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On the solvability of systems of linear

equations over the ring Z of integers

Horst Herrlich, Eleftherios Tachtsis

Abstract. We investigate the question whether a system (Ei)i∈I of homogeneous

linear equations over Z is non-trivially solvable in Z provided that each subsystem

(Ej)j∈J with |J | ≤ c is non-trivially solvable in Z where c is a fixed cardinal
number such that c < |I|. Among other results, we establish the following.

(a) The answer is ‘No’ in the finite case (i.e., I being finite).
(b) The answer is ‘No’ in the denumerable case (i.e., |I| = ℵ0 and c a natural

number).
(c) The answer in case that I is uncountable and c ≤ ℵ0 is ‘No relatively

consistent with ZF’, but is unknown in ZFC. For the above case, we show that
“every uncountable system of linear homogeneous equations over Z, each of its

countable subsystems having a non-trivial solution in Z, has a non-trivial solu-

tion in Z” implies (1) the Axiom of Countable Choice (2) the Axiom of Choice
for families of non-empty finite sets (3) the Kinna–Wagner selection principle for
families of sets each order isomorphic to Z with the usual ordering, and is not

implied by (4) the Boolean Prime Ideal Theorem (BPI) in ZF (5) the Axiom
of Multiple Choice (MC) in ZFA (6) DC<κ in ZF, for every regular well-ordered
cardinal number κ.

We also show that the related statement “every uncountable system of linear

homogeneous equations over Z, each of its countable subsystems having a non-

trivial solution in Z, has an uncountable subsystem with a non-trivial solution

in Z” (1) is provable in ZFC (2) is not provable in ZF (3) does not imply “every
uncountable system of linear homogeneous equations over Z, each of its countable
subsystems having a non-trivial solution in Z, has a non-trivial solution in Z”
in ZFA.

Keywords: Axiom of Choice; weak axioms of choice; linear equations with coef-
ficients in Z; infinite systems of linear equations over Z; non-trivial solution of a
system in Z; permutation models of ZFA; symmetric models of ZF
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1. Notation, terminology, formulation of the general problem and aim

Notation 1. 1. ω denotes (as usual) the set of natural numbers.
2. ZF is Zermelo–Fraenkel set theory without the Axiom of Choice (AC).
3. ZFC is ZF + AC.
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4. ZFA is ZF with the Axiom of Extensionality modified in order to allow
the existence of atoms.

Definition 1. (i) Let X be a set.

1. X is finite if there exists an n ∈ ω and a bijection (i.e., a one-to-one and
onto mapping) f : X → n. Otherwise, X is called infinite.

2. X is denumerable (or countably infinite) if there is a bijection f : X → ω.
3. X is countable if it is finite or denumerable, i.e., if there is an injection
f : X → ω. Otherwise, X is uncountable. (Clearly, an uncountable set is
infinite.)

4. X is amorphous if it is infinite but is not the union of two disjoint infinite
sets.

5. X is Dedekind-finite if there is no injection f : ω → X . (Clearly, finite
sets and amorphous sets are Dedekind-finite. In ZFC, but not in ZF,
Dedekind-finite ≡ finite; see [8].)

(ii) Let X and Y be two sets. ‘|X | = |Y |’ means that there is a bijection
f : X → Y , ‘|X | ≤ |Y |’ means that there exists an injection f : X → Y and
‘|X | < |Y |’ means that |X | ≤ |Y |, but |X | 6= |Y |. From the Cantor–Bernstein
Theorem (which is provable in ZF, see [9, Theorem 3.2]) it follows that |X | < |Y |
if and only if there is an injection f : X → Y , but there is no injection g : Y → X .

(iii) Let V be a model of ZF and let On = {α ∈ V : α is an ordinal}. By
transfinite recursion on α ∈ On, we define Vα as follows: V0 = ∅, Vα+1 = P(Vα)
(= the power set of Vα), and Vα =

⋃

{Vβ : β < α} if α is a limit ordinal. By the
axiom of power set and the axiom (scheme) of replacement, we have that for each
α ∈ On, Vα is a set in V . Furthermore, by the axiom of foundation we have that
V =

⋃

{Vα : α ∈ On} (see [10, Theorem 4.1, p. 101]).
Now, let X be a set in the model V of ZF. Using the cumulative hierarchy of

the sets Vα, α ∈ On, the cardinality of X , denoted by |X |, is defined as the set
{Y ∈ Vα(X) : there exists a bijection f : Y → X}, where α(X) is the least ordinal
number (also referred to as ‘least rank’) for which the latter set is non-empty.
We note that the above definition of the cardinality of a set also works in ZFA,
that is, if the class of all atoms is a set — see also [8, Section 11.2, p. 152, and
Section 4.1, pp. 44–45].

A set c is called a cardinal number (or simply a cardinal) if it is the cardinality
of some set. If c and d are cardinals, then ‘c ≤ d’ (resp. ‘c < d’) means that
∀X ∈ c, ∀Y ∈ d, |X | ≤ |Y | (resp. ∀X ∈ c, ∀Y ∈ d, |X | < |Y |). A cardinal
number c is an aleph if it is the cardinality of a well-ordered set. ℵ0 denotes the
cardinality of ω.

Definition 2. 1. Let X = {xi : i ∈ I} be a set of variables.
A linear equation over Z is an expression of the form

∑

j∈J ajxj = b,
where J is a finite subset of I, b ∈ Z, and aj ∈ Z for all j ∈ J . If, in
the latter equation, b = 0, then the resulting equation

∑

j∈J ajxj = 0 is
called a homogeneous linear equation over Z.
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Note that we consider the sum ‘
∑

j∈J ajxj ’ (J a finite subset of I) as a
finite formal sum with indeterminates from X and coefficients in Z, i.e.,
we consider the set of all functions f from X into Z with finite support,
that is, |{x ∈ X : f(x) 6= 0}| < ℵ0, equipped with pointwise operations.
Thus, for k,m ∈ Z and x, y ∈ X , we do not distinguish between ‘kx+my’
and ‘my + kx’.

2. Let S be a system of linear equations over Z and let X = {xi : i ∈ I}
(i 7→ xi, i ∈ I, is a bijection) be the set of all variables appearing in the
equations of S.

• A non-trivial solution of S in Z is a family {si : i ∈ I} ⊆ Z \ {0}
such that for every finite set J ⊆ I, if

∑

j∈J ajxj = b is an equation

of S, then the equation
∑

j∈J ajsj = b is true in Z. (In other words,

a non-trivial solution of S is a function f : X → Z \ {0} such that
for every finite J ⊆ I, if

∑

j∈J ajxj = b is an equation of S, then the

equation
∑

j∈J ajf(xj) = b is true in Z.)

