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Characterization of functions whose forward

differences are exponential polynomials

J.M. Almira

Abstract. Given {h1, · · · , ht} a finite subset of R
d, we study the continuous

complex valued functions and the Schwartz complex valued distributions f de-
fined on R

d with the property that the forward differences ∆
mk
hk

f are (in dis-

tributional sense) continuous exponential polynomials for some natural numbers
m1, · · · , mt.

Keywords: functional equations; exponential polynomials; generalized functions;
forward differences

Classification: Primary 39A70; Secondary 39B52

1. Introduction

Let Xd indistinctly denote either the set of continuous complex valued func-
tions C(Rd) or the set of Schwartz complex valued distributions D(Rd)′. Let
f ∈ Xd and let us denote by τy and ∆m

h the translation operator and the
forward differences operator defined on Xd, respectively. In formulas, (τyf)(x) =
f(x + y) and (∆m

h f)(x) =
∑m

k=0

(
m

k

)
(−1)m−kτkh(f) if f is an ordinary function,

and τyf{ϕ} = f{τ−y(ϕ)}, (∆m
h f){ϕ} = f{∆m

−h(ϕ)} if f ∈ D(Rd)′, ϕ ∈ D(Rd).

We prove that, if {h1, · · · , ht} spans a dense subgroup of Rd, f ∈ Xd and
there exist natural numbers {mk}

t
k=1 such that, for every k ∈ {1, . . . , t}, ∆mk

hk
f

is (in distributional sense) a continuous exponential polynomial, then f is (in
distributional sense) a continuous exponential polynomial. Moreover, for the case
of continuous functions and for arbitrary sets {h1, · · · , ht}, we characterize the
functions f satisfying that ∆mk

hk
f is an exponential polynomial for some natural

numbers m1, · · · , mt.

2. The case of finitely generated dense subgroups of Rd

Let us state two technical results, which are important for our arguments in
this section. These results were, indeed, recently introduced by the author, and
have proved their usefulness for the study of several Montel-type theorems for
polynomial and exponential polynomial functions (see, e.g., [1]–[5]). We include
the proofs for the sake of completeness.
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Definition 1. Let t be a positive integer, E a vector space, L1, L2, · · · , Lt : E →
E pairwise commuting linear operators. Given a subspace V ⊆ E, we denote by
⋄L1,L2,··· ,Lt

(V ) the smallest subspace of E containing V which is Li-invariant for
i = 1, 2, . . . , t.

Lemma 2. With the notation we have just introduced, if V is an Ln-invariant

subspace of E, then the linear space

V
[n]
L = V + L(V ) + · · · + Ln−1(V )

is L-invariant. Furthermore V
[n]
L = ⋄L(V ). In other words, V

[n]
L is the smallest

L-invariant subspace of E containing V .

Proof: Let v be in V
[n]
L , then

(1) v = v0 + Lv1 + · · · + Ln−2vn−2 + Ln−1vn−1

with some elements v0, v1, . . . , vn−1 in V . By the Ln-invariance of V , we have
that Lnvn−1 = u is in V , hence it follows

Lv = u + L(v0) + L2v1 + · · · + Ln−1vn−2 ,

and the right hand side is clearly in V
[n]
L . This proves that V

[n]
L is L-invariant.

On the other hand, if W is an L-invariant subspace of E, which contains V , then
Lk(V ) ⊆ W for k = 1, 2, . . . , n − 1, hence the right hand side of (1) is in W . �

Lemma 3. Let t be a positive integer, E a vector space, L1, L2, · · · , Lt : E → E
pairwise commuting linear operators, and let s1, · · · , st be natural numbers. Given

a subspace V ⊆ E we form the sequence of subspaces

(2) V0 = V, Vi = (Vi−1)
[si]
Li

, i = 1, 2, . . . , t .

