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Variations of uniform completeness

related to realcompactness

Miroslav Hušek

Abstract. Various characterizations of realcompactness are transferred to uni-
form spaces giving non-equivalent concepts. Their properties, relations and
characterizations are described in this paper. A Shirota-like characterization
of certain uniform realcompactness proved by Garrido and Meroño for metriz-
able spaces is generalized to uniform spaces. The paper may be considered as
a unifying survey of known results with some new results added.
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1. Introduction

Various classes of uniform spaces close to the class of realcompact spaces ap-
peared about 40–60 years ago in works by J.R. Isbell, M.D. Rice, G.D. Reynolds,
A.W. Hager, L. Nachbin, O. Njastad, J. Pelant and others. Recently, simi-
lar classes appeared again, e.g., in works by A.A. Chekeev, M.I. Garrido and
A.S. Meroño, M. Hušek and A. Pulgaŕın. Our approach is to unify all those
concepts, to generalize some results and to give possibly new looks at them.

There are several possibilities how to transfer realcompactness into uniform
spaces according to what characterization of realcompactness is used. We want
those spaces to be epireflective in uniform spaces and, in some sense, to be com-
patible with realcompact spaces. Various terms were used for those realcompact-
like uniform spaces. We suggest to use terms coming from their modification of
completeness.

Basic references for topological and uniform concepts are [3], [19]. We shall
repeat some of the concepts used more often in this paper.

All the topological spaces are assumed to be Tikhonov (i.e., Hausdorff and
completely regular) and, thus, all uniform spaces are separated. A topological
property used for a uniform space is the property of the induced topological
space. Under our conditions, epireflective classes of uniform spaces coincide with
productive and closed hereditary subclasses.
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In the next, m denotes the Ulam measurable cardinal, if it exists. If it does not
exist, then the inequality κ ≤ m for a cardinal κ is regarded as always fulfilled.
For an infinite cardinal κ, a filter F is said to have κ-intersection property if⋂
F ′ 6= ∅ for any F ′ ⊂ F with |F ′| < κ. Another term is κ-complete filter. We

also say that a filter has cip instead of saying that it has ω1-intersection property.
Not every filter with κ-intersection property is contained in an ultrafilter with
κ-intersection property.

For a uniform space X we denote by cov X the covering character of X , i.e.,
the least cardinal κ, such that every uniform cover has a uniform subcover of
cardinality less than κ. In other words, every uniformly discrete subset is of car-
dinality less than κ. The cardinal function wuX (uniform weight) is the smallest
infinite cardinality of a base of a uniform space X . Point character pcX of a
uniform space X is less than an infinite cardinal κ if X has a base of uniform
covers such that for every x ∈ X and every cover U from the base one has |V| < κ
whenever V ⊂ U ,

⋂
V ∋ x. Spaces X with pcX < ω are called point-finite. If

X is a uniform space, by U(X) we denote the set of all uniformly continuous
real-valued functions on X , by U∗(X) its subset of bounded functions.

For a uniform space X , pX is the totally bounded modification of X (finite
uniform covers of X form a base of pX), eX is the uniformly separable modifica-
tion (countable uniform covers of X form a base of eX). For any infinite cardinal
κ there is a modification pκX of a uniform space X that is the finest space Y with
cov Y ≤ κ coarser than X . Thus pX = pωX, eX = pω1

X . The uniform space
weakly generated by U(X) is denoted as cX (preimages of uniform covers of R

by all f ∈ U(X) form a subbase of cX). By γX we denote a completion of X , so
that γpX is the Samuel compactification sX of X .

We shall also use the (topologically) fine coreflection tfX , the finest uniform
space inducing the same topology as X does.

By H(κ), κ is an infinite cardinal, we denote the metric hedgehog with κ-many
spines, i.e. the disjoint sum of κ-many intervals [0, 1] sewed together at the point 0
and endowed with the standard metric.

We shall need uniform zero sets and their properties: Zu(X) is the collection
of zero sets f−1(0) of f ∈ U(X) (i.e., of U∗(X) so that Zu(X) is the same for
spaces proximally equivalent to X). The collection Z(X) consists of zero sets of
f ∈ C(X), thus equals to Zu(tfX). As in topological spaces, Zu(X) is a σ-ring
of sets with respect to (∪,∩).

By zu-filter in a uniform space X we mean a filter F in X such that F ∩Zu(X)
is a base of F . A zu-filter F is said to be zu-ultrafilter if F ∩Zu(X) is a maximal
filter in Zu(X), i.e., Z ∈ Zu(X) belongs to F provided Z ∩ P 6= ∅ for all P ∈ F .
If the index u is omitted it concerns Z(X) instead of Zu(X). It follows from
Kuratowski-Zorn lemma that every zu-filter is contained in a zu-ultrafilter.

The following simple property of zu-filters was known to Z. Froĺık, M.D. Rice
and others in 1970’s.
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Lemma 1.1. Let κ > ω and a uniform space Y be finer than a uniform space X .

If F is a zu-ultrafilter with κ-intersection property on Y then the filter F∗ having

the base F∩Zu(X) is a zu-ultrafilter on X (clearly, with κ-intersection property).