• A non-trivial assignment of S in Z is a function f : Y → Z \ {0},
where Y is a non-empty subset of the set X = {xi : i ∈ I} of the
variables of the equations of S, such that if we replace every y ∈ Y ,
appearing in the equations of S, with its value f(y), then both of the
following two conditions are satisfied:

(a) the equations of S that no longer contain a variable are true
in Z,

(b) the equations of S which still contain variables form a new

system in which every countable subsystem has a non-trivial
solution in Z.

Definition 3. 1. AC is the Axiom of Choice, i.e., every family of non-empty
sets has a choice function.

2. MC is the Axiom of Multiple Choice, i.e., for every family A = {Ai : i ∈ I}
of non-empty sets there is a function F with domain A such that ∀i ∈ I,
F (Ai) is a non-empty finite subset of Ai.
It is known (see [5], [8, Theorems 9.1 and 9.2]) that MC is equivalent to
AC in ZF, but not equivalent to AC in ZFA.

3. Let κ be an aleph (i.e., a well-ordered cardinal number).
(a) AC

κ is AC restricted to κ-sized families of non-empty sets. In parti-

cular, AC
ℵ0 is the Axiom of Countable Choice.

(b) DCκ is “let S be a non-empty set and let R be a binary relation such
that for every α < κ and every α-sequence s = (sξ)ξ<α of elements
of S there exists y ∈ S such that s R y. Then there is a function
f : κ→ S such that for every α < κ, (f ↾ α) R f(α)”.
DC<κ is “∀λ < κ, DCλ”.
Note that DCℵ0

is a reformulation of the Principle of Dependent

Choice DC. Also, for any well-ordered cardinal λ, DCλ → AC
λ and
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“(∀µ)(DCµ)” (where the parameter µ represents a well-ordered car-
dinal) is equivalent to AC; see [8, parts (b) and (c) of Theorem 8.1].

4. The Boolean Prime Ideal Theorem (BPI) is “every non-trivial Boolean
algebra has a prime ideal”.

5. ACfin is AC restricted to families of non-empty finite sets.
6. AC

ℵ0

fin
is AC restricted to denumerable families of non-empty finite sets.

7. ACWO is AC restricted to families of non-empty well-orderable sets.
8. van Douwen’s Choice Principle (vDCP) is “every family A = {(Ai,≤i) :
i ∈ I}, where ∀i ∈ I, (Ai,≤i) is order isomorphic to (Z,≤) (≤ is the usual
ordering of the integers), has a choice function”.

9. KW-vDCP is “every family A = {(Ai,≤i) : i ∈ I}, where ∀i ∈ I, (Ai,≤i)
is order isomorphic to (Z,≤), has a Kinna–Wagner selection function,
i.e., a function F with domain A such that ∀i ∈ I, F (Ai) is a non-empty
proper subset of Ai.

10. PKW-vDCP is “every family A = {(Ai,≤i) : i ∈ I}, where ∀i ∈ I, (Ai,≤i)
is order isomorphic to (Z,≤), has a partial Kinna–Wagner selection func-
tion, i.e., there exists an infinite subfamily B ⊆ A with a Kinna–Wagner
selection function.

Like every rigorous mathematical discipline, the theory of infinite systems of
polynomial equations or of infinite systems of linear equations (over a field) and
the existence of solutions of such systems is based on axiomatic set theory. In
particular, the Axiom of Choice AC and weak forms of AC are indispensable
tools for the derivation of results on the existence of solutions. For the reader’s
convenience and information, we mention a few results in this area. In [7], it
is proved that the statement “for every field F , for every system S of linear
equations over F , S has a solution in F if and only if every finite subsystem of S
has a solution in F”, abbreviated as “∀F (SLin(F ))” in [7], is provable in ZFC, and
is also relatively consistent with ZFA+¬BPI (see [7, Theorem 4.8]), hence it does
not imply AC in ZFA. It is an open problem whether BPI implies ∀F (SLin(F )).
However, in [7], it has been established that BPI implies “for every finite field F ,
SLin(F )” (see [7, Theorems 3.13, 3.14]) and therefore, in view of the above result
of [7], the latter implication is not reversible in ZFA.

With regard to infinite systems of polynomial equations over a field, it is known
(see [1]) that BPI is equivalent to “a system S of polynomial equations over Z2

(i.e., the two-element field {0, 1}) has a solution in Z2 if and only if every finite
subsystem of S has a solution in Z2”, and that BPI is also equivalent to “for every
finite field F , a system S of polynomial equations over F has a solution in F
if and only if every finite subsystem of S has a solution in F” (see [5, Note 30,
Theorems 1 and 2, p. 249]).

The current paper also elucidates systems of linear equations, but this time
over the ring Z of integers , and studies the problem of the existence of non-trivial
solutions in Z of a system (Ei)i∈I of homogeneous linear equations over Z such
that each subsystem (Ej)j∈J with |J | ≤ c is non-trivially solvable in Z where c
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is a fixed cardinal such that c < |I|. We shall mainly focus on the study of the
existence of non-trivial solutions (in Z) of uncountable systems of homogeneous
linear Diophantine equations over Z, whose countable subsystems are non-trivially
solvable in Z.

At this point, and in view of the forthcoming main results, the reader should
carefully see again the definition of ‘non-trivial solution in Z’ - Definition 2(2).
As usual, the term ‘non-trivial solution’ means ‘a non-zero value is assigned to
at least one variable’, however, according to Definition 2(2), the meaning of the
aforementioned term in this paper is ‘a non-zero value is assigned to each one of
the variables’. Our motivation for the latter requirement is illuminated by several
of the forthcoming main results, such as Lemma 3 and Theorems 3, 4, 5. For
example, Lemma 3 witnesses the existence of a model N of ZF, in which there is
an uncountable disjoint family A = {Ai : i ∈ I}, where |Ai| = 2 for all i ∈ I, which
admits no choice function in N , though every countable subfamily of A does have
a choice function in N . It follows that, in the model N , the uncountable system
∑

a∈Ai
a = 0, i ∈ I, which comprises homogeneous linear equations over Z, is such

that each of its countable subsystems has a non-trivial solution in Z (either in the
usual meaning or in the meaning required here), hence the above system has a
non-trivial solution in Z in the usual sense, but it has no non-trivial solution in Z
in the meaning required in this paper (see Theorem 3, Lemma 3 and Theorem 4).
Therefore, Definition 2(2) naturally emerged in order to investigate the deductive
strength of the existence of non-trivial solutions in Z of a system of homogeneous
linear equations over Z, each of whose subsystems of a fixed smaller cardinality
has a non-trivial solution in Z.

