : S× τ → [0, +∞[ defined
by φ(x, U) = min{1, d(x, U ∩ [x, +∞[)}, where d is the usual metric (with the
convention d(x, ∅) = 1), is a Ščepin capacity on the Sorgenfrey line.
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The following is essentially proved by Bennett and Lutzer in [2, Lemma 2.6].
As usual, if (X, <) is an ordered set and x ∈ X , then ]x,→ [ stands for {y ∈ X :
x < y} ([x,→ [, ]←, x[ are defined analogously).

Proposition 2.9. Let (X, τ, <) be a generalized ordered space having a preca-
pacity φ : X × τ → [0, +∞[ such that for each y ∈ X , φ(·, ]←, y[) is continuous at
each x ∈ [y,→ [. Then the function fφ : X → R, defined by fφ(x) = φ(x, ]←, x[),
is upper semicontinuous.

Proof: Let δ > 0 and let x ∈ X be such that φ(x, ]←, x[) < δ. If

]←, x[ =
⋃

y<x

]←, y[,

then by (ii) there is y < x such that φ(x, ] ←, y[) < δ. Since φ(·, ] ←, y[) is
continuous at x, there is a neighborhood V of x in (X, τ) such that φ(t, ]←, y[) < δ

for every t ∈ V . Let W =]y,→ [∩V . Then W is a neighborhood of x in (X, τ)
and for each t ∈W , by (i), φ(t, ]←, t[) ≤ φ(t, ]←, y[) < δ.

If ]←, x[ 6=
⋃

y<x]←, y[, then [x,→ [ is a neighborhood of x in (X, τ). In this

case, we proceed as above taking y = x and W = [x,→ [∩V . �

The function fφ from 2.9 is also used in the next lemma.

Lemma 2.10. If H(A) has a capacity φ, then A = f−1
φ ({0}). In particular, A is

Gδ set in H(A) (equivalently, in R).

Proof: From the definition of the topology of H(A), we have for each x ∈ H(A),

x ∈ ]←, x[ iff x ∈ A. In other words, by (iii), f−1
φ ({0}) = A. Since fφ is upper

semicontinuous (Proposition 2.9), f−1
φ ({0}) is a Gδ set in H(A). Since points of

A in H(A) are given the Euclidean neighborhoods, A is a Gδ set in R. �

Proposition 2.11. Let A ⊂ R be such that H(A) is homeomorphic to S. Then
A is scattered.

Proof: Since S is homeomorphic to H(A) and has a capacity, H(A) has a ca-
pacity too. It follows from Lemma 2.10 that A is Gδ set in R and we know from
Proposition 2.2 that A is countable. Consequently, A is scattered. �

To conclude this section, let us mention that when A is left scattered, the
identity function x ∈ H(A) → x ∈ S is Gδ-measurable. This is a consequence of
the following by taking B = ∅.

Proposition 2.12. Let A, B ⊂ R be such that every right discrete subset of A\B
is left scattered (equivalently, scattered). Then every open set O ⊂ H(B) is Gδ

and Fσ in H(A).

Proof: Let O ⊂ H(B) be an open set. Since O is open in S, it is an Fσ set in R

hence Fσ in H(A). To show that O is a Gδ set of H(A), for each x ∈ (O∩A) \B,
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let εx > 0 be such that [x, x + εx[⊂ O. The set

F =
(

⋃

x∈O∩A\B

[x, x + εx[
)

\
⋃

x∈O∩A\B

]x, x + εx[

is a right discrete subset of A \ B, hence scattered. The set O \ F is a subset
of the interior W of O in H(A). Indeed, let x ∈ O \ F . If x ∈ B then O is a
neighborhood of x in R, hence it is a neighborhood of x in H(A). If x 6∈ A, then
O is a neighborhood of x in S hence in H(A) too. If x ∈ A \B then since x 6∈ F ,
there is y ∈ A \B such that x ∈]y, y + εy[⊂ O.