Proof: It suffices to show that if Z ′ ∈ Zu(X) and Z ′ ∩ Z 6= ∅ for every Z ∈
F ∩ Zu(X) then Z ′ ∩ A 6= ∅ for every A ∈ F . Assume Z ′ ∩ A = ∅ for some
A ∈ F . We have Z ′ =

⋂
Cn for some uniform cozero sets Cn in X and thus,

A ⊂
⋃

(X \ Cn). Since F has cip, there is some n with X \ Cn ∈ F . The last set
belongs to F ∩ Zu(X) and is disjoint with Z ′ — a contradiction. �

It should be recalled that the converse does not hold. There are zu-ultrafilters
with cip that cannot be extended to ultrafilters with cip. For instance, take
X = ω1 with the usual order topology and Y the same set with the uniformly
discrete uniformity. There is a unique uniformity on X with exactly one free
zu-ultrafilter F . It has for its base the intervals (α, ω1), α ∈ ω1 and, therefore, it
has cip. Since every ultrafilter with cip on Y is fixed, F cannot be extended to
an ultrafilter with cip.

So, not every zu-filter with cip extends to a zu-ultrafilter with cip. There is a
big class of zu-filters with cip that always extend to zu-ultrafilters with cip:

Lemma 1.2. Every zu-filter in a uniform space X containing a zu-filter with

κ-intersection property converging in sX has κ-intersection property.

Proof: We may assume κ > ω. Let F be a zu-filter in X with κ-intersection
property converging to ξ ∈ sX and H be a zu-filter in X containing F . Assume
there is λ < κ and Hα ∈ H ∩ Zu(X), α ∈ λ, with

⋂
λ Hα = ∅. Take some

fα ∈ U(X, [0, 1]) with f−1
α (0) = Hα. Every Zn

α = f−1
α [0, 1/n] is a trace of a

neighborhood of ξ on X and, thus, belongs to F . That gives a contradiction with
κ-intersection property of F since

⋂
α∈λ,n∈N

Zn
α =

⋂
λ Hα = ∅. �

Corollary 1.3. Every zu-ultrafilter in a uniform space X containing a Cauchy

zu-filter with κ-intersection property has κ-intersection property.

Lemma 1.1 implies that if Y is finer than X and tfY = tfX then every zu-
ultrafilter in Y with κ-intersection property converges provided every zu-ultrafilter
in X with κ-intersection property converges. Lemma 1.2 implies that every
Cauchy filter with κ-intersection property converges in X iff every Cauchy zu-
ultrafilter with κ-intersection property converges in X (for κ > ω, covX ≤ m iff
every zu-ultrafilter with κ-intersection property converges in X).

The next assertion comes from [9, Theorem 15.20]. It is a consequence of the
well-known Stone theorem (every uniform cover of a metric space can be refined
by an open cover expressed as a union of countably many uniformly discrete open
collections).

Lemma 1.4. Every zu-ultrafilter with cip on a uniform space X is Cauchy pro-

vided cov X ≤ m.
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2. Realcompact spaces

We shall now give a list of several characterizations of realcompact topological
spaces. That concept has more terms, e.g., Q-spaces (Hewitt), saturated spaces
(Nachbin), Hewitt-Nachbin spaces (Weir), functionally closed spaces, R-compact
spaces. The term realcompact spaces (originally real-compact), used most often
now, was suggested and used by L. Gillman in [8]. J.R. Isbell in [18, p. 117]
recalls other terms from that time, like e-complete spaces and supports a pro-
posal of M. Jerison, namely real-complete spaces (I thank to M.D. Rice for that
information).

The Hewitt’s definition uses algebraic structures of C(X) and is further de-
veloped by Gillman and Jerison in [9] and by M.D. Weir in [30]. In this pa-
per we shall not investigate characterizations of realcompactness using algebraic
structures of some function spaces although it may give interesting properties for
uniform spaces.

Theorem 2.1. For Tikhonov spaces X any of the next properties is equivalent

to realcompactness.

1. X is homeomorphic to a closed subspace of a power of reals.

2. c(tfX) is complete.

3. e(tfX) is complete.

4. tfX is complete and no closed discrete subset has Ulam measurable car-

dinality.

5. Every zero-ultrafilter with cip in X converges in X .

6. X is Gδ-closed in βX .

7. X is the intersection of all cozero sets in βX containing X .

8. For each Y containing X as a dense subspace and for each y ∈ Y \X there

exists f ∈ C(X) that cannot be extended continuously to y (into R).
9. For each ξ ∈ βX \X one can find f ∈ C(X) that cannot be continuously

extended to ξ.
10. For each ξ ∈ βX \ X one can find f ∈ C∗(X), f > 0, that continuously

extends to ξ with the value 0.

Hewitt showed that every realcompact space is homeomorphic to a closed sub-
space of a power of R and asked whether the converse is true. The converse was
proved by T. Shirota in [29]. The second property was used by L. Nachbin in
[23] for his saturated spaces. An equivalence of both properties can be found,
e.g., in [9]. The third and the fourth property was found by T. Shirota in [28]
and [29]. The fifth characterization comes from the original E. Hewitt’s paper
[13], the sixth was proved by S. Mrówka in [21] and the next one was shown by
Z. Froĺık in [4]. There are more characterizations like those in 6 and 7 using either
other compactifications than βX or using other subsets between X and βX than
cozero sets (e.g., Fσ-sets or σ-compact sets). From the last three characterizations
using extensions of functions, the first two were proved by M. Katětov in [20] and
the last one by S. Mrówka in [22].
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3. Realcompactness in uniform spaces

We shall now transfer the previous characterization of realcompactness to uni-
form spaces. Some of the next concepts are known under different names.

3.1 R-complete spaces.

Definition 1. A uniform space is said to be R-complete if it is uniformly home-
omorphic to a closed subspace of a power of R.

We are using a modification of Mrówka’s terminology for E-compact spaces.
We prefer to use the term E-complete spaces to distinguish the uniform case from
the topological one.