Below, we state the general problem that has been the motivation of the re-
search in this paper.

The General Problem: A system (Ei)i∈I of homogeneous linear equations over

Z is non-trivially solvable in Z provided that each subsystem (Ej)j∈J with |J | ≤ c
is non-trivially solvable in Z where c is a fixed cardinal such that c < |I|.

The aim of this paper is to investigate the provability or non-provability of
certain cases of the above statement in ZF and ZFC, as well as their deductive
strength and interrelation with certain choice principles. In particular, we will
study three cases:

(a) the Finite Case, i.e., I being finite,

(b) the Denumerable Case, i.e., I = ω and c is any finite set,

(c) the Uncountable Case, where I is uncountable and c ≤ ℵ0.

We will show that:

(a’) the answer is ‘No’ in the Finite Case,

(b’) the answer is ‘No’ in the Denumerable Case.

With regard to case (c), the answer is not known even in the setting of ZFC,
that is, it is unknown whether AC implies “every uncountable system of linear
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homogeneous equations over Z, each of its countable subsystems having a non-
trivial solution in Z, has a non-trivial solution in Z”. However, we are able to
prove that the latter statement is not a theorem of ZF by establishing that it
implies certain weak choice principles, namely the principles AC

ℵ0 , ACfin, and
KW-vDCP (see Theorems 1, 3, 5). Furthermore, we will show that the statement
is not implied by BPI in ZF, by MC in ZFA, and by DC<κ in ZF, for every regular
cardinal number κ (see Theorem 2, Corollary 1(b), Theorem 3, and Corollary 4).

We shall also prove the following related result: “every uncountable system of

linear homogeneous equations over Z, each of its countable subsystems having a

non-trivial solution in Z, has an uncountable subsystem with a non-trivial solution

in Z” is provable in ZFC, but not provable in ZF (see Theorems 6 and 8). In
addition, and among other results, we will establish that the latter statement
does not imply “every uncountable system of linear homogeneous equations over
Z, each of its countable subsystems having a non-trivial solution in Z, has a
non-trivial solution in Z” in ZFA set theory (see Theorem 7).

2. Main results

2.1 The Finite Case. (ZF) For each positive integer n, there exists a system
of n+ 1 linear homogeneous equations over Z, which has no non-trivial solution
in Z, though each subsystem of n equations does.

Indeed, let n ∈ ω \ {0} and X = {x0, x1, . . . , xn} be a set of n + 1 variables.
Then, the following system is as required.

xi+1 − 2xi = 0, i = 0, 1, . . . , n− 1,

x0 − 2xn = 0.

2.2 The Denumerable Case. (ZF) There exists a denumerable system of linear
homogeneous equations over Z, which has no non-trivial solution in Z, though each
finite subsystem does.

Indeed, let X = {xn : n ∈ ω} be a denumerable set of variables (the map
n 7→ xn, n ∈ ω, is a bijection). Below, we present several counterexamples,
whose ideas shall be used in the uncountable case in order to derive results on the
deductive strength of the corresponding statement.

Example 1. Consider the following system over Z:

xn − 2xn+1 = 0, n ∈ ω \ {0}.

Example 2. Consider the following system over Z:

nxn −mxm = 0, n,m ∈ ω, n 6= m.

Example 3. Consider the following system over Z:

nxn + (n+ 1)xn+1 = 0, n ∈ ω.
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Example 4. Consider the following system over Z:

2xn + 3xn+1 = 0, n ∈ ω.

2.3 The Uncountable Case: I is uncountable and c ≤ ℵ0. Here, we con-
sider the statement: Every uncountable system of linear homogeneous equations

over Z, each of its countable subsystems having a non-trivial solution in Z, has a

non-trivial solution in Z.
As mentioned in Section 1, we do not know whether the above assertion is prov-

able in ZFC. However, we have a clear picture of the situation with uncountable
system of inequalities. In particular, we have the following example in ZF.

Example 5. The following uncountable system of homogeneous inequalities with
coefficients in Z has no solution in Z, though each countable subsystem does: For
each pair of elements a and b in ℵ1 with a < b, consider the inequality a 6= b.

We now present our results on the deductive strength of “every uncountable
system of linear homogeneous equations over Z, each of its countable subsystems
having a non-trivial solution in Z, has a non-trivial solution in Z”.

Lemma 1 (see [3], [5]). AC
ℵ0 if and only if every denumerable family A of non-

empty sets has a partial choice function, i.e., A has an infinite subfamily with

a choice function.

Theorem 1. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has a non-trivial solution in Z” implies AC
ℵ0 .

Proof: Assume the hypothesis and let A = {Ai : i ∈ ω} be a denumerable family
of non-empty sets. Without loss of generality, assume that A is disjoint and,
towards a proof by contradiction, assume that A has no partial choice function
(see Lemma 1). We consider the following equations over Z:

(1) na+ (n+ 1)b = 0, n ∈ ω \ {0}, a ∈ An, b ∈ An+1,

and we let S be the linear homogeneous system of all equations of the form (1).
Since A has no partial choice function, we have that S is uncountable. To

see this, assume the contrary. Then (since S is infinite) S is denumerable (see
Definition 1), so let (Ei = 0)i∈ω be an enumeration of the equations of S, and
also let Xi be the set of variables of Ei, i ∈ ω. Then ∀i ∈ ω, ∀j ∈ ω, we have
that |Xi ∩Aj | = 1 or |Xi ∩Aj | = 0. From the latter observation, as well as, from
equation (1), and the fact that

⋃

{Xi : i ∈ ω} =
⋃

A, it is fairly easy to construct
via mathematical induction a partial choice function of A. This contradicts our
assumption on A. Thus S is uncountable.

Using similar reasoning, we may prove that for every countable subsystem L
of S, the set of all variables of the equations of L must necessarily be contained
in some finite union of the Ai’s (since A has no partial choice function). Based
on the latter fact, we may easily show that L has a non-trivial solution in Z.
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Therefore, by our hypothesis, S has a non-trivial solution. However, this is
easily seen to be false (without invoking any choice form). Thus, A has a partial
choice function. The conclusion now follows from Lemma 1. �

Theorem 2. BPI does not imply “every uncountable system of linear homoge-

neous equations over Z, each of its countable subsystems having a non-trivial

solution in Z, has a non-trivial solution in Z” in ZF.

