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On the Infinite Loch Ness monster

John A. Arredondo, Camilo Raḿırez Maluendas

Abstract. In this paper we introduce the topological surface called Infinite Loch

Ness monster , discussing how this name has evolved and how it has been histor-
ically understood. We give two constructions of this surface, one of them having
translation structure and the other hyperbolic structure.

Keywords: Infinite Loch Ness monster; tame Infinite Loch Ness monster; hyper-
bolic Infinite Loch Ness monster

Classification: 51M15

Introduction

The term Loch Ness monster is well known around the world, specially in The
Great Glen in the Scottish highlands, a rift valley which contains three important
lochs for the region, called Lochy, Oich and Ness. The last one, people believe
that a monster lives and lurks, baptized with the name of the loch. The existence
of the monster is not farfetched, people say, taking into account that the Loch
Ness is deeper than the North Sea and is very long, very narrow and has never
been known to freeze (see Figure 1).

The earliest report of such a monster appeared in the Fifth century, and from
that time different versions about the monster passed from generation to genera-
tion [Ste97]. A kind of modern interest in the monster was sparked by 1933 when
George Spicer and his wife stated that they saw the monster crossing the road
in front of their car. After that sighting, hundreds of different reports about the
monster have been collected, including photos, portrayals and other descriptions.
In spite of this evidence, without a body, a fossil or the monster in person, The
Loch Ness monster is only part of the folklore.

In a different context, in mathematics, the term Loch Ness monster is also
known, and not in folklore, in the study of topological surfaces, where this term
makes reference to the surface obtained by gluing infinitely many torii along a ray
(see Figure 4), actually, it is called Infinite Loch Ness monster .

In particular, we are interested in those topological surfaces having two kinds
of structure, translation and hyperbolic. The first one of them have appeared nat-
urally in different branches of the mathematics such as Dynamical System (see
Steven Kerckhoff, Howard Masur and John Smillie [KMS86]), Teichmüller The-
ory (see [KZ03] by the authors Maxim Kontsevich and Anton Zorich), Riemann
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Figure 1. Loch Ness monster in The Great Glen in the Scottish.

Image by xKirinARTZx, taken from devianart.com

Surfaces (see Howard Masur and Serge Tabachnikov [MT02]), Algebraic Geome-
try (see [Mol06] by Martin Möller), and others. Basically, a translation structure

on a surface is an atlas of charts to the plane where the transition functions are
translations. So, motivated by the Open problem 2.6.2 concerning construction of
compact surface with translation structure introduced to the literature by Pascal
Hubert and Thomas A. Schmidt [HS06], we present in Section 2 a surface topo-
logically equivalent to the Infinite Loch Ness monster having tame translation
structure.

On the other hand, the twenty-second problem of the Mathematical Problems
published by David Hilbert [Hil00] was solved simultaneously in 1907 by Henri
Poincaré and Paul Koebe, as reported by William Abikoff [Abi81]. They proved
that:

Theorem 0.1 ([Bea84, p. 174]). Let S be a Riemann surface, let S̃ be the uni-

versal covering surface of S chosen from the surfaces Ĉ, C, and ∆. Let Γ be the

cover group of S. Then

(1) S is conformally equivalent to S̃/Γ;

(2) Γ is a Möbius group which acts discontinuously on S̃;

(3) apart from the identity, the elements of Γ have no fixed points in S̃;

(4) the cover group Γ is isomorphic to π(S).

Encouraged by this valuable theorem, in Section 2, we construct explicitly an
infinitely generated Fuchsian group Γ < PSL(2, R), such that the quotient space
H/Γ is a hyperbolic surface homeomorphic to the Infinite Loch Ness monster.

The paper is organized as follows: In Section 1 we present a review of some
interesting mathematical situations where the Infinite Loch Ness monster appears.
And in Section 2 we present two different constructions of the Infinite Loch Ness
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monster, with translation and hyperbolic structure, including all the necessary
concepts to achieve this goal.