By J. Isbell ([17]), a cover of X is linear if it can be indexed by integers, as
{Un}, so that Un, Um meet only if |n − m| ≤ 1.

Theorem 3.1. 1. A uniform space X is R-complete iff it is complete and

has a subbase of linear covers.

2. A uniform space X is R-complete if X = γcX .

3. The class of all R-complete spaces is epireflective in all uniform spaces.

The epireflection of X is γcX .

4. Every R-complete space is realcompact.

5. A topological space is realcompact iff its topology is induced by an R-

complete uniformity.

6. Covering character of R-complete spaces is at most ω1 (thus the fine

modification of an R-complete space need not be R-complete).
7. A precompact space is R-complete iff it is compact.

8. A uniformly zero-dimensional space X is R-complete iff it is complete and

cov X ≤ ω1. Thus, a uniformly discrete space is R-complete iff it is at

most countable.

9. The hedgehog H(ω1) is a complete metric space with cov H(ω1) = ω1 and

it is not R-complete.

Proof: It was proved by Isbell in [17] that a uniform space can be embedded
into a power of R iff it has a subbase of linear covers. Now the assertion 1 follows.
The items 2–7 are very easy to show. The assertion 8 follows from the fact that a
uniformly zero-dimensional space X has cov X ≤ ω1 iff it can be embedded into a
power of N. The hedgehog H(ω1) is not precompact but U(H(ω1)) = U∗(H(ω1))
so that c(H(ω1)) = p(H(ω1)). �

3.2 r-complete spaces. In the next, r stays for an upper modification of uni-
form spaces preserving proximity, i.e., X is finer than rX that is finer than pX ,
and the identity map X → rX is a reflection into spaces coinciding with their
r–modification. For us the main such modifications are c, pκ.

Definition 2. A uniform space X is said to be r-complete if its upper modification
rX is complete (i.e., γrX = rX).
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At first we shall show some general properties of r-complete spaces and then
their special properties for special choices of r. We shall denote by X(r) the
uniform space having for its underlying set γrX and for its uniformity the finest
one coarser than tf (γrX) and X+(γrX \X)D, where YD is the uniformly discrete
space with the underlying set Y . The space X(r) is the finest one inducing the
topology of γrX and making the identity map X → γrX uniformly continuous
into X(r). For r = p we have X(p) = sX so that X need not be a uniform
subspace of X(r). Clearly, X is a topological subspace of X(r) that is a topological
subspace of sX .

We want γrX to be r-complete, so we shall assume rγr = γr in the next (the
main applications r = c, pκ satisfy that equality). A comparison r ≥ t of two
modifications means rX is coarser than tX for all X .

Theorem 3.2. 1. Every r-complete space is complete.

2. The spaces γrX are r-complete.

3. If X is r-complete then every uniform space finer than rX and inducing

the same topology as X is r-complete.

4. The class of all r-complete spaces is epireflective in all uniform spaces.

An epireflection of X is X(r).
5. A precompact space is r-complete iff it is compact.

6. If t ≤ r then every r-complete space is t-complete.

7. If r ≥ e then every r-complete space is realcompact (for spaces X with

cov tfX ≤ m the condition r ≥ e can be omitted). If r ≤ c then tfX is

r-complete provided X is realcompact (then a uniformly discrete space X
is r-complete iff |X | < m).

Proof: The items 1, 2, 5 and 6 are easy. To show 3 it suffices to realize that if Y
is finer than rX and coarser than tfX , then rY is finer than rX and is complete
provided rX is complete.

We shall now prove the assertion 4. Since we are in Hausdorff spaces, it suffices
to show that the class of r-complete spaces is closed hereditary and productive. So,
let X be r-complete and Y be its closed subspace. Then the inclusion map Y → X
maps rY into rX and, consequently, rY is complete provided rX is complete.
Let Xi, i ∈ I, be a family of r-complete spaces. The projections

∏
I Xi → Xi are

uniformly continuous also as maps r
∏

I Xi → rXi that generate a uniformly con-
tinuous identity map r

∏
I Xi →

∏
I rXi. Since both r

∏
I Xi,

∏
I rXi induce the

same topology and the second space is complete, also the first space is complete.
Thus

∏
I Xi is r-complete.

An alternative proof shows also that X(r) is a reflection of X in the class of
r-complete spaces. At first one must prove that X(r) is r-complete. That follows
from the fact that rγrX = γrX (by our assumption) and, thus rX(r) is finer than
γrX with the same topology — consequently, rX(r) is complete. To show that
X(r) is a reflection, take a uniformly continuous map f : X → Y, Y r-complete.
Then f is uniformly continuous as a map rX → rY and can be extended to a
uniformly continuous map f ′ : γrX → γrY = rY . Now, f ′ : tfγrX → tfrY → Y
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is uniformly continuous and f ′ : X + (γrX \ X)D → Y is uniformly continuous.
Consequently, f ′ is uniformly continuous on X(r).

It remains to prove 7. If r ≥ e then r-completeness implies completeness of
etfX , thus realcompactness of X . If cov tfX ≤ m completeness of tfX is sufficient
for realcompactness of X . If r ≤ c and X is realcompact, then ctfX is complete,
thus rtfX is complete. �

The extreme choices r = p or r equal to identity are trivial. In the first case
we get exactly compact spaces and in the latter case exactly complete spaces for
r-complete spaces. It is easy to see that the first assertion in 7 does not hold for
r equal to identity and the last one does not hold for r = p.

Probably, the most interesting cases are r = c and r = e. Completeness of eX
and cX was studied in many papers published 40-50 years ago (some authors:
J.R. Isbell, A.W. Hager, O. Njastad, M.D. Rice, G.D. Reynolds, J. Pelant).