Proof: The result follows from Theorem 1 and the fact that BPI does not imply
AC

ℵ0 in ZF, e.g. the basic Cohen model (Model M1 in [5]) satisfies BPI+¬AC
ℵ0 ,

see [5] or [8]. �

Lemma 2. The following statements are equivalent.

1. ACfin.

2. For every set A of non-empty finite sets there is a function F with domain

A such that for all A ∈ A, if |A| ≥ 2 then F (A) is a non-empty proper

subset of A.

Proof: The proof is given in [5, Note 70]. �

Theorem 3. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has a non-trivial solution in Z” implies ACfin.

Proof: Assume that every uncountable system of linear homogeneous equations
over Z, each of its countable subsystems having a non-trivial solution in Z, has
a non-trivial solution in Z, and let A = {Ai : i ∈ I} be a family of non-empty
finite sets. By Theorem 1, we may assume, without loss of generality, that A is
uncountable. Moreover, we may assume that A is disjoint and that ∀i ∈ I, |Ai| ≥
2. Consider the following uncountable system of linear homogeneous equations
over Z:

(2)
∑

a∈Ai

a = 0, i ∈ I.

Claim 1. Every countable subsystem of (2) has a non-trivial solution in Z.

Proof: Let J be a countable subset of I and consider the subsystem

(3)
∑

a∈Aj

a = 0, j ∈ J,

of (2). We consider the following two cases.

(a) J is finite. In this case, it is straightforward to verify that (3) has a
non-trivial solution in Z.

(b) J is denumerable. Then A = {Aj : j ∈ J} is a denumerable family of
non-empty finite sets. Thus, by Theorem 1, A has a choice function,
say f . For each j ∈ J , let

wj = |Aj | − 1.
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(Note that ∀j ∈ J , wj 6= 0.)
We may define now a non-trivial solution (g(x))x∈

⋃

A of the system (3)
as follows: For j ∈ J and x ∈ Aj , let

g(x) =

{

wj if x = f(Aj)

−1 if x ∈ Aj \ {f(Aj)}.

It is clear that (g(x))x∈
⋃

A is a non-trivial solution of the system (3).

The above cases complete the proof of the claim. �

By Claim 1 and our assumption, the system (2) has a non-trivial solution in Z,
say (s(x))x∈

⋃

A. Due to equations (2), we have that for all i ∈ I, the restriction
s ↾ Ai of s on Ai must take on both positive and negative values in Z. Therefore,
∀i ∈ I, the set Bi = {b ∈ Ai : s(b) < 0} is a non-empty proper subset of Ai. Thus,
we have proved that given a family A of non-empty finite sets, there is a function
F with domain A such that for all A ∈ A, if |A| ≥ 2, then F (A) is a non-empty
proper subset of A. By Lemma 2 we conclude that ACfin holds, finishing the proof
of the theorem. �

Corollary 1. (a) In every permutation model of ZFA, “every uncountable system

of linear homogeneous equations over Z, each of its countable subsystems having

a non-trivial solution in Z, has a non-trivial solution in Z” implies ACWO.

(b) MC does not imply “every uncountable system of linear homogeneous equa-

tions over Z, each of its countable subsystems having a non-trivial solution in Z,

has a non-trivial solution in Z” in ZFA.

Proof: (a) It is known (see [5], [8]) that in every Fraenkel–Mostowski (FM)
model, ACfin ↔ ACWO. The conclusion now follows from Theorem 3.

(b) This follows from Theorem 3 and the fact that MC does not imply ACfin in
ZFA (see the Second Fraenkel Model, Model N2 in [5]). �

We prove next that for every regular cardinal κ, DC<κ does not imply “every
uncountable system of linear homogeneous equations over Z, each of its countable
subsystems having a non-trivial solution in Z, has a non-trivial solution in Z” in
ZF set theory. Although we could derive the result using Theorem 3 above and
Theorem 8.3 in [8], in the proof of which a permutation model V of ZFA is built
satisfying DCλ for every λ < ℵα (ℵα being a regular cardinal) and “there is a
family of ℵα pairs without a choice function”, which is then embedded in a sym-
metric model of ZF — via the Second Embedding Theorem (see [8, Theorem 6.8,
p. 94]) — with the required properties, we prefer to give our own proof using a
direct forcing construction. Indeed, we have the following.

Lemma 3. Assume ℵα is a regular cardinal. There exists a model N of ZF, in

which for every cardinal λ < ℵα, DCλ is true (hence, for every λ < ℵα, AC
λ is

true in N), but there is an ℵα-sized family A = {Ai : i < ℵα} of pairs having no

choice function.
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Proof: Assume the hypothesis and let M be a transitive model of ZFC. We shall
construct a symmetric extension model N of M with the required properties.

Let P = Fn(ℵα × 2 × ℵα × ℵα, 2,ℵα) be the set of all partial functions p with
|p| < ℵα, dom(p) ⊆ ℵα × 2 × ℵα × ℵα and ran(p) ⊆ 2 = {0, 1}, partially ordered
by reverse inclusion, i.e., p ≤ q if and only if p ⊇ q. P has the empty function
as its maximum element, which we denote by 1. Further, since ℵα is a regular
cardinal, it follows from [10, Lemma 6.13, p. 214] that (P,≤) is a ℵα-closed poset.
Hence, forcing with P adds only new subsets of ℵα and no new subsets of cardinals
λ < ℵα, see [10, Theorem 6.14, p. 214].

Let G be a P-generic set over M and M [G] the corresponding generic extension
model of M . In M [G], we define the following sets along with their canonical
names.

1. an,t,i = {j ∈ ℵα : ∃p ∈ G, p(n, t, i, j) = 1}, n ∈ ℵα, t ∈ 2, i ∈ ℵα,

an,t,i = {(ǰ, p) : j ∈ ℵα, p ∈ P, p(n, t, i, j) = 1}.
2. An,t = {an,t,i : i ∈ ℵα}, n ∈ ℵα, t ∈ 2,

An,t = {(an,t,i,1) : i ∈ ℵα}.
3. An = {An,0, An,1}, n ∈ ℵα,

An = {(An,0,1), (An,1,1)}.
4. A = {An : n ∈ ℵα},

A = {(An,1) : n ∈ ℵα}.