1. Some apparitions of the Loch Ness monster

From view of the Kerékjártó theorem of classification of noncompact surfaces
(e.g., Béla Kerékjártó [Ker23], Ian Richards [Ric63]), the Infinite Loch Ness mon-

ster is the name of the orientable surface which has infinite genus and only one end,
such as Ferrán Valdez remarks [Val09]. Simply, Étienne Ghys [Ghy95] describes it
as the orientable surface obtained from the Euclidean plane which is attached to
an infinity of handles (see Figure 2). Or alternatively, from a geometric viewpoint
one can think that the Infinite Loch Ness monster is the only orientable surface
having infinitely many handles and only one way to go to infinity.

Figure 2. The Infinite Loch Ness monster.

In the seventies, the interest by several authors (e.g., Jonathan D. Sondow
[Son75], Toshiyuri Nishimori [Nis75], John Cantwell and Lawrence Conlon [CC78])
on the qualitative study in the noncompact leaves in foliations of closed manifolds
had grown. Ongoing in this line of research, Anthony Phillips and Dennis Sullivan
proved that the well known surfaces Jacob’s ladder1, the Infinite jail cell windows

[Spi79, p. 24], and the Infinite jangle gym (see Figure 3) are diffeomorphic to the
Infinite Loch Ness monster (see [PS81]).

Roughly speaking, from the historical point of view, the name Infinite Loch

Ness monster appeared published by first time in Leaves with isolated ends in

foliated 3-manifolds ([CC77, 1977]), however the authors wedge this term to a
preliminary manuscript of [PS81], which was published the following year. Under
this evidence, one can consider to Anthony Phillips and Dennis Sullivan as the
Infinite Loch Ness monster ’s parents.

Remark 1.1. Perhaps the reader has found on the literature other names for
this surface with infinite genus and only one end, for example, the infinite-holed

torus (Spivak [Spi79, p. 23]). See Figure 4.

1Étienne Ghys calls Jacob’s ladder to the surface with two ends and each ends having infinite
genus (see [Ghy95]). However, Michael Spivak calls this surface the doubly infinite-holed torus
(see [Spi79, p. 24]).
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a. Jacob’s ladder. b. Infinite jail cell windows.

c. Infinite jangle gym.

Figure 3. Surfaces having only one end and infinite genus.

Figure 4. The infinite-holed torus.

The Infinite Loch Ness monster has also appeared in the area of Combinatorics.
Its arrival was in 1926 when John Petrie told Harold Coxeter that he had found
two new infinite regular polyhedra. As soon as Petrie began to describe them
and Coxeter understood this, the second pointed out a third possible polyhedra.
Later they wrote a paper calling this mathematical objects the skew polyhedra

[Cox36], or also known today as the Coxeter-Petrie polyhedra. Indeed, they are
topologically equivalent to the Infinite Loch Ness monster as shown by the authors
jointly with Ferrán Valdez in [ARMV17]. Given that from a combinatorics view,
one can think that skew polyhedra are multiple covers of the first three Platonic
solids, John H. Conway and et. al., [CBG08, p. 333] called them the multiplied

tetrahedron, the multiplied cube, and the multiplied octahedron, and denoted them
µT , µC, and µO, respectively. See Figure 5.
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a. The multiplied tetrahedron µT . b. The multiplied cube µC.

c. The multiplied octahedron µO.

Figure 5. Locally the skew polyhedra or Coxeter-Petrie polyhedra.

Images by Tom Ruen, distributed under CC BY-SA 4.0.

In billiards, an interesting area of Dynamical Systems, during 1936 the math-
ematicians Ralph H. Fox and Richard B. Kershner [FK36] associated to each
billiard φP , coming from an Euclidean compact polygon P ⊂ E2, a surface SP

with translation structure, which they called Überlagerungsfläche2, and a projec-
tion map πp : Sp → φP , mapping each geodesic of SP onto a billiard trajectory

of φP (see Figure 6). Later, Ferrán Valdez published a paper [Val09], in which
he proved that the surface SP associated to the billiard φP , being P ⊂ E2 a
polygon with at least an interior angle λπ such that λ is an irrational number, is
the Infinite Loch Ness monster.

Remark 1.2. In number theory there is a kind of series called exponential sums,
which in general take the form

(1) sN =
N∑

n=1

e2πif(n),

and for the special case in which

(2) f(n) = (ln(n))4

the graph of the curve associated to the first N terms is called Loch Ness monster

(see Figure 7), dubbed to the curve by John H. Loxton [Lox81], [Lox83].