We have O = W ∪ (O ∩ F ) and since O ∩ F is Gδ in H(A) (in fact in R), O is
the union of an open set and Gδ set in H(A). �

3. Completeness type properties of H(A)

There are various completeness or generalized metrizability properties which
can be defined in terms of the existence of certain kinds of sequences of covers.
One of the lowest is due to Creede [4]: a space X is said to be quasicomplete if
there is a sequence (Un)n∈N of open covers of X such that the following holds:
if Un ∈ Un, n ∈ N, are such that

⋂

n∈N
Un 6= ∅, then each sequence (xn)n∈N

satisfying xn ∈
⋂

i≤n Ui for each n ∈ N, has a cluster point in X . Every p-space

(in Arhangelskǐı sense) is quasicomplete. Recall that a Tychonoff space X is said
to be Čech-complete if there is a sequence (Un)n∈N of open covers of X which
is complete, that is, every filter F on X such that F ∩ Un 6= ∅ for each n ∈ N,
has a cluster point in X . The space X is almost Čech-complete if X has a dense
Čech-complete subspace.

Proposition 3.1. Let X be a dense subset of R and let (Un)n∈N be a sequence
of collections of open subsets of H(A) with the property that if Un ∈ Un, n ∈ N,
are such that (

⋂

n∈N
Un) \ A 6= ∅, then each sequence (xn)n∈N ⊂ X satisfying

xn ∈
⋂

i≤n Ui for each n ∈ N, has a cluster point in H(A). Let On be the union
of the interiors in R of all members of Un. Then

1)
⋂

n∈N
On ⊂ A, and if A ⊂

⋃

Un for each n ∈ N, then A =
⋂

n∈N
On (in

particular, A is a Gδ set in R),
2) if X = R and each Un is a cover of H(A), then R \A is countable.

In particular, if H(A) is quasicomplete (e.g., p-space), then R \A is countable.

Proof: 1) For each U ∈ Un, let Ů be the interior of U in R for the Euclidean

topology, so that On =
⋃

{Ů : U ∈ Un}. Clearly, if A ⊂
⋃

Un for each n ∈ N, then
A ⊂

⋂

n∈N
On. Suppose by contradiction that there exists x ∈ (

⋂

n∈N
On) \ A.

Choose a sequence (xn)n∈N ⊂ X without cluster point in H(A) such that limxn =

x in R. For each n ∈ N, there exists Un ∈ Un such that x belongs to Ůn. Let
kn ∈ N be such that {xm : m ≥ kn} ⊂

⋂

i≤n Ui. Since x ∈ (
⋂

n∈N
Un) \ A, the

sequence (xn)n∈N has a cluster point in H(A), a contradiction.
2) By 1) it is possible to write R \ A =

⋃

n∈N
Fn, where each Fn is closed

in H(A). Let n ∈ N and let us show that Fn is countable. Observe that the
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subspace Fn of H(A) is quasicomplete, hence, being Lindelöf and submetrizable,
it is metrizable by a result of Gittings [10, Corollary 4.2]. But the topology of Fn

is the topology inherited from the Sorgenfrey line, hence Fn is countable. �

Clearly, if the subspace A of R is residual in R, then the space H(A) is almost
Čech-complete. The converse is also true, which answers the question posed at
the end of Chatyrko and Hattori paper [3] . Indeed, suppose H(A) has a dense
Čech-compete subspace X and let (Un)n∈N be a sequence of open collections of
H(A) such that the sequence {U ∩X : U ∈ Un}, n ∈ N, is a complete sequence of
covers of X . For each n ∈ N, the open subset On (notation of Proposition 3.1) of
R is dense in R, and we have

⋂

n∈N
On ⊂ A by Proposition 3.1.

We refer the reader to [9] for the definition and basic properties of analytic
spaces and Čech-analytic spaces.

Proposition 3.2. If H(A) is Čech-analytic, then R \A is countable.

Proof: Suppose that H(A) is Čech-analytic. Since H(A) is hereditarily Lindelöf,
it is K-analytic (see [9]). Furthermore, being submetrizable, H(A) is analytic
which implies that its subspace R \A has a countable network. Consequently, as
in the proof of Proposition 2.2, R \A is countable. �

Proposition 3.3. If R \A is countable, then H(A) is a Polish space.