Every permutation φ of ℵα × 2× ℵα induces an order-automorphism of (P,≤)
by requiring for every p ∈ P,

domφ(p) = {(φ(n, t, i), j) : (n, t, i, j) ∈ dom(p)},(4)

φ(p)(φ(n, t, i), j) = p(n, t, i, j).(5)

Let G be the group of all order-automorphisms of (P,≤) induced (as in equations
(4), (5)) by all those permutations φ of ℵα×2×ℵα such that ∀(n, t, i) ∈ ℵα×2×ℵα,
φ(n, t, i) = (n, t′, i′), and

(6) ∀n ∈ ℵα, either (∀i ∈ ℵα, t
′ = t), or (∀i ∈ ℵα, t

′ = 1 − t).

It follows that ∀φ ∈ G, ∀n ∈ ℵα, and ∀t ∈ 2,

(7) φ(An,t) = An,t or An,(1−t), φ(An) = An, φ(A) = A.

For every subset E ⊆ ℵα × 2 × ℵα with |E| < ℵα, let fixG(E) = {φ ∈ G :
∀e ∈ E, φ(e) = e} and let Γ be the normal filter of subgroups of G generated by
{fixG(E) : E ⊆ ℵα × 2 × ℵα, |E| < ℵα}. An element x ∈ M is called symmetric

if there exists a subset E ⊆ ℵα × 2 × ℵα with |E| < ℵα such that ∀φ ∈ fixG(E),
φ(x) = x. Under these circumstances, we call E a support of x. An element
x ∈ M is called hereditarily symmetric if x and every element of the transitive
closure of x is symmetric. Let HS be the set of all hereditarily symmetric names
in M and let N = {τG : τ ∈ HS} ⊂M [G], where τG is the value of the name τ as
given in [10, Definition 2.7, p. 189], be the symmetric extension model of M .
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Claim 2. The sets an,t,i, An,t, An, and A, where n, i ∈ ℵα and t ∈ 2, are elements
of N . Moreover, A is ℵα-sized in N .

Proof: Fix n, i ∈ ℵα and t ∈ 2. It is fairly straightforward to see that E =
{(n, t, i)} is a support of an,t,i and An,t. Now, by equation (7) we have that

∀φ ∈ G, φ(An) = An and φ(A) = A. Thus, an,t,i, An,t, An, and A all belong

to N . Furthermore, ḟ = {(op(ň, An),1) : n ∈ ℵα}, where op(σ, τ) is the name for
the ordered pair (σG, τG) given in [10, Definition 2.16, p. 191], is an HS-name for

the mapping f = {(n,An) : n ∈ ℵα} (in M [G]), since ∀φ ∈ G, φ(ḟ ) = ḟ . Thus,
|A| = ℵα in N , finishing the proof of the claim. �

Claim 3. For every cardinal λ < ℵα, DCλ is true in the model N . Hence, for
every λ < ℵα, AC

λ is true in N .

Proof: Fix a cardinal λ < ℵα. Since P is ℵα-closed, it can be shown as in [8,
Lemma 8.5, p. 124] that if λ < ℵα and f ∈ M [G] is a function on λ with values
in N , then f ∈ N . It follows that if X ∈ N and R ∈ N is a relation satisfying the
assumptions of DCλ in N , then by AC in M [G], there is a function f : λ→ X in
M [G] such that ∀µ < λ, (f ↾ µ) R f(µ). By the above observation we have that
f ∈ N . Thus, DCλ is true in N . �

Claim 4. In N , AC
ℵα fails for the family of pairs, A = {An : n ∈ ℵα}. (However,

note that by Claim 3, ∀λ < ℵα, ∀B ∈ [A]λ = {C ⊆ A : |C| = λ}, B has a choice
function in N .)

Proof: Towards a proof by contradiction, assume that f is a choice function of
A in N . Let ḟ be a HS-name for f and let p ∈ G be such that

(8) p  “ḟ is a choice function of A”.

Let E ⊆ ℵα × 2 × ℵα, |E| < ℵα, be a support for ḟ . Since |E| < ℵα, there exist
ordinals n ∈ ℵα \ dom(dom(E)) and t ∈ 2 such that f(An) = An,t. (Note that
(n, t) /∈ dom(E).) Let q ∈ G be such that q ≤ p and

(9) q  ḟ(An) = An,t.

Since |q| < ℵα, there exists an ordinal k ∈ ℵα such that ∀i ∈ ℵα with i ≥ k and
∀u ∈ 2, (n, u, i) /∈ dom(q). Let φn : [0, k] → [k, 2k] be an order isomorphism. We
define an element ψ ∈ G as follows:

ψ(m,u, i) =



















(n, 1 − u, φn(i)) if m = n and i ∈ [0, k],

(n, 1 − u, (φn)−1(i)) if m = n and i ∈ [k, 2k],

(n, 1 − u, i) if m = n and 2k < i,

(m,u, i) if m 6= n.

It can be easily verified that ψ ∈ fixG(E), hence ψ(ḟ) = ḟ , ψ(An,t) = An,(1−t),
and that q and ψ(q) are compatible conditions. It follows that q ∪ ψ(q) is a well-
defined extension of q, ψ(q), and p. Furthermore, by equation (9), we obtain
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that

(10) ψ(q)  ḟ(An) = An,(1−t),

and by equations (9) and (10), we conclude that

(11) q ∪ ψ(q)  (ḟ(An) = An,t) ∧ (ḟ(An) = An,(1−t)).

But then, the equations (8) and (11) yield a contradiction as it can be easily

checked via standard forcing arguments (note that q ∪ ψ(q)  “ḟ is a choice
function of A”, since q ∪ ψ(q) ≤ p). Thus, A has no choice function in the
model N , finishing the proof of Claim 4. �

The above complete the proof of the lemma. �

Theorem 4. Assume ℵα is a regular cardinal. Then there exists a model N
of ZF which satisfies DCλ for every λ < ℵα and “there is an uncountable linear

homogeneous system over Z which has no non-trivial solution in Z, although each

of its countable subsystems has a non-trivial solution in Z”.

Proof: The result follows immediately from Theorem 3 and Lemma 3. �

Theorem 5. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has a non-trivial solution in Z” implies KW-vDCP.

Proof: Assume the hypothesis and let A = {(Ai,≤i) : i ∈ I} be a family as in
KW-vDCP, for which — without loss of generality — we assume that it is disjoint,
and further we may assume that I is uncountable (due to Theorem 1). Towards a
proof by contradiction, assume that A has no Kinna–Wagner selection function.
Consider the following linear homogeneous system over Z:

(12) ∀i ∈ I, ∀x ∈ Ai, ∀y ∈ Ai such that ∄z ∈ Ai with x < z < y, x+ y = 0.