3.2.1 c-complete spaces. Taking a special choice r = c one can add more
assertions to those for general r in Theorem 3.2.

Theorem 3.3. 1. A uniform space X is c-complete iff there exists a uni-

formly continuous homeomorphism of X onto a closed uniform subspace

of a power of R.

2. A uniformly zero-dimensional space is c-complete iff it is complete and its

covering character is not bigger than m. Thus a uniformly discrete space

is c-complete iff its cardinality is Ulam non-measurable.

3. Every R-complete space is c-complete. The uniformly discrete space of

cardinality ω1 is c-complete but not R-complete.

4. The hedgehog H(ω) is not c-complete.

Proof: 1. Let Y be a closed uniform subspace of a power of R that is homeo-
morphic to X and the homeomorphism X → Y is uniformly continuous. We can
assume that the homeomorphism is identity. Then γcY = Y induces the same
topology as X does and X is finer than Y . Consequently, cX is finer than Y and
is complete, thus X is c-complete (use Theorem 3.2.3).

Every uniformly zero-dimensional space X can be embedded into a product
of uniformly discrete spaces of cardinalities less than cov X . By 1, a uniformly
discrete space is c-complete iff it is realcompact, i.e., its cardinality is Ulam non-
measurable. Those two assertions imply 2.

The assertion in 3 follows from 1 and Theorem 3.2.7 and 4 follows from the
equality c(H(ω)) = p(H(ω)). �

For metrizable spaces, an interesting characterization of c-complete spaces was
announced by M.I. Garrido, A.S. Meroño at Prague Toposym, June 2016 (see [6]).
We shall prove their result in the setting of all uniform spaces (Theorem 3.7).1

1Shortly before submitting this paper, the author received their contribution to Toposym
Proceedings [7], where the original result for metric spaces was also generalized to general
uniform spaces.
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Their basic idea is to use decomposition of uniform spaces using iterations that
was used by J. Hejcman in his definition and study of uniform boundedness (see
[10], [11]). For any symmetric uniform neighborhood U of diagonal in a uniform
space X the relation of points x ∼U y if there exists n ∈ N such that y ∈ Un[x],
is equivalence. The equivalence classes are the sets U∞[x] =

⋃
N

Un[x] and they
form a uniform partition of X . We should keep in mind that (unlike in topological
spaces) a uniform partition {Xa}A of X does not mean that X is a coproduct of
the subspaces {Xa}A (products of an infinite uniformly discrete space and of a
convenient uniform space (e.g., of R) show that).

Our main task is to characterize Cauchy filters on cX by means of properties
of X . At first a general easy assertion. In the next assertion (probably known
as folklore), we use a bireflective full subcategory R of uniform spaces contain-
ing all compact spaces. We denote by r the corresponding reflection preserving
underlying sets. Then r preserves proximities.

Lemma 3.4. Let {Xa}A be a uniform partition of a uniform space X and the

uniformly discrete space A belongs to a bireflective subcategory R of uniform

spaces. Then γrX ⊂
⋃

A Xa
sX

.

Proof: Let f : X → A be a map assigning a to Xa. The map f is uniformly
continuous. Since A ∈ R, f can be extended to a uniformly continuous map

f̃ : γrX → A, which implies the requested inclusion. �

The next result belongs to Isbell since the cover {An ∪ An+1}N is a linear
uniform cover of X (see the beginning of the proof of Theorem 3.1). We shall give
a short proof here.

Lemma 3.5. Let {An}N be a partition of a uniform space X such that, for some

uniform neighborhood U of ∆X , U [An] ∩ Ak 6= ∅ only if |k − n| ≤ 1. Then the

sequence {An ∪ An+1}N is a uniform cover in cX .

Proof: Let a continuous pseudometric d ≤ 1 be subordinated to U (i.e., d(x, y) <
1 implies (x, y) ∈ U). Define f(z) = 0 for z ∈ A1 and f(z) = n − 1 + d(z, An−1)
if z ∈ An, n > 1. If δ < 1 and d(z, y) < δ then z, y belong either to a same set
An or to two neighboring sets An, An+1 and, thus, the δ-cover refines the cover
{An ∪ An+1}N. It remains to show that f is uniformly continuous. Take again
some δ > 0 and z, y as before. We have

|f(z)−f(y)| =






|d(z, An−1) − d(y, An−1)| ≤ d(z, y) , z, y ∈ An

|1+d(y, An) − d(z, An−1)|= |d(y, An−1) + d(y, An) − d(z, An−1)|

≤d(y, z)+d(y, An)≤2d(z, y) , z ∈ An, y ∈ An+1

Consequently, f is uniformly continuous on (X, d) and, thus, on X . The rest of
the proof is clear. �

We shall now apply the previous assertion to c-complete spaces.
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Proposition 3.6. Let every uniform partition of X have cardinality smaller than

m. Then an ultrafilter F on X is Cauchy in cX iff for every uniform neighborhood

U of ∆X in X there exists x ∈ X and n ∈ N such that Un[x] ∈ F .

Proof: Let F be a Cauchy filter in cX and U be a uniform neighborhood of ∆X

in X . The uniform partition {U∞[x]; x ∈ X} has cardinality less than m. Since
every uniformly discrete space of Ulam non-measurable cardinality is c-complete,
it follows from Lemma 3.4 that there exists some x ∈ X with U∞[x] ∈ F . By
Lemma 3.5, the sequence {Un[x]}N is a uniform cover of cU∞[x], so that one of
its members belongs to F (take An = Un+1[x] \ Un[x] in Lemma 3.5).