2 Überlagerungsfläche is a German term closer in meaning to the modern word covering, i.e.,

covered surface and it is also written as Ueberlagerungsflaeche.
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Figure 6. Billiard associated to a rectangle triangle with interior

angles (π/8, 3π/8).

Figure 7. Loch Ness monster curve depicted with N = 6000.

2. Building the Infinite Loch Ness monster

We begin this section introducing the concept of end, one of the fundamental
terms used in the classification theorem of orientable surfaces and in the definition
of Infinite Loch Ness monster. After, we shall give the concept of tame translation
and hyperbolic structure on any surface S. We then will build an Infinite Loch
Ness monster having a tame translation and hyperbolic structure.

A pre-end of a connected surface S is a nested sequence U1 ⊃ U2 ⊃ · · · of
connected open subsets of S such that the boundary of Un in S is compact for
every n ∈ N and for any compact subset K of S there exists l ∈ N such that
Ul ∩ K = ∅. We shall denote the pre-end U1 ⊃ U2 ⊃ · · · as (Un)n∈N. Two such
sequences (Un)n∈N and (U ′

n)n∈N are said to be equivalent if for any i ∈ N exists
j ∈ N such that U ′

j ⊂ Ui, and for any k ∈ N exists l ∈ N such that Ul ⊂ U ′

k.



On the Infinite Loch Ness monster 471

We denote by Ends(S) the corresponding set of equivalence classes and call each
equivalence class [Un]n∈N ∈ Ends(S) an end of S. The set Ends(S) can be
endowed with a topology by specifying a pre-basis as follows: for any open subset
W ⊂ S whose boundary is compact, we define W ∗ := {[Un]n∈N ∈ Ends(S) : W ⊃
Ul for l sufficiently large}. We call the corresponding topological space the space

of ends of S.

Proposition 2.1 ([Ric63, Proposition 3]). The space of ends of a connected

surface S is totally disconnected, compact, and Hausdorff. In particular, Ends(S)
is homeomorphic to a closed subspace of the Cantor set.

A surface is said to be planar if all of its compact subsurfaces are of genus zero.
An end [Un]n∈N is called planar if there exists l ∈ N such that Ul is planar. The
genus of a surface S is the maximum of the genera of its compact subsurfaces.
Remark that if a surface S has infinite genus there exists no finite set C of mutually
non-intersecting simple closed curves with the property that S\C is connected and

planar . We define Ends∞(S) ⊂ Ends(S) as the set of all ends of S which are not
planar. It follows from the definitions that Ends∞(S) forms a closed subspace of
Ends(S) (see Ian Richards [Ric63] for details).

Theorem 2.2 (Classification of orientable surfaces. [Ker23, Chapter 5]). Let

S and S′ be two orientable surfaces of the same genus. Then S and S′ are

homeomorphic if only if there exists a homeomorphism f : Ends(S) → Ends(S′)
such that f(Ends∞(S)) = Ends∞(S′).

Definition 2.3 ([Val09]). Up to homeomorphism, the Infinite Loch Ness mon-

ster is the unique infinite genus surface with only one end.

We remark that a surface S has only one end if only if for all compact subset
K ⊂ S there exists a compact K ′ ⊂ S such that K ⊂ K ′ and S \K ′ is connected,
see Ernst Specker [Spe49].

2.1 A tame Infinite Loch Ness monster. A surface S endowed with an atlas
whose transition functions are translations is called a translation surface. Every
translation surface inherits a natural flat metrics from the plane via pull back. We
denote as Ŝ the metric completion of S with respect to this natural flat metric.

Definition 2.4 ([PSV11]). A translation surface S is called tame if for every

point x ∈ Ŝ there exists a neighborhood Ux ⊂ Ŝ which is either isometric to some
neighborhood of the Euclidean plane or to the neighborhood of the branching
point of a cyclic branched covering of the unit disk in the Euclidean plane. In the
later case we call x a cone angle singularity of angle 2nπ if the cyclic covering
is of (finite) order n ∈ N and an infinite cone angle singularity when the cyclic

covering is infinite. We denote by Sing(S) ⊂ Ŝ the set conformed by all cone
angle singularities of S.