If for i = 1, 2, . . . , t the subspace V is Lsi

i -invariant, then Vt is Li-invariant, and

it contains V . Furthermore Vt = ⋄L1,L2,··· ,Lt
(V ) and dim(V ) < ∞ if and only if

dim(⋄L1,L2,··· ,Lt
(V )) < ∞.

Proof: First we prove by induction on i that Vi is L
sj

j -invariant and it contains
V for each i = 0, 1, . . . , t and j = 1, 2, . . . , t. For i = 0 we have V0 = V , which is
L

sj

j -invariant for j = 1, 2, . . . , t, by assumption.

Suppose that i ≥ 1, and we have proved the statement for Vi−1. Now we prove
it for Vi. If v is in Vi, then we have

v = u0 + Liu1 + · · · + Lsi−1
i usi−1 ,

where uj is in Vi−1 for j = 0, 1, . . . , si − 1. It follows for j = 1, 2, . . . , t

L
sj

j v = (L
sj

j u0) + Li(L
sj

j u1) + · · · + Lsi−1
i (L

sj

j usi−1) .
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Here we used the commuting property of the given operators, which obviously
holds for their powers, too. By the induction hypothesis, the elements in the
brackets on the right hand side belong to Vi−1, hence L

sj

j v is in Vi, that is, Vi

is L
sj

j -invariant. As Vi includes Vi−1, we also conclude that V is in Vi, and our
statement is proved.

Now we have

Vt = Vt−1 + Lt(Vt−1) + · · · + Lst−1
t (Vt−1) ,

and we apply the previous lemma: as Vt−1 is Lst

t -invariant, we have that Vt is
Lt-invariant.

Let us now prove the invariance of Vt under the operators Lj (j < t). Since
V1 is clearly L1-invariant, by Lemma 2, an induction process gives that Vt−1 is
Li-invariant for 1 ≤ i ≤ t − 1. Thus, if we take 1 ≤ i ≤ t − 1, then we can use
that LiLt = LtLi and Li(Vt−1) is a subset of Vt−1 to conclude that

Li(Vt) = Li(Vt−1) + Lt(Li(Vt−1)) + · · · + Lst−1
t (Li(Vt−1))

⊆ Vt−1 + Lt(Vt−1) + · · · + Lst−1
t (Vt−1) = Vt ,

which completes this part of the proof.
Suppose that W is a subspace in E such that V ⊆ W , and W is Lj-invariant

for j = 1, 2, . . . , t. Then, obviously, all the subspaces Vi for i = 1, 2, . . . , t are
included in W . In particular, Vt is included in W . This proves that Vt is the
smallest subspace in E, which includes V , and which is invariant with respect
to the family of operators Li. In particular, Vt = ⋄L1,L2,··· ,Lt

(V ) is uniquely
determined by V , and by the family of the operators Li, no matter how we label
these operators. �

The following result generalizes Anselone-Korevaar’s Theorem [6].

Lemma 4. Assume that h1Z + h2Z + · · ·+ htZ is dense in Rd. Assume, further-

more, that ∆mk

hk
(H) ⊆ H , k = 1, · · · , t, for certain positive integral numbers mk

and certain finite dimensional subspace H of Xd. Then all elements of H are, in

distributional sense, continuous exponential polynomials.

Proof: We apply Lemma 3 with E = Xd, Li = ∆hi
, si = mi, i = 1, · · · , t, and

V = H , since

∆mi

hi
(H) ⊆ H, for all i = 1, · · · , t

so that H ⊆ Z = ⋄∆h1
,∆h2

,··· ,∆ht
(H) and Z is a finite dimensional subspace of Xd

satisfying ∆hi
(Z) ⊆ Z, i = 1, 2, · · · , t. Hence Z is invariant by translations, since

h1Z + h2Z + · · · + htZ is dense in Rd. Applying Anselone-Korevaar’s theorem,
we conclude that all elements of Z (hence, also all elements of H) are continuous
exponential polynomials. �

Now we can demonstrate the main result of this section:
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Theorem 5. Assume that {h1, · · · , ht} spans a dense subgroup of Rd, f ∈ Xd

and there exist natural numbers {mk}
t
k=1 such that, for every k ∈ {1, . . . , t},

∆mk

hk
f is a continuous exponential polynomial. Then f is a continuous exponential

polynomial.