Let, conversely, an ultrafilter F have the property from the proposition. To
prove that F is Cauchy in cX , it suffices to show that f(F) is Cauchy in R for
any f ∈ U(X). The property of F implies existence of F ∈ F with bounded

f(F ). Thus, f(F) is an ultrafilter on a compact set f(F ), it converges and, thus,
is Cauchy in R. �

In the first part of the proof it was sufficient to assume F to be a filter and,
moreover, it follows that one of the sets Un+1[x] \ Un[x] belongs to F .

We came to a characterization of Cauchy ultrafilters in cX by means of unifor-
mity structure of X . Filters having the property from the previous proposition
were defined and investigated for metrizable spaces in [5] under the name Bour-
baki Cauchy filters. Since they are defined by means of iteration of uniform
neighborhoods of diagonal, we shall call them iteratively Cauchy filters.

Definition 3. A filter F in a uniform space X is said to be iteratively Cauchy

(briefly i-Cauchy) if for any uniform neighborhood U of ∆X there exist x ∈ X ,
n ∈ N such that Un[x] ∈ F .

The space X is said to be iteratively complete if every i-Cauchy ultrafilter in X
converges in X .

If we take filters instead of ultrafilters in the definition of iterative completeness,
we must use accumulation points instead of limit points. For instance, every filter
in R with nonempty bounded intersection is i-Cauchy. It would be possible to use
limit points even for filters if we add a condition in the definition, e.g., that for
any uniform neighborhoods U, V of ∆(X) with V ◦V ⊂ U one has either U [x] ∈ F
or X \ V [x] ∈ F for some x ∈ X (i.e., F is Cauchy in pX).

The space R is iteratively complete since every its i-Cauchy filter contains
a compact subset of R. It is easy to see that i-Cauchy filters are preserved by
uniformly continuous maps. Since every Cauchy filter is i-Cauchy, every iteratively
complete space is complete.

As a corollary of Proposition 3.6 we get a generalization of the result by Garrido
and Meroño from [6].

Theorem 3.7. A uniform space X is c-complete iff it is iteratively complete and

no uniform partition of X is of Ulam measurable cardinality.
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Corollary 3.8. A topological space is realcompact iff it has an iteratively com-

plete uniformity with no uniform partition of Ulam measurable cardinality.

Another consequence of Theorem 3.7 is the following interesting result proved
by G.D. Reynolds and M.D. Rice in [26].

Corollary 3.9. Every complete space with covering character not bigger than m

and having a base of star-finite covers is c-complete.

Proof: If X is star-finite then every Un[x] is a union of a finite number of
some U [y]. Thus, every i-Cauchy ultrafilter in X is Cauchy. �

There are two more properties that can be substituted instead of star-finiteness
in the last corollary, namely local finiteness (see [19, Theorem VII.18]) and inver-
sion property (see [27]). It seems it is easier to prove those results directly than
to use Theorem 3.7.

We add a historical remark. O. Njastad in [24] defined a realcompact-like
notion for proximity spaces X : if ξ ∈ sX \ X then there exists a proximally
continuous map X → R that cannot be continuously extended to ξ. Since for
proximally fine spaces proximal continuity and uniform continuity coincide, for
such spaces (e.g., metrizable spaces or, more general, products of spaces having
linearly ordered bases) the definition gives c-completeness. So, for metrizable
uniform spaces, some characterizations of c-completeness and constructions of c-
realcompactifications can be found in [24]. For instance, a metrizable space X is
c-complete iff every maximal regular filter on X is equi-uniform.

3.2.2 e-complete spaces. The choice r = e gives similar results as for the
choice r = c. Perhaps, the term e-completeness is not quite natural since it has
practically nothing common with reals.

Theorem 3.10. 1. A uniform space X is e-complete iff there exists a uni-

formly continuous homeomorphism of X onto a closed subspace of prod-

ucts of complete metrizable separable spaces.

2. Every c-complete space is e-complete. The hedgehog H(ω) is e-complete

but not c-complete.

3. A uniformly zero-dimensional space is e-complete iff it is c-complete (i.e.,
iff it is complete and its covering character is not bigger than m). Thus,

a uniformly discrete space is e-complete iff its cardinality is Ulam non-

measurable.

Proof: 1. For every separable metric space M one has eM = M and every
Y with eY = Y can be uniformly embedded into a product of separable metric
spaces

∏
I Mi. So, if Y is complete, it is embedded onto a closed subspace and

for X with eX = Y the embedding map X →
∏

I Mi is uniformly continuous and
remains a homeomorphism.

The first part of the item 2 follows from Theorem 3.2.6. Since hedgehog H(ω) is
complete and separable, it is e-complete; it is not c-complete (cH(ω) = pH(ω)).
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The remaining item follows from the fact that for uniformly zero-dimensional
spaces X one has eX = cX . �

Every e-complete space is complete and no uniformly discrete space of car-
dinality at least m is e-complete. Does there exist a complete space of smaller
cardinality than m that is not e-complete? It is not difficult to realize that if such
an example exists, then ℓ∞(κ) (for some κ < m) is an example, too. The first
such an example was constructed by J. Pelant in [25].