Based on the ideas above, the second author jointly with Ferrán Valdez have
described a tame translation surface homeomorphic to the Infinite Loch Ness
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monster (see [RMV17, Construction 2.1]). However, they never formally proved
that this object is indeed our object of interest. In order to complete the assertion
we shall give a short and easy proof to this fact.

Theorem 2.5. There exists an Infinite Loch Ness monster endowed with a tame

translation structure.

Proof: To build a tame Infinite Loch Ness monster we shall introduce the fol-
lowing definition, which is based on the principle to glue translation surfaces along

parallel marks.

Definition 2.6 (Gluing marks. [RMV17, Definition 1.15]). A mark m on a trans-
lation surface S is finite length geodesic having no singular points in its interior.
We can associate to each mark two vectors by developing the translation structure
along them. Two marks on S are parallel if their respective vectors are parallel.
Let m and m′ be two disjoint parallel marks of same lengths on a translation
surface S. We cut S along m and m′, which turns S into a surface with boundary
consisting of four straight segments. We glue this segments back using transla-
tions to obtain a tame translation surface S′ different from the one we started
from. We say that S′ is obtained from S by re-gluing along m and m′.

0

a ab b

Figure 8. Gluing marks.

We denote by m ∼glue m′ the operation of gluing the marks m and m′ and
S′ = S/(m ∼glue m′). In Figure 8 we depict the gluing of two marks on the plane.
Remark that the operation of gluing marks can also be performed for marks on
different surfaces. In any case, Sing(S′)\Sing(S) is formed by two 4π cone angle
singularities (see Figure 9), that is, S tame implies S′ tame.

Let E2 be a copy of the Euclidean plane equipped with a fixed origin 0 and an
orthogonal basis β = {e1, e2}. On E2 we draw3 the following countable family of
straight segments:

L := {li = ((4i − 1)e1, 4ie1) : ∀i ∈ N} (see Figure 10).

3Straight segments are given by their ends points.
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Figure 9. 4π cone angle singularity.

0 1 2 3 4 5 6 7 8 9

l l1 2 .  .  .

Figure 10. Countable family of straight segments L.

Hence, we claim that the tame translation surface

S := E
2/(l2i−1 ∼glue l2i)i∈N,

is the Infinite Loch Ness monster i.e., it has infinite genus and only one end.

The surface S has only one end. Let K ⊂ S be a compact set. We must
prove that there exists a compact subset K ⊂ K ′ ⊂ S such that the difference
S − K ′ is connected. We note that there exists a natural projection

π : (E2 − L) → S, (x, y) 7→ [x, y].

Then there exists a compact K̃ ⊂ E2 such that the closure of π(K̃ − L) is K. In

other words, we have π(K̃ − L) = K. Given the Euclidean plane E2 has only one

end, then there exists a compact K̃ ′ ⊂ E2 such that K̃ ⊂ K̃ ′ and the difference

E2 − K̃ ′ is connected. Then the closure set π(K̃ ′ − L) := K ′ ⊂ S is a compact
such that K ⊂ K ′ and the difference S − K ′ is connected. Hence, we conclude
that S has only one end.

The surface S has infinite genus. For each i ∈ N we define the subset

Ei := {(x, y) ∈ E
2 : (4(2i − 1) − 1) − 1 < x < 4(2i) + 1, and − 2 < y < 2}.
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We remark that the marks l2i−1 and l2i belong to Ei. Then Si :=
Ei/(l2i−1 ∼glue l2i) ⊂ S is a subsurface with boundary homeomorphic to the
torus punctured by only one point. Furthermore, for any two different m 6= n
the subsurfaces Sm and Sn are disjoint. Thus, we conclude that the translation
surface S has infinite genus. �

Remark 2.7. In [PSV11] and [RMV17] the reader can find different constructions
of the tame Infinite Loch Ness monster and other non compact surfaces having
tame translation structure.