Proof: For each a ∈ R \A, let (R, τa) be the space given by the topological sum
]←, a[⊕[a,→ [, where each factor is endowed with the Euclidean topology. Then
(R, τa) is a Polish space (as a topological sum of two Polish spaces). Moreover,
the topology τa is finer than the Euclidean topology. Suppose now that R \ A

is countable. Then the topology τ generated by
⋃

a∈R\A τa is a Polish topology.

Clearly, τ is the topology of H(A) hence H(A) is Polish. �

An alternative way to show that H(A) is Polish if R \A is countable is to use
the following fact: For each A ⊂ R, there exists a compactification K(A) of the
space H(A) such that K(A) \H(A) is homeomorphic to R \A endowed with the
topology induced by the left Sorgenfrey topology. The space K(H) is a variant
of the Alexandrov double arrow space and is defined as follows1. To simplify we
replace R by the interval ]0, 1[ and consider that A ⊂]0, 1[. Put B =]0, 1[\A and
let K(A) = ([0, 1] × {0}) ∪ (B × {1}). Consider the topology on K(A) defined
as follows: Let x ∈ B. A basis of neighborhoods for (x, 1) is given by sets of the
form ((]y, x[)× {0})∪ (]y, x] ∩B)× {1}), where y < x. A basis of neighborhoods
for (x, 0) are sets of the form (([x, y[) × {0}) ∪ (]x, y[∩B) × {1}), where x < y.
If x ∈ A ∪ {0, 1}, then a basis of neighborhoods for (x, 0) is given by sets of the
form (V × {0}) ∪ ((V ∩ B) × {1}), where V is an Euclidean neighborhood of x

in [0, 1]. Note that H(A) is homeomorphic to the subspace ]0, 1[×{0} of K(A)
and the subspace B×{1} of K(A) is homeomorphic to the subspace B of the left
Sorgenfrey line.

1We realized that this compactification has already been considered by van Mill in [13].
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It is easy to check that the subspace ]0, 1[×{0} of K(A) is open in K(A) if and
only if the following conditions hold.

(i) For each x ∈ A, there exists ε > 0 such that ]x − ε, x + ε[∩B = ∅, that is,
B is closed in R.

(ii) For each x ∈ B, there exists y > x such that ]x, y[∩B = ∅, that is B is a
discrete subspace of S.

It is also easy to check that for each x ∈ H(A), the space H(A) is locally
connected at x iff H(A) is locally compact at x iff there exists a neighborhood V

of x in H(A) such that V ∩ (R \A) ⊂ {x}.

Lemma 3.4. The space K(A) is compact.

Proof: Clearly K(A) is a Lindelöf space, hence to show that K(A) is compact it
suffices to show that K(A) is countably compact. Let ((xn, εn))n∈N ⊂ K(A). We
may assume that (xn)n∈N is a convergent sequence for the Euclidean topology and
let x = limxn. If x ∈ A ∪ {0, 1}, then ((xn, εn))n∈N converges in K(A) to (x, 0).
If x ∈ B and ((xn, εn))n∈N does not converge to (x, 0) in K(A), then xn < x for
infinitely many n ∈ N, hence ((xn, εn))n∈N converges in K(A) to (x, 1). �

The following answers Question 3.1 in [3]. It is obtained by combination of
Propositions 3.1 and 3.2 (or 3.3). We give a proof based on Lemma 3.4.

Proposition 3.5. The space H(A) is Čech-complete if and only if R \ A is
countable.

Proof: We replace R by ]0, 1[ and consider the compactification K(A) of H(A)
from Lemma 3.4. Suppose that ]0, 1[\A is countable. Since the set B = [0, 1] \A

is countable, H(A) is a Gδ subspace of K(A). It follows from Lemma 3.4 that
H(A) is Čech-complete (see [7]).

Conversely, since the subspace B of the left Sorgenfrey line is homeomorphic
to the subspace B × {1} of K(A), if H(A) is Čech-complete then by Lemma 3.4,
B is a Kσ set, hence B and ]0, 1[\A are countable. �

It is proved in [3] that if R \ A is countable and dense in R, then H(A) is
0-dimensional and nowhere locally compact. It is easy to see that, conversely,
if H(A) is nowhere locally compact, then R \ A is dense in R. Combining this
result with Proposition 3.5 and the well-know fact that every separable completely
metrizable 0-dimensional and nowhere locally compact space is homeomorphic to
the irrationals [1], we obtain the following statement answering Question 2.2 in [3]:

Proposition 3.6. Let A ⊂ R. Then R \ A is countable and dense in R if and
only if H(A) is homeomorphic to the irrationals.