There are several positive answers to the question for some special classes of
uniform spaces. M.D. Rice and G.D. Reynolds proved in [26] that eX is complete
provided X is complete, cov X ≤ m and it has a base of uniform covers composed
of point-finite covers. By now it is a largest class of nice spaces, where complete-
ness implies e-completeness. Point-finite uniform spaces coincide with spaces that
can be embedded into powers of some c0(κ). Thus, it suffices to show that c0(κ) is
e-complete provided κ < m - that is not easy to show. Much easier is the special
case of the so called distal spaces, i.e., spaces having a base of finitely dimensional
covers. It uses the fact that every finite-dimensional uniform cover is refined by a
uniform cover that is a union of finitely many uniformly discrete collections (see
[19, IV.25]). That proof can be easily generalized for such unions of countably
many uniformly discrete collections.

A uniform space is said to be uniformly σ-discrete if it has a base of uniformly σ-
discrete uniform covers, i.e. of covers that are unions of countably many uniformly
discrete collections.

Theorem 3.11. A uniformly σ-discrete space is e-complete iff it is complete and

cov X ≤ m.

Proof: Necessity is clear. So, let X be uniformly σ-discrete, complete and
cov X ≤ m. Take any Cauchy filter F on eX . To prove it converges it suffices
to show it is a Cauchy filter in X . Take any uniformly σ-discrete uniform cover
U =

⋃
N
Un, where Un are uniformly discrete collections. Since {

⋃
{U ; U ∈ Un}}N

is a countable uniform cover of X , there is some n ∈ N with
⋃
{U ; U ∈ Un} ∈ F .

Since Un is uniformly discrete and |Un| < m there must exist some U ∈ Un be-
longing to F . �

There may appear a question whether, as by c-completeness, one may require
that uniform partitions of X have cardinalities smaller than m instead of covX ≤
m. The answer is in the negative. The hedgehog is always uniformly connected
and 1-dimensional but H(m) is not e-realcompact.

If we use r = pκ for κ > ω1, the situation is similar as for κ = ω1, at least
for existence of a complete space X such that pκX is not complete. That was
shown also by J. Pelant in [25] using sufficiently large spaces ℓ∞(λ) (λ ≥ κ+

suffices). In fact, later on J. Pelant improved that result for any non-identical
upper modification r.

Clearly, if κ ≤ λ and X is pκ-complete, it is pλ-complete. Consequently, all
complete point-finite spaces are pκ-complete for any κ ≥ ω1.
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3.3 Realcompleteness by means of filters. The condition in Theorem 2.1.4
may have several variations in uniform spaces. A direct modification gives: a uni-
form space is complete and no its uniformly discrete subset has Ulam measurable
cardinality (i.e., cov X ≤ m). One possibility to get other classes is not to use
convergence of all Cauchy filters but of some only. We shall use cip for those
filters and formulate definitions and results using κ-intersection property.

In [12] a hierarchy starting with compact and realcompact spaces was pro-
longed: a topological space X is said to be κ-compact if every its zero-ultrafilter
with κ-intersection property converges in X . In [14] the definition was extended
to totally bounded uniformities and proved that those classes of spaces are sim-
ple (generated by a single space Pκ like compactness is generated by [0,1] and
realcompactness by R). Moreover, Pκ is not generated by Pλ for λ < κ. We
shall extend the definitions to all uniform spaces. The spaces Pκ are described as
follows: Pκ+ = [0, 1]κ − {p}, where p is any point of [0, 1]κ, Pκ =

∏
{Pλ+ ; λ < κ}

for non-successor κ. We shall usually use p = {0}, i.e., p is the point having all
its coordinates equal to zero.

There are several possibilities for transferring κ-compactness to uniform spaces.
One may use combinations of various Cauchy filters and zu-filters. We should have
in mind that in a uniform space every Cauchy filter with κ-intersection property
converges iff every Cauchy zu-filter with κ-intersection property converges and
that every minimal Cauchy filter is zu-filter.

Definition 4. A uniform space X is said to be κ-complete if one of the following
equivalent conditions holds.

1. Every minimal Cauchy filter in X with κ-intersection property converges.
2. Every Cauchy zu-filter in X with κ-intersection property converges.
3. Every Cauchy zu-ultrafilter in X with κ-intersection property converges.

It follows from Lemma 1.4 that for κ > ω and spaces X with cov X ≤ m the
word “Cauchy” can be omitted in the condition 3. In that case, κ-completeness
is a property of proximity spaces, i.e., a uniform space X is κ-complete iff pX has
that property. That is not the case for κ = ω.

The above properties for κ = ω1 appeared elsewhere under different names.
For instance, in [1] the author calls the spaces satisfying the property 2 as weakly
complete. In the same paper the property 3 without assuming zu-ultrafilter to
be Cauchy is investigated under the name Wallman realcompactness, in [2] as
R − zu-completeness. Those concepts are studied there on uniformities finest
among uniformities having the same collection of uniform zero sets. One can
find there references to related earlier notions (e.g. to papers by S. Mrówka or by
A.K. Steiner and E.F. Steiner).

At first we look at basic properties of κ-complete spaces.

Proposition 3.12. 1. X is complete iff it is ω-complete.

2. Every uniform space X is wu(X)+-complete (thus, every metrizable uni-

form space is ω1-complete).
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3. If κ < λ then every κ-complete space is λ-complete and there exists

a uniformly zero-dimensional uniform space that is λ-complete and not

κ-complete.

4. If X is κ-complete then any Y finer than X and inducing the same topo-

logy is κ-complete.

5. A topological space X is realcompact iff it is induced by an ω1-complete

uniform space with covering character not larger than m.

6. The class of κ-complete spaces is epireflective.

7. Every e-complete space is ω1-complete. There is an ω1-complete space

that is not complete, thus not e-complete.