The following hold:

1. The system (12) is uncountable. Assume the contrary, then letting X be
the set of variables of the equations of (12), we have that X is a countable
union of pairs, thus by Theorem 1, X is countable. Since X =

⋃

A,
we conclude that

⋃

A is countable, thus A has a choice function, which
contradicts our assumption on A.

2. Every countable subsystem of (12) has a non-trivial solution. Let L be
a countable subsystem of (12) and let XL be the set of variables of the
equations in L. Then (by Theorem 1) XL is countable, thus |YL| ≤ ℵ0,
where YL = {i ∈ I : XL ∩ Ai 6= ∅}. For each y ∈ YL, let {ay,z : z ∈ Z}
be an enumeration of Ay by Z (note that we have used here Theorem 1
again, in case |YL| = ℵ0). It is straightforward to define now a non-trivial
solution of L. We leave the details to the reader.
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From the above observations and our hypothesis, we have that the system (12)
has a non-trivial solution, say s. Then ∀i ∈ I, s ↾ Ai takes on both positive and
negative values in Z. It follows that

F = {(Ai, {x ∈ Ai : s(x) < 0}) : i ∈ I}

is a Kinna–Wagner selection function for A, finishing the proof of the theorem. �

2.3.1 A weaker statement which is a theorem of ZFC, but not a theo-

rem of ZF. In this part of the paper, we will study the set-theoretic strength of
the statement “every uncountable system of linear homogeneous equations over Z,

each of its countable subsystems having a non-trivial solution in Z, has an un-

countable subsystem with a non-trivial solution in Z”, which is clearly derivable
from “every uncountable system of linear homogeneous equations over Z, each
of its countable subsystems having a non-trivial solution in Z, has a non-trivial
solution in Z”.

We will prove that the above statement is a theorem of ZFC, but not a theorem
of ZF. Furthermore, the ideas of the proof that the statement is derivable from
the ZFC axioms shall be crucial in showing that it is strictly weaker than “every
uncountable system of linear homogeneous equations over Z, each of its countable
subsystems having a non-trivial solution in Z, has a non-trivial solution in Z” in
ZFA set theory.

We start with the establishment of the following auxiliary result.

Proposition 1. AC
ℵ0 implies “every system of linear equations over Z, each

of its countable subsystems having a non-trivial solution in Z, has a non-trivial

assignment in Z”.

Proof: Assume AC
ℵ0 and let S be a system of linear equations over Z, each of

its countable subsystems having a non-trivial solution in Z. Let X be the set
of all variables appearing in the equations of S. We want to show that S has
a non-trivial assignment in Z. To this end, let x be an arbitrary element of X ,
which we fix for the rest of the proof. In order to achieve our goal, it suffices to
show that there exists a non-zero integer z such that {(x, z)} is an assignment
of S. Towards a proof by contradiction, assume that ∀z ∈ Z \ {0}, fz = {(x, z)}
is not an assignment of S. Then S cannot have an equation of the form ‘a ·x = b’
(a 6= 0); otherwise, since every countable subsystem of S has a non-trivial solution
in Z, hence ‘a ·x = b’ has a unique non-trivial solution in Z, say s, it can be easily
verified that {(x, s)} is a non-trivial assignment of S, which is a contradiction. It
follows that for each z ∈ Z\{0}, if we replace any monomial a ·x in (the equations
of) S by a ·fz(x) (= a ·z), the new system that is formed, say Sz, has a countable
subsystem with no non-trivial solutions in Z.

By AC
ℵ0 , pick for each z ∈ Z \ {0}, a countable subsystem Tz of Sz which

has no non-trivial solution in Z. By AC
ℵ0 again, T :=

⋃

z∈Z
Tz is a countable

system. Replacing for every z ∈ Z \ {0}, any expression a · fz(x) appearing in
T by a · x, we obtain a countable subsystem of S which clearly does not have
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any non-trivial solutions in Z (since for no z ∈ Z \ {0} does Tz have a non-trivial
solution in Z, and we have used all z ∈ Z\{0}!). This contradicts our assumption
on the system S that each of its countable subsystems has a non-trivial solution
in Z and completes the proof of the proposition. �

The combinatorial result of the subsequent Lemma 4 is known as the “∆-

system Lemma” and is provable in ZFC (see [9, Theorem 9.18, p. 118] or [10,
Theorem 1.5, p. 49]). In [6], it has been shown that the latter result is not a
theorem of ZF; in particular, in Corollary 2.5 of [6] it has been shown that the
∆-system Lemma is equivalent to the conjunction of CUT (the Countable Union
Theorem, i.e., “a countable union of countable sets is countable”) and PC (“every
uncountable collection of countable sets has an uncountable subcollection with a
choice function”). Let us recall here the notion of the ∆-system and the statement
of the ∆-system Lemma.

Definition 4. A family A of sets is called a ∆-system if there is a fixed set r,
called the root of the ∆-system, such that a∩ b = r whenever a and b are distinct
members of A.

Lemma 4 (∆-system Lemma). If A is an uncountable family of finite sets, then

there is an uncountable family B ⊆ A which forms a ∆-system.

Theorem 6 (ZFC). Every uncountable system of linear homogeneous equations

over Z, each of its countable subsystems having a non-trivial solution in Z, has

an uncountable subsystem with a non-trivial solution in Z.

Proof: Fix (Ei)i∈I (the mapping i 7→ Ei, i ∈ I, is a bijection) an uncountable
homogeneous system over Z such that each of its countable subsystems has a
non-trivial solution in Z. For each i ∈ I, let Xi be the finite set of variables of
the equation Ei. Let A = {Xi : i ∈ I}. Then A is an uncountable family of finite
sets (otherwise, and since |Z| = ℵ0 and linear equations are built using finite
formal sums, we would have that (Ei)i∈I is countable), thus by Lemma 4, there
is uncountable subset J ⊆ I, such that B = {Xj : j ∈ J} forms a ∆-system with
root r = {x1, . . . , xk}. Then (Ej)j∈J is an uncountable subsystem of (Ei)i∈I ,
each of its countable subsystems having a non-trivial solution in Z. As in the
proof of Proposition 1, there is a non-zero integer z1 such that f1 = {(x1, z1)} is
a non-trivial assignment of the system (Ej)j∈J . Let S1 be the system resulting
from (Ej)j∈J by substituting x1 by z1. Then every countable subsystem of S1

has a non-trivial solution in Z, thus there is a non-zero integer z2 such that
f2 = {(x2, z2)} is a non-trivial assignment of S1. Let S2 be the system resulting
from S1 by substituting x2 by z2. Continuing by induction we may conclude with
an uncountable system Sk such that all the variables xm, 1 ≤ m ≤ k, in the root
r have been substituted by non-zero values zm, and every countable subsystem of
Sk has a non-trivial solution in Z.