Proof: Let gk = ∆mk

hk
f be an exponential polynomial for k = 1, · · · , t and set

H = τ({gk}
t
k=1)+span{f}, were τ(S) denotes the smallest subspace of Xd which

is translation invariant and contains the set S. Obviously, H is a finite dimensional
subspace of Xd and satisfies ∆mi

hi
(H) ⊆ H for i = 1, · · · , t. Thus, we can apply

Lemma 4 to H . �

3. Finitely generated nondense subgroups of Rd

In this section we demonstrate that density of G = h1Z + h2Z + · · · + htZ

in Rd is a necessary hypothesis in Theorem 5. Moreover, under the hypothesis
that this group G is not a dense subgroup of Rd, we characterize the continuous
functions f satisfying that, for a certain finite dimensional space H ⊆ C(Rd) and

certain natural numbers nk, mk, k = 1, · · · , t, the relations
⋃t

k=1 ∆mk

hk
(H) ⊆ H

and ∆nk

hk
f ∈ H , k = 1, · · · , t, hold.

Let d be a positive integer. If G denotes the additive subgroup of Rd generated
by the elements {h1, · · · , ht}, then it is well-known [8, Theorem 3.1] that G,
the topological closure of G with the Euclidean topology, satisfies G = V ⊕ Λ,
where V is a vector subspace of Rd and Λ is a discrete additive subgroup of Rd.
Furthermore, the case when G is dense in R

d, or, what is the same, the case
whenever V = Rd, has been characterized in several different ways (see e.g.,
[7, Theorem 442, p. 382], [8, Proposition 4.3]).

Assume that V is a proper subspace of Rd (equivalently, G is not dense in Rd).
It is well known that, in this case, there exist a hyperplane U and an element
h 6∈ U such that G ⊂ W = {u + nh : u ∈ U, n ∈ Z}. Then every element
x ∈ Rd can be written uniquely as x = u + s(x)h, where u ∈ U and s(x) ∈ R.
Let g(x) = ϕ(s(x)), where ϕ is 1-periodic and non-smooth (so that it is not an
exponential polynomial). For example, we can take ϕ(t) equal to the 1-periodic
extension to the real line of the absolute value restricted to the period interval
I = [−1/2, 1/2]. Then, for every y ∈ W (and henceforth for every y ∈ G), we
have that

∆yg(x) = g(x + y) − g(x) = g(u + s(x)h + v + nh) − g(u + s(x)h)

= g(u + v + (s(x) + n)h) − g(u + s(x)h)

= ϕ(s(x) + n) − ϕ(s(x)) = 0

and obviously g is not an exponential polynomial.
We now give a description, for the case when V is a proper subspace of Rd

(arbitrary d), of the sets of continuous functions f satisfying that ∆nk

hk
f ∈ H

for k = 1, · · · , t, for a certain finite dimensional subspace H of C(Rd) which is
∆mk

hk
-invariant for some mk, k = 1, · · · , t.
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Theorem 6. Let t be a positive integer, let n1, n2, . . . , nt, m1, m2, · · · , mt be

natural numbers, let H ⊆ C(Rd) be a linear finite dimensional subspace satisfying

t⋃

k=1

∆mk

hk
(H) ⊆ H.

Further let f : Rd → R be a continuous function satisfying

∆nk

hk
f ∈ H

for k = 1, · · · , t. If the subgroup G in Rd generated by {h1, h2, . . . , ht} satisfies

G = V ⊕Λ, where V is a vector subspace of Rd, and Λ is a discrete additive sub-

group of Rd, then for each λ in Λ there exist a continuous exponential polynomial

eλ : R
d → R such that

f(x + λ) = eλ(x) for all x ∈ V.