2.2 Hyperbolic Infinite Loch Ness monster. Recall, an application of the
Uniformization Theorem (see also Jesús Muciño-Raymundo [MR]) ensures the ex-
istence of a subgroup Γ of the isometries group of the hyperbolic plane Isom(H)
acting on the hyperbolic plane H performing the quotient space H/Γ in a hyper-
bolic surface homeomorphic to the Infinite Loch Ness monster. In other words,
there exist a hyperbolic polygon P ⊂ H, which is suitably identifying its sides
by hyperbolic isometries to get the Infinite Loch Ness monster. An easy way to
define the polygon P is as follows4.

Theorem 2.8. Let Γ be the group generated by the set of Möbius transformations

{fm(z), gm(z), f−1
m (z), g−1

m (z) : m ∈ Z}, where

fm(z) :=
(16m + 8)z − (1 + 16m(16m + 8))

z − 16m
,

gm(z) :=
(16m + 8)z − (1 + (16m + 4)(16m + 8))

z − (16m + 4)
,

f−1
m (z) :=

−16mz + (1 + 16m(16m + 8))

−z + (16m + 8)
,

g−1
m (z) :=

−(16m + 4)z + (1 + (16m + 4)(16m + 8))

−z + (16m + 8)
.

Then Γ is an infinitely generated Fuchsian group and the Riemann surface H/Γ
is homeomorphic to the Infinite Loch Ness monster.

Proof: First, we consider the countable family conformed by the disjoint half-
circles C = {C4n : n ∈ Z} with C4n having center in 4n and radius equal to one,
for every n ∈ Z. See Figure 11. In other words, C4n := {z ∈ H : |z − 4n| = 1}.
Removing the half-circle C4n of the hyperbolic plane H we get two connected
component, which are called the inside of C4n and the outside of C4n, respectively
(see Figure 12). They are denoted as Č4n and Ĉ4n, respectively. Hence, our
connected hyperbolic polygon P ⊂ H is the closure of the intersection of the
outsides following (see Figure 13).

4The reader can also find in [ARM] a great variety of hyperbolic polygons that perform
hyperbolic surfaces having infinite genus.
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0 1 2 3 4 5 6 7 8 9-1-2-3-4-5-6-7-8 10 11 12 13-9

C CC C CC 40 8 12-4-8

Figure 11. Family of half-circles C.

inside

outside

4n

Figure 12. Inside and outside.

(3) P :=
⋂

n∈Z

Ĉ4n =
⋂

n∈Z

{z ∈ H : |z − 4n| ≥ 1}.

Figure 13. Family of half-circles C and hyperbolic polygon P .

The boundary of P is conformed by the half-circle belonged to the family C.
Then for every m ∈ Z the hyperbolic geodesics C4(4m) and C4(4m+2) are identified
as it is shown in Figure 14 by some of the following Möbius transformations:

(4)

fm(z) :=
(16m + 8)z − (1 + 16m(16m + 8))

z − 16m

f−1
m (z) :=

−16mz + (1 + 16m(16m + 8))

−z + (16m + 8)
.
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4(4m) 4(4m+1) 4(4m+2) 4(4m+3)

C C CC 4(4m+1)4(4m) 4(4m+2) 4(4m+3)

Figure 14. Gluing the side of the hyperbolic polygon P , identi-

fying C4(4m+i) with C4(4m+2+i) for i ∈ {0, 1} and so on.

Analogously, the hyperbolic geodesics C4(4m+1) and C4(4m+3) are identified as
it is shown in Figure 14 by the Möbius transformations:

(5)

gm(z) :=
(16m + 8)z − (1 + (16m + 4)(16m + 8))

z − (16m + 4)
,

g−1
m (z) :=

−(16m + 4)z + (1 + (16m + 4)(16m + 8))

−z + (16m + 8)
.

Remark 2.9. Through the Möbius transformations above, the inside of the half-
circle C4(4m) (the half-circle C4(4m+1), respectively) is sent by the map fm(z) (the
map gm(z), respectively) into the outside of the half-circle C4(4m+2) (the half-circle
C4(4m+3), respectively). Furthermore, the outside of the half-circle C4(4m) (the
half-circle C4(4m+1), respectively) is sent by fm(z) (the map gm(z), respectively)
into the inside of the half-circle C4(4m+2) (the half-circle C4(4m+3), respectively).