Since for j, j′ ∈ J with j 6= j′ we have that (Xj ∩Xj′) \ r = ∅, and since every
equation in Sk has a non-trivial solution in Z, we may pick, via AC, a non-trivial
solution sj of the j-equation of Sk, j ∈ J . Note that ∀j ∈ J , ∀m ≤ k, we have
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that sj(xm) = zm. Then

s =
⋃

j∈J

sj

is a non-trivial solution of the uncountable subsystem (Ej)j∈J of (Ei)i∈I , finishing
the proof of the theorem. �

Remark 1. Note that the root r of the ∆-system B in the proof of Theorem 6 can
be the empty set. In this case, the uncountable subsystem (Ej)j∈J of (Ei)i∈I has
again (via AC) a non-trivial solution in Z; simply, for each j ∈ J , choose (via AC)
a non-trivial solution sj of the j-equation Ej . Then s =

⋃

j∈J sj is a non-trivial

solution of the system (Ej)j∈J .

Lemma 5. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has an uncountable subsystem with a non-trivial solution in Z” is true in

the Basic Fraenkel Model of ZFA + ¬AC.

Proof: We recall first the description of the Basic Fraenkel Model, which is
labeled as ‘Model N1’ in [5]: We start with a ground model M of ZFA + AC with
a denumerable set A of atoms. The group G of permutations of A used to define
the model is the group of all permutations of A. For any element x of M, fixG(x)
denotes the subgroup {φ ∈ G : ∀t ∈ x, φ(t) = t} of G and SymG(x) denotes the
subgroup {φ ∈ G : φ(x) = x} of G. Let Γ be the normal filter of subgroups of
G generated by the filter base {fixG(E) : E ∈ [A]<ω}, where [A]<ω is the set of
finite subsets of A. An element x of M is called symmetric if SymG(x) ∈ Γ, hence
x is symmetric if there is some finite set E ⊂ A such that fixG(E) ⊆ SymG(x).
Under these circumstances, E is called a support of x. The element x of M is
called hereditarily symmetric if x and every element in the transitive closure of x
is symmetric. N1 is the FM model determined by M, G and Γ, that is, N1 is
the model which consists exactly of the hereditarily symmetric elements of M.

The following facts are known to be true in the model N1 (see [2], [5], [8]) and
they will be useful to our proof.

1. The set A of the atoms is amorphous (i.e., the power set P(A) of A in
N1 consists solely of the finite and the cofinite subsets of A). Thus, A is
a Dedekind-finite set in N1 (i.e., ℵ0 6≤ |A| in N1).

2. The power set of a well-orderable set is well-orderable (this is true in every
FM model of ZFA; see [5], [8]).

3. If a set x ∈ N1 is not well-orderable, then there exists an infinite subset
B ⊆ A (thus B is cofinite) such that |B| ≤ |x|.

4. A well-orderable union of well-orderable sets is well-orderable; in particu-
lar, a countable union of countable sets is countable.

We turn now to the proof of our result. Let S = (Ei)i∈I be an uncountable
system of linear homogeneous equations over Z in N1, each of its countable sub-
systems having a non-trivial solution in Z. For each i ∈ I let Xi be the (finite)
set of variables appearing in equation Ei and let F ⊂ A be a finite support for S
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(hence, F is also a support for {Xi : i ∈ I}). There are two cases for the index
set I.

Case 1. I is well-orderable in N1. Then both S and {Xi : i ∈ I} are well-
orderable in N1, hence by item (2.) we have that the power set P(S) of S is
also well-orderable in N1. We may follow now the proof of Proposition 1, using
the fact that P(S) is well-orderable (instead of AC

ℵ0 in that proof) and item (4.)
in order to verify that S has a non-trivial assignment in Z. Furthermore, since
{Xi : i ∈ I} is a well-orderable uncountable set, we have that ℵ1 ≤ |{Xi : i ∈ I}|,
and since, ∀i ∈ I, Xi is finite, the statement of item (4.) is true in N1 and ℵ1 is a
regular cardinal in N1, we have that the proof of the ∆-system Lemma as given
in [9, Theorem 9.18, p. 118] applies in order to obtain an uncountable subfamily of
{Xi : i ∈ I} which is a ∆-system. Applying now the proof of Theorem 6, we may
conclude that S has an uncountable subsystem in the model N1 with a non-trivial
solution in Z. (The reader should note here that since |Z| = ℵ0, {Xi : i ∈ I} is
well-orderable and ∀i ∈ I, Xi is finite (hence the solution set of each equation
of S is well-orderable), all we need in order to apply the argument in the last
paragraph of the proof of Theorem 6 is the Axiom of Choice for well-orderable
families of non-empty well-orderable sets, which is true in N1 due to item (4.).)

Case 2. I is not well-orderable in N1. Then by item (3.) we have that there
exists a cofinite set B ⊆ A such that |B| ≤ |I| in N1. Without loss of generality
we assume that B ⊆ I. Let F ′ ⊇ F be a support for the uncountable subsystem
T = (Eb)b∈B of S. Since B is Dedekind-finite, it is easy to verify that the set
V =

⋃

{Xb : b ∈ B} is not well-orderable in N1, hence by item (3.) again,
V contains a cofinite copy of the atoms. For simplicity, and without loss of
generality, assume that V ∩A = B. Since F ′ is finite and B is infinite, it follows
that there is an element b ∈ B such that Wb 6= ∅, where Wb = (A ∩Xb) \ F ′. Let
a ∈ Wb, let F ′′ = (Xb ∪ F ′) \ {a}, and also let

U = {φ(Eb) : φ ∈ fixG(F ′′)}.