For the proof of this result, we need firstly to introduce the following technical
result:

Lemma 7. Let (G, +) be a commutative topological group, h1, · · · , ht ∈ G and

G′ = h1Z + · · · + htZ. Let H be a vector subspace of C
G such that τh(H) ⊆ H

for all h ∈ G′, and assume that f : G → C satisfies ∆ni

hi
f ∈ H for certain natural

numbers ni and i = 1, · · · , t. Take N = n1 + · · · + nt. Then ∆N
h f ∈ H for all

h ∈ G′. Moreover, if H is a closed subspace of C(G), then ∆N
h f ∈ H for all

h ∈ G′.

Proof: The proof follows similar arguments to those used in [4, Theorem 2] and,
in fact, this lemma is a generalization of that result, which follows as a corollary
just imposing H = {0}.

Take N = n1 + · · ·+ nt and let h ∈ G′. Then there exist m1, · · · , mt ∈ Z such
that h = m1h1 + · · · + mtht and

∆N
h f = ∆N

m1h1+···+mtht
f = (τm1h1+···+mtht

− 1d)
N (f)

= (τm1

h1
τm2

h2
. . . τmt

ht
− 1d)

N (f)

=
[
(τm1

h1
τm2

h2
. . . τmt

ht
− τm2

h2
. . . τmt

ht
) + (τm2

h2
. . . τmt

ht
− τm3

h3
. . . τmt

ht
) +

· · ·

+(τ
mt−2

ht−2
τ

mt−1

ht−1
τmt

ht
−τ

mt−1

ht−1
τmt

ht
) + (τ

mt−1

ht−1
τmt

ht
−τmt

ht
) + (τmt

ht
−1d)

]N
(f)

=
[
(τm1

h1
− 1d)τ

m2

h2
. . . τmt

ht
+ (τm2

h2
− 1d)τ

m3

h3
. . . τmt

ht

+ · · · + (τ
mt−1

ht−1
− 1d)τ

mt

ht
+ (τmt

ht
− 1d)

]N
(f) .

We have that ∆N
h f = AN (f), where AN (f) is the last expression of the displayed

formula. Here A is a sum of t terms such that each term is a multiple of one
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of (τhi
− 1d), i = 1, . · · · , t. Note that this claim is obvious for the terms where

mi > 0. If, on the contrary, mi < 0, the claim follows from the identity

τ−1
h − 1d = τ−h − 1d = −τ−h(τh − 1d) .

Since N = n1 + · · · + nt, it follows that AN is a sum each term of which is a
multiple of one of the (τhi

− 1d)
ni = ∆ni

hi
. Since ∆ni

hi
f ∈ H for every i, and H is

invariant under translations by elements of G′, all summands of AN (f) belong to
the vector space H , which proves that ∆N

h f ∈ H .

If H is a closed subspace of C(G) and h ∈ G′ then there exists a sequence
{gn} ⊂ G′ converging to h and the sequence given by fn = ∆N

gn
f converges

to ∆N
h f , which belongs to H since H is closed and gn ∈ H for all n. �

Proof of Theorem 6: Lemma 3 allows us to substitute H satisfying

t⋃

k=1

∆mk

hk
(H) ⊆ H

by a finite dimensional subspace H̃ of C(Rd) which contains H and satisfies

t⋃

k=1

∆hk
(H̃) ⊆ H̃.

If we take W = span{f}, we can apply again Lemma 3 with E = C(Rd), Li =

∆hi
, i = 1, · · · , t, to the vector space M = W + H̃, since

∆ni

hi
(W + H̃) = ∆ni

hi
(W ) + ∆ni

hi
(H̃)

⊆ H + H̃

⊆ H̃ ⊆ W + H̃.