Using Lemma 3.4 in the same way as in the proof of Proposition 3.5, we obtain
the following:

Proposition 3.7. H(A) is locally compact if and only if R \A is closed in R and
discrete in S.
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Proof: We again replace R by ]0, 1[. Since H(A) is dense in K(A), the space
H(A) is locally compact if and only if it is open in K(A), which is equivalent to
say that A is open in R and R \ A is discrete in S (see the comment after the
definition of the space K(A)). �

The following question is posed in [3]: what is the space H(A) if R \ A is
countable and closed in R? Of course, A is open in R if and only if H(A) is
locally compact at every x ∈ A, but in general there is no topological property of
H(A), independent from A, which is equivalent to the fact that R\A is countable
and closed in R. Here are some examples related to this question.

Examples 3.8. 1) Let S = { 1
n

: n > 0} ∪ {0}, T = { 1
n

: n > 0} ∪ {− 1
n

: n > 0},
A = R \ S and B = R \ T . The set R \ A is compact (hence closed) but R \ B

is not closed in R, yet H(A) and H(B) are homeomorphic. To show that H(A)
and H(B) are homeomorphic, for each integer n > 0, put In = [ 1

2n
, 1

2n−1 [, Jn =

[ 1
2n+1 , 1

2n
[, Ln = [− 1

n
,− 1

n+1 [ and choose homeomorphisms hn : [ 1
n+1 , 1

n
[→ In,

gn : Ln → Jn and

h :]−∞,−1[∪[1, +∞[→]−∞, 0[∪[1, +∞[.

All these spaces are endowed with the Euclidean topology. Consider the function
g : H(B) → H(A) defined by g(0) = 0, g(x) = h(x) if x ∈] +∞,−1[∪[1, +∞[,
g(x) = hn(x) if x ∈ [ 1

n+1 , 1
n
[ and g(x) = gn(x) if x ∈ Ln. Then g is a homeomor-

phism.
2) Let U = {0} ∪ {− 1

n
: n > 0} and C = R \ U . Then H(A) and H(C) are

not homeomorphic, yet U and T are two convergent sequences in R. To show
that H(A) and H(C) are not homeomorphic, only observe that H(C) is locally
compact (since U is closed in R and discrete in S, see Proposition 3.7) but H(A)
is not locally compact (at the point 0).

3) The spaces H(R \ Z) and H(R \ N) are not homeomorphic. Indeed, if
h : H(R \ N) → H(R \ Z) is a homeomorphism, then there is n ∈ Z such that
h(] − ∞, 0[) =]n, n + 1[. It follows that ]n, n + 1[ is closed in H(R \ N) which
is not true. In fact, it can be shown (see Proposition 3.9 below) that H(R \ Z)
is homeomorphic to H(A) if and only if R \ A is closed in R, discrete in S and
unbounded from above.

We end this section by the following, the proof of which is left to the interested
reader. It implies that there are exactly ℵ0 non homeomorphic locally compact
Hattori spaces.

Proposition 3.9. Let F be the set of all open sets A ⊂ R such that R \ A is
discrete in S and let F0 be the set of A ∈ F such that R \ A is bounded from
above. Then, for every A ∈ F and B ⊂ R, the following are equivalent:

1) H(A) and H(B) are homeomorphic,
2) B ∈ F , |R \A| = |R \A| and B ∈ F0 if and only if A ∈ F0.
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[14] Ščepin E., On topological products, groups, and a new class of spaces more general than

metric spaces, Soviet Math. Dokl. 17 (1976), 152-155.
[15] Tkacenko M.G., Chains and cardinals, Dokl. Akad. Nauk SSSR 239 (1978), no. 3, 546–549

(in Russian); English translation: Soviet Math. Dokl. 19 (1978), no. 2, 382–385.
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