Proof: The assertions 1 and 4 are easy. To prove 2, take a Cauchy filter F in X
with κ intersection property, where κ > wu(X). There is a base Uα, α ≤ wu(X),
of uniform covers of X . For every α there is Uα ∈ F ∩Uα. Then

⋂
Uα 6= ∅, which

implies that F converges to a point x ∈
⋂

Uα. Indeed, the neighborhood base
{stUα

x}α of x ∈
⋂

Uα belongs to F .
The first part of 3 is trivial. The totally bounded spaces Pκ described above

are κ-complete and not λ-complete (see [14]). The same procedure can be used if
one uses 2κ ⊂ {0} instead of [0, 1]κ \ {0}.

In 5, realcompactness of a topological space X implies cov(X, u) ≤ m for any
uniformity u on X and a convergence of every z-ultrafilter with cip, which together
entails ω1-completeness of tfX . Conversely, if a uniform space X is ω1-complete
and cov X ≤ m then for every z-ultrafilter F with cip on X the filter with the
base F ∩ Zu(X) is a zu-ultrafilter with cip on X (Lemma 1.1) and it is Cauchy
by Lemma 1.4. Consequently, it converges and X is realcompact.

To show 6, we must prove that the classes under consideration are closed he-
reditary and productive. The closed hereditary property is proved in a standard
way. To show productivity, it suffices to realize that projections preserve Cauchy
filters with κ-intersection property.

If X is e-realcompact, then it is complete and, thus, ω1-complete. Every metriz-
able non-complete space witnesses the last assertion. �

It was proved by M.D. Rice in [27] that each zu ultrafilter with cip in a uniform
space X converges iff meX is complete (m is the metric-fine coreflection). For X
with cov X ≤ m one has the following result.

Theorem 3.13 (M.D. Rice). If cov X ≤ m then X is ω1-complete iff mX is

complete.

We see a difference between r-completeness defined by means of an upper mod-
ification and between ω1-completeness characterized by means of completeness of
a lower modification, at least for spaces with not huge covering character. A ques-
tion is whether Theorem 3.13 may be modified for uncountable cardinals κ, i.e.,
for κ-complete spaces, to get a generalization of the previous theorem. We can
show that it is not possible.
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Theorem 3.14. For κ > ω1 there are no upper and lower modifications in uni-

form spaces, both preserving topology, such that X is κ-complete iff some com-

bination of those modifications applied to X is complete.

Proof: The space X = [0, 1]ω1 \ {0} is κ-complete for any κ > ω1. Since βX =
[0, 1]ω1 (see, e.g., [14]), there is a unique uniformity on X inducing its topology.
The space X is not complete. �

3.4 Realcompleteness using positions of X in sX. We now look at the
conditions 6 and 7 from Theorem 2.1. The following transfer to uniform spaces
gives equivalent properties (equivalent to ω1-completeness if cov X ≤ m) — see
the proof of Proposition 3.15 or [1], where references to some implications from
around 1970 are given.

1. X is Gδ-closed in sX ;
2. X is the intersection of all cozero sets in sX containing X .

It is not difficult to modify the properties to higher cardinals such that they
remain equivalent. We need to define or recall some concepts. A Gκ-closure of
A in Y consists of those points x ∈ Y such that every intersection of less than
κ neighborhoods of x meets A. A κ-zero set in Y is an intersection of less than
κ many zero sets in Y , κ-cozero set is a complement of a κ-zero set. Clearly,
Z ⊂ Y is κ-zero iff there exists a continuous map into some [0, 1]λ, λ < κ, with
Z = f−1({0}).

Proposition 3.15. Let X be a uniform space and κ be an infinite cardinal. Then

the following subsets of sX coincide:

Xz = {
⋂

Z
sX

; Z ∈ F ,F is a zu-ultrafilter in X with κ-intersection property}

Xc =
⋂

{C; C is a κ-cozero set in sX containing X}

Xu = κX
sX

(i.e., Gκ closure of X in sX).

Proof: Let ξ ∈ Xz \ X . Then ξ is a limit point of a zu-ultrafilter F with κ-
intersection property. For any open neighborhood U of ξ in sX one has U∩X ∈ F
and, consequently, intersection of less than κ many neighborhoods of ξ with X is
non-empty. Thus ξ ∈ Xu and Xz ⊂ Xu.

Now, let ξ ∈ Xu and assume there is a κ-cozero set C in sX containing X with
ξ /∈ C. There is some g ∈ U(sX, [0, 1]λ), λ < κ, with g(ξ) = {0}, {0} /∈ g(C).
Denote by gα the composition of g with the α-th projection of [0, 1]λ onto [0, 1]
and take Un

α = g−1
α [0, 1/n]. Then C∩

⋂
α,n Un

α = ∅, which implies X∩
⋂

α,n Un
α = ∅

and that is contradiction with ξ ∈ Xu. Consequently, Xu ⊂ Xc.
Take ξ ∈ Xc and let ξ be a limit of a zu-ultrafilter F from X that has not κ-

intersection property. That means
⋂

Zα = ∅ for some Zα ∈ F∩Zu(X), α < λ < κ.
For every α there is a zero set Sα in sX with Sα ∩ X = Zα. The intersection
S =

⋂
Sα is a nonvoid κ-zero set in sX disjoint with X . Since ξ ∈ S, we have

ξ /∈ sX \ S and the last set is a κ-cozero set in sX containing X . Thus ξ /∈ Xc
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and that contradiction proves Xc ⊂ Xz. The proof of equalities Xz = Xc = Xu

is finished. �

The next assertion can also be deduced from the results on Wallman realcom-
pactifications in [1], [2] formulated for κ = ω1.

Corollary 3.16. The first two of the following properties for a uniform space X
are equivalent and are equivalent to the third one if cov X ≤ m.