Hence M ⊆ Z = ⋄∆h1
,∆h2

,··· ,∆ht
(M) and Z is a finite dimensional subspace of

C(Rd) satisfying ∆hi
(Z) ⊆ Z, i = 1, 2, · · · , t. Let V ⊥ denote the orthogonal

complement of V in Rd with respect to the standard scalar product and let PV :
R

d → R
d denote the orthogonal projection onto V with respect to the standard

scalar product of Rd. We define the function F : Rd → R by F (x) = f(PV (x)).

Obviously, F is a continuous extension of f|V . Furthermore, if H̃ admits a basis

{gk}
m
k=1, we introduce the new vector space

˜̃
H = span{Gk}

m
k=1, where Gk(x) =

gk(PV (x)) for all x ∈ Rd. Then, if x = v + w ∈ Rd with v ∈ V , w ∈ V ⊥,
k ∈ {1, · · · , t}, and j ∈ {1, · · · , m}, we have that

∆hk
Gj(x) = Gj(v + w + hk) − Gj(v + w)

= gj(v + hk) − gj(v)
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=

m∑

i=1

αi,jgi(v), since ∆hk
(H̃) ⊆ H̃

=

m∑

i=1

αi,jGi(v + w)

=

m∑

i=1

αi,jGi(x).

Thus, ∆hk
(
˜̃
H) ⊆

˜̃
H for k = 1, · · · , t.

Take {h∗
1, · · · , h∗

s} ⊆ V ⊥ such that {h1, · · · , ht, h
∗
1, · · · , h∗

s} spans a dense sub-
group of Rd. Then if x = v + w ∈ Rd with v ∈ V , w ∈ V ⊥, k ∈ {1, · · · , s}, and
j ∈ {1, · · · , m}, we have that

∆h∗

k
Gj(x) = Gj(v + w + h∗

k) − Gj(v + w)

= Gj(v) − Gj(v) = 0.

Hence we also have that ∆h∗

k
(
˜̃
H) ⊆

˜̃
H for k = 1, · · · , s. Anselone-Korevaar’s

theorem implies that all elements of
˜̃
H are continuous exponential polynomials

on Rd.
Let us now do the computations for F . Take N = n1 + · · · + nt. Then

∆N
hi

F (x) =
N∑

k=0

(
N

k

)
(−1)N−kF (x + khi)

=

N∑

k=0

(
N

k

)
(−1)N−kF (PV (x) + kPV (hi) + [(x − PV (x)) + k(hi − PV (hi))])

=

N∑

k=0

(
N

k

)
(−1)N−kf(PV (x) + kPV (hi))

= ∆N
PV (hi)

f(PV (x))

=

m∑

j=1

ai,jgj(PV (x)) since ∆N
PV (hi)

f ∈ H̃

=
m∑

j=1

ai,jGj(x) ∈
˜̃
H.

Here we have used that H̃ is G-invariant and Lemma 7 to conclude that
∆N

PV (hi)
f ∈ H̃ since PV (hi) ∈ V ⊆ G and H̃ is a closed subspace of C(Rd),

since it is finite dimensional. On the other hand, ∆h∗

j
F = 0 ∈

˜̃
H for j = 1, · · · , s.
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Hence we can apply Theorem 5 to F to prove that F is an exponential polyno-
mial whose restriction to V is f|V . Thus, if we set e0 = F , we have that e0 is a

continuous exponential polynomial on Rd and f(x) = e0(x) for all x in V .
Now let λ be arbitrary in Λ and we consider the function gλ : V → R defined

by gλ(x) = f(x + λ) for x in V and λ in Λ. Then gλ = τλ(f), so that

∆ni

hi
gλ = ∆ni

hi
τλ(f) = τλ(∆ni

hi
(f)) ∈ τλ(H) ⊆ τλ(H̃) ⊆ H̃.

Thus we can repeat all arguments above with gλ instead of f to get that, for some
continuous exponential polynomial eλ defined on Rd we have that gλ(x) = eλ(x)
for all x ∈ V . Hence, if x ∈ V and λ ∈ Λ,

f(x + λ) = gλ(x) = eλ(x).

This ends the proof. �
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