Note that fixG(F ′′) ∈ Γ, since F ′′ is a finite set in N1, hence it is well-orderable
in N1, and consequently there is a finite set Q ⊂ A such that fixG(Q) ⊆ fixG(F ′′)
(see [8, Equation (4.2), p. 47]). It follows that U ∈ N1, since fixG(F ′′) ⊆
SymG(U). Now, F ′ ⊆ F ′′ implies that fixG(F ′′) ⊆ fixG(F ′), and since fixG(F ′) ⊆
SymG(T) (for, F ′ is a support of T), we have that fixG(F ′′) ⊆ SymG(T), hence
U is a subsystem of T and therefore it is a subsystem of S (which clearly contains
equation Eb). Furthermore, if φ1, φ2 ∈ fixG(F ′′) are such that φ1(a) 6= φ2(a),
and if λa is the term of equation Eb that contains a, then the left-hand sides of
the equations φ1(Eb) and φ2(Eb) differ only in the terms λφ1(a) and λφ2(a). It
follows that U has the same cardinality with the fixG(F ′′)-orbit of a, i.e., with
the set

OrbfixG(F ′′)(a) = {φ(a) : φ ∈ fixG(F ′′)},

which is uncountable, since it is a cofinite subset of A.
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From our hypothesis that every countable subsystem of S has a non-trivial
solution in Z, it follows that equation Eb also has a non-trivial solution in Z, say s.
In view of the observations in the previous paragraph, it follows that the system U

has a non-trivial solution in Z; indeed, define a mapping t : Xb∪OrbfixG(F ′′)(a) →
Z (note that Xb ∪ OrbfixG(F ′′)(a) is the set of variables of the equations of the
system U) as follows:

t(x) =

{

s(x) if x ∈ Xb \ {a}

s(a) if x ∈ OrbfixG(F ′′)(a).

It is clear that t is a non-trivial solution of U.

The above two cases complete the proof of the lemma. �

Theorem 7. “Every uncountable system of linear homogeneous equations over Z,

each of its countable subsystems having a non-trivial solution in Z, has an un-

countable subsystem with a non-trivial solution in Z” does not imply “every

uncountable system of linear homogeneous equations over Z, each of its countable

subsystems having a non-trivial solution in Z, has a non-trivial solution in Z”

in ZFA.

Proof: The independence result follows from Lemma 5, the fact that the Axiom
of Countable Choice AC

ℵ0 is false in the Basic Fraenkel Model (see [5], [8]), and
Theorem 1. �

Theorem 8. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has an uncountable subsystem with a non-trivial solution in Z” implies AC
ℵ0

fin
,

thus it is not provable in ZF.

Proof: Assume the hypothesis. Since AC
ℵ0

fin
is equivalent to its partial version

PAC
ℵ0

fin
, i.e., “every denumerable family of non-empty finite sets has a partial choice

function” (see [3], [5]), it suffices to show that our hypothesis implies PAC
ℵ0

fin
. By

way of a contradiction, assume that there exists a denumerable disjoint family
A = {An : n ∈ ω} of non-empty finite sets having no partial choice function. We
consider the following system of linear equations over Z:

(13) x+ ny = 0, x ∈ A0, y ∈ An, n ∈ ω \ {0}.

Similarly to the proof of Theorem 1, one shows that (13) is an uncountable system
such that each of its countable subsystems is necessarily finite. Moreover, it is
easy to see that every finite subsystem of (13) has a non-trivial solution in Z.
Thus, by our hypothesis, (13) has an uncountable subsystem with a non-trivial
solution in Z. However, no infinite subsystem of (13) has a non-trivial solution in

Z and we have reached a contradiction. Thus, AC
ℵ0

fin
holds, finishing the proof of

the theorem. �
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Corollary 2. MC does not imply “every uncountable system of linear homo-

geneous equations over Z, each of its countable subsystems having a non-trivial

solution in Z, has an uncountable subsystem with a non-trivial solution in Z”

in ZFA.

Proof: The Second Fraenkel Model (Model N2 in [5]) satisfies MC + ¬AC
ℵ0

fin
(see

[5], [8]). Hence, by Theorem 8, “every uncountable system of linear homogeneous
equations over Z, each of its countable subsystems having a non-trivial solution
in Z, has an uncountable subsystem with a non-trivial solution in Z” is false in
the Second Fraenkel Model. �

Theorem 9. The statement “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution

in Z, has an uncountable subsystem with a non-trivial solution in Z” implies

PKW-vDCP.

Proof: Assume the hypothesis and let A = {(Ai,≤i) : i ∈ I} be a family as in
PKW-vDCP, for which we assume — without loss of generality — that it is disjoint,
and further we assume that I is uncountable (due to Theorem 1). Towards a proof
by contradiction, assume that A has no partial Kinna–Wagner selection function.
Consider the following linear homogeneous system over Z:

(14) ∀i ∈ I, ∀x ∈ Ai, ∀y ∈ Ai such that ∄z ∈ Ai with x < z < y, x+ y = 0.

As in the proof of Theorem 5, the system (14) is uncountable and each of its
countable subsystems has a non-trivial solution in Z. By our hypothesis, there is
an uncountable subsystem S of (14) with a non-trivial solution in Z, say s. Let
XS be the set of the variables of the equations of S. Since S is uncountable and
∀i ∈ I, |Ai| = ℵ0, we may conclude that the set

I ′ = {i ∈ I : XS ∩Ai 6= ∅}

is infinite. Then

g = {(Ai, {x ∈ Ai : s(x) < 0}) : i ∈ I ′}

is a partial Kinna–Wagner selection function for A, finishing the proof of the
theorem. �

3. Diagram of results

In the following diagram, we summarize main results of our paper. Unlabeled
arrows or negated arrows, represent implications or non-implications, respectively,
that are “known” or “straightforward”. Also, in the diagram below, we abbre-
viate the statements “every uncountable system of linear homogeneous equations

over Z, each of its countable subsystems having a non-trivial solution in Z, has a

non-trivial solution in Z” and “every uncountable system of linear homogeneous

equations over Z, each of its countable subsystems having a non-trivial solution
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in Z, has an uncountable subsystem with a non-trivial solution in Z” by ULS(Z)
and ULSubS(Z), respectively.

Lastly, in the diagram, ‘T.x’ stands for ‘Theorem x’, ‘C.x’ stands for ‘Corol-
lary x’, and ‘κ’ in ‘DCκ’ runs through the class of regular well-ordered cardinal
numbers.

4. Problems

1. Does AC imply ULS(Z)?
2. Does ULSubS(Z) imply ULS(Z) in ZF?
3. Does ULS(Z) imply ACWO, i.e., AC restricted to well-orderable families

of non-empty sets? Note that if the answer is in the affirmative, then
combined with Corollary 1(a), we would have that ULS(Z) is false in
every FM model of ZFA, since there is no FM model in which both AC

WO

and ACWO are true (see [4]).
4. Does ULS(Z) imply van Douwen’s Choice Principle (vDCP)?
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