1. X is Gκ-closed in sX .

2. sX \ X is κ-zero in sX .

3. X is κ-complete.

It follows from the previous corollary that no new concept need be defined
using a position of X in sX .

3.5 Realcompleteness using extension of maps. The remaining proper-
ties from Theorem 2.1 have the following corresponding formulations in uniform
spaces. All those uniform modifications are equivalent to properties defined ear-
lier.

Proposition 3.17. Consider the following properties for a uniform space X .

1. For each Y containing X as a dense uniform subspace and for each y ∈
Y \ X there exists f ∈ U(X) that cannot be extended continuously to y
(into R).

2. For each ξ ∈ sX \ X one can find f ∈ U(X) that cannot be continuously

extended to ξ.
3. For each ξ ∈ sX \ X one can find f ∈ U∗(X), f > 0, that continuously

extends to ξ with the value 0.

Then the first property is equivalent to completeness, the second one to c-real-

compactness and the last one to ω1-completeness provided cov X ≤ m.

Proof: That completeness is equivalent to 1 follows immediately from the fact
that complete spaces are absolutely closed.

Clearly, cX is complete iff the property 2 holds.
To prove the last assertion, assume first that X is ω1-complete, cov X ≤ m and

take any ξ ∈ sX \X . Then the trace F of the neighborhood filter of ξ in sX to X
has not cip. We can find neighborhoods Un of ξ in sX with X∩

⋂
Un = ∅. We may

assume that Un ⊃ Un+1. There is fn ∈ U(sX, [0, 1]) with fn(ξ) = 0, fn(x) = 1 for
x ∈ sX \ Un. Then the restriction f of the function g =

∑
fn/2n to X belongs

to U(X, (0, 1]) and g(ξ) = 0. Conversely, assume the property 3 is fulfilled and X
is not ω1-complete. Then there exists ξ ∈ sX \ X such that the trace F of the
neighborhood filter of ξ in sX to X has cip. Take any f ∈ U(X, (0, 1]) and suppose

f̃(ξ) = 0. The preimages Un = f−1([0, 1/n]) belong to F , therefore,
⋂

Un 6= ∅.
Consequently, there is some x ∈ X with f(x) = 0, which is a contradiction. �

It is possible to reformulate the previous property 3 to get a characterization
of κ-completeness:
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Proposition 3.18. Every zu-ultrafilter with κ-intersection property in a uniform

space X converges iff for each ξ ∈ sX \ X one can find f : X → Pλ+ for some

λ < κ, that continuously extends to ξ with the value {0}.

Proof: We may assume κ > ω1. Suppose first that every zu-ultrafilter with
κ-intersection property in X converges and let ξ ∈ sX \ X . The point ξ is a
limit point of a zu-ultrafilter F on X not having κ-intersection property. Thus
there is λ < κ and Zα ∈ F , α ∈ λ, with

⋂
λ Zα = ∅. For each α < λ we

find fα ∈ U(X, [0, 1]) with Zα = f−1
α (0). The reduced product f of all fα is a

uniformly continuous map of X into [0, 1]λ\{0}. Clearly, the continuous extension
sX → [0, 1[λ of f has the value {0} at ξ.

Conversely, assume there is a non-converging zu-ultrafilter on X with κ-inter-
section property and let ξ ∈ sX be its limit. Take λ < κ, any f ∈ U(X, Pλ+)
extending continuously to ξ with the value {0} and denote by fα the composition
of f with the α-projection [0, 1]λ onto its α-th coordinate space. Then all the
sets Zn

α = f−1
α ([0, 1/n]) belong to F and, thus,

⋂
Zn

α 6= ∅, which implies that
f(x) = {0} for some x ∈

⋂
Zn

α ⊂ X and that is not possible. Consequently, any
f ∈ U(X, Pλ+) extends continuously to ξ with a value different from {0}. �

Corollary 3.19. A uniform space X with cov X ≤ m is κ-complete iff for each

ξ ∈ sX \ X one can find f : X → Pλ+ for some λ < κ, that continuously extends

to ξ with the value {0}.

3.6 Closing remarks. We have the following implications concerning epireflec-
tive classes:

R-complete → c-complete → e-complete → complete → ω1-complete

As it follows from the preceding text, no arrow can be converted.
The above classes contained in complete spaces are characterized by complete-

ness of bireflections, that one containing all complete spaces by completeness of a
coreflection (for not huge covering characters). That suggests possibility to define
other classes of uniform spaces by means of completeness of some reflections or
coreflections or their combinations.

The classes are productive and closed-hereditary. They are also closed under
some coproducts: if a uniformly discrete space D belongs to a class C above,
then any coproduct of |D| many spaces Xd from C also belongs to C (since such
a coproduct is finer than a closed subspace of D ×

∏
D Xd and is its topological

subspace). None of the classes is closed under quotients. To show that we need
the fact that every uniform space X is a quotient of a complete uniformly zero-
dimensional space Xq of the same cardinality (see, e.g., [19, p. 52]). Not every
countable uniform space is complete but every countable complete uniformly zero-
dimensional space is R-complete. So, a quotient of some R-complete space need
not be complete. That procedure does not work for ω1-complete spaces since
every countable uniform space is ω1-complete. The ordered space X of countable
ordinals with its unique uniformity is not ω1-complete but Xq is c-complete. Thus
quotients of c-complete spaces need not be ω1-complete.
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It is seen from the previous consideration that the only property that should
be recognized as a uniform counterpart of realcompactness is c-completeness. It
could be called realcompleteness or, better, uniform realcompleteness.
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