Hence, the hyperbolic surface S that gets glued the side of the polygon P is the
Infinite Loch Ness monster, i.e., it has infinite genus and only one end. From the
polygon P we deduce that noncompact quotient space S comes with a hyperbolic
structure having infinite area.

4(4m) 4(4m+1) 4(4m+2) 4(4m+3)

C C CC 4(4m+1)

m

4(4m+2) 4(4m+3)

P

4(4m)-2 4(4m+3)+2

4(4m)

Figure 15. Subregion Pm.

Furthermore, for each integer number m ∈ Z we consider the subregion Pm ⊂
P , which is gotten by the intersection of P and the strip {z ∈ H : 4(4m) − 2 <
Re(z) < 4(4m + 3) + 2} (see Figure 15), then restricting to Pm the identification
defined above turns it into a torus with one hole Sm (see Figure 16), which is
a subsurface of S. Then the elements of the countable family {Sm : m ∈ Z}
are pair disjoint subsurfaces of S and it performs infinite genus in the hyperbolic
surface S. In other words, S is the Infinite Loch Ness monster.

From the analytic point of view, we have built a Fuchsian subgroup Γ of
PSL(2, Z), where Γ is infinitely generated by the set of Möbius transformations
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C C

CC

4(4m+1)

4(4m)

4(4m+2)

4(m+3)
Sm

Figure 16. Topological subregion Pm and torus with one hole Sm.

{fm(z), gm(z), f−1
m (z), g−1

m (z) : for all m ∈ Z} (see (4) and (5)), having the sub-
set P ⊂ H as fundamental domain5. Then Γ acts on the hyperbolic plane H.
Defining the subset K ⊂ H as follows,

(6) K := {w ∈ H : f(w) = w for any f ∈ Γ − {Id}} ⊂ H,

the Fuchsian group Γ acts freely and properly discontinuously on the open subset
H − K, but we remark that to this case K = ∅ because of the intersection of any
two different elements belonged to C is either empty or at infinity, that is, they
meet in the same point in the real line R. Hence, the quotient space

(7) S := H/Γ

is a well-defined surface homeomorphic to the Infinite Loch Ness monster, having
hyperbolic structure via the projection map p : H → S, such as z 7→ [z]. �

We conclude from Theorem 0.1.

Corollary 2.10. The fundamental group π1(S) of the Infinite Loch Ness monster

is isomorphic to Γ.

Acknowledgments. The authors sincerely thank the anonymous referee for his
constructive and valuable comments.
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[Ghy95] Ghys É., Topologie des feuilles génériques, Ann. of Math. (2) 141 (1995), no. 2,
387–422.

[Hil00] Hilbert D., Mathematical problems, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 4,
407–436; reprinted from Bull. Amer. Math. Soc. 8 (1902), 437–479.

[HS06] Hubert P., Schmidt T.A., An introduction to Veech surfaces, Handbook of dynamical
systems, 1B, Elsevier B.V., Amsterdam, 2006, pp. 501–526.

[Kat92a] Katok S., Fuchsian Groups, Chicago Lectures in Mathematics, University of Chicago
Press, Chicago, IL, 1992.

[KZ75] Katok A.B., Zemljakov A.N., Topological transitivity of billiards in polygons, Mat.
Zametki 18 (1975), no. 2, 291–300 (Russian).

[KMS86] Kerckhoff S., Masur H., Smillie J., Ergodicity of billiard flows and quadratic differen-

tials, Ann. of Math. 124 (1986), no. 2, 293–311.
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Eigenschaften dreidimensionaler Mannigfaltigkeiten, Comment. Math. Helv. 23

(1949), 303–333.
[Spi79] Spivak M., A comprehensive introduction to differential geometry, Vol. I , second

edition, Publish or Perish, Inc., Wilmington, Del., 1979.



On the Infinite Loch Ness monster 479

[Ste97] Steuart C., The Loch Ness Monster: The Evidence, Prometheus Books, USA, 1997.
[Val09] Valdez F., Infinite genus surfaces and irrational polygonal billiards, Geom. Dedicata

143 (2009), 143–154.

Fundación Universitaria Konrad Lorenz, CP. 110231, Bogotá, Colombia
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