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Generalized versions of Ilmanen lemma:

. 1 .
Insertion of C'* or Clo’f functions

VAcLav KRYSTOF

Abstract. We prove that for a normed linear space X, if f1: X — R is continuous
and semiconvex with modulus w, fa: X — R is continuous and semiconcave
with modulus w and fi1 < fo, then there exists f € C1¥(X) such that f1 <
f < f2. Using this result we prove a generalization of Ilmanen lemma (which
deals with the case w(t) = t) to the case of an arbitrary nontrivial modulus w.
This generalization (where a Cllo’f function is inserted) gives a positive answer
to a problem formulated by A. Fathi and M. Zavidovique in 2010.
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1. Introduction

Suppose A C R™ is a convex set. We say that f: A — R is classically semi-
convex if there exists C' > 0 such that the function z — f(x) + Clz|?, z € A,
is convex. We say that f: A — R is classically semiconcave if —f is classically
semiconvex. T. Ilmanen proved the following result (so called Ilmanen lemma)
[9, Proof of 4F from 4G, page 199].

Ilmanen lemma. Let G C R" be an open set and f1, fo: G — R. Suppose that
f1 < f2 and that for every a € G there exists r > 0 such that U := U(a,r) C G,
filu is classically semiconvex and fo [y is classically semiconcave. Then there
exists [ € C’lt’cl(G) such that f; < f < fs.

Alternative proofs of Ilmanen lemma can be found in [1] and [7].

We will work with semiconvex, or semiconcave, functions with general modulus
(see Definition 2.2 and cf. [2, Definition 2.1.1]). Note that the classically semicon-
vex functions coincide with semiconvex functions with modulus w(t) = Ct where
C > 0.

A. Fathi and M. Zavidovique (see [7, Problem 5.1]) asked if Ilmanen lemma
can be generalized to the case of a general modulus w.

More precisely, suppose that G C R™ is an open set, w a modulus and f1, f:
G — R continuous functions such that f; < fs and for every a € G there exist
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C,r > 0 such that fi[y (4, is semiconvex with modulus Cw and fa[y(q,r) is semi-

concave with modulus Cw. Then the question is whether there exists f € Cll.g(‘f (@)

We prove (see Theorem 4.5) that the answer is positive if the modulus w satisfies
liminf; o+ w(t)/t > 0 (even if G is an open subset of a Hilbert space). Note (see
implication (2) below) that if liminf, ,o+ w(t)/t = 0, then fi (or fa2), is convex
(or concave, respectively) on every convex A C G. In such a case it is well known
that the answer is negative for many open G.

The proof of Theorem 4.5 is based on Corollary 3.2 which is a special case of
Theorem 3.1 (which has a short and quite simple proof).

Corollary 3.2 can be equivalently reformulated (without using the symbol
SC¥(X)) in the following way. Suppose that X is a normed linear space, w a mod-
ulus and fi, fo: X — R continuous functions such that f; is semiconvex with
modulus w, fo is semiconcave with modulus w and f; < fa. Then there exists
f € O (X) such that f; < f < fo.

So, Corollary 3.2 generalizes [1, Theorem 2].

2. Preliminaries

If X is a normed linear space, then we set U(a,r) := {z € X: ||z —al <},
a€X,r>0,andsupp f:={x € X: f(z) A0}, f: X = R.

Notation 2.1. We denote by M the set of all w: [0,00) — [0,00) which are
non-decreasing and satisfy lim; ,o+ w(t) = 0.

Definition 2.2. Let X be a normed linear space, A C X a convex set and w € M.

o We say that f: A — R is semiconvex with modulus w if

fOx+ (1 =Ay) <Af(2) + (1 =) f () + A1 = Nz = yllw(llz - yl)

for every x,y € A and X € [0,1].

o We say that f: A — R is semiconcave with modulus w if — f is semiconvex
with modulus w.

o We denote by SC*(A) the set of all f: A — R which are semiconvex
with modulus Cw for some C > 0. We denote by —SC“(A) the set of all
f+ A — R such that —f € SC¥(A).

If G is an open subset of a normed linear space and w € M, then we denote by
C1% (@) the set of all Fréchet differentiable f: G — R such that f’ is uniformly
continuous with modulus Cw for some C > 0, and we denote by C’I{."C‘)(G) the set
of all f: G — R which are locally C*.

The following lemma is well known and follows directly from the definition (for
(iv) cf. [2, Proposition 2.1.5]).

Lemma 2.3. Let X, A and w be as in Definition 2.2. Then the following hold.
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(i) Let f: A — R. Then f is semiconvex with modulus w if and only if f is

semiconvex with modulus w on every line, i.e., for every z,h € X, ||h| = 1,
the function t — f(x +th), t € {t € R:  +th € A}, is semiconvex with
modulus w.

(ii) Let f: X — R be semiconvex with modulus w and let z € X. Then the
function x — f(x + 2), x € X, is semiconvex with modulus w.

(iii) Let f1, fo: A = R be semiconvex with modulus w, let a1, as € [0,00) and
let as € R. Then a; f1 + az f2 + a3 is semiconvex with modulus (a1 + as)w.

(iv) Let S C R” be such that every s € S is semiconvex with modulus w and
f(z) :=sup{s(z): s € S} € R, z € A. Then the function f is semiconvex
with modulus w.

The notion of semiconvex functions is (up to a multiplicative constant) equiv-
alent to the notion of strongly paraconvex functions (for the definition see [13]).
More precisely, suppose that A is a convex subset of a normed linear space,
f: A= R, we M and set a(t) :=tw(t), t € [0,00), then (cf. [4, Theorem 4.16])

(1) fe€SC¥A) & f is strongly a(-)-paraconvex.

We also have
(2) (f € SC¥(A),liminf ﬂ = 0> = f is convex.
t—o0t+ t

For this implication see [13, Proposition 7] (the proof is not quite rigorous but
one can easily correct it) or [4, Corollary 3.6]. Hence we may (and sometimes
will) consider only the case liminf; ,o+ w(t)/t > 0. Note that for w € M we have

(3)  liminf @ >0 Vd € [0,00) IM € (0,00) ¥t € [0,d] t < Muw(t).

t—0+

We will need the following two propositions. The first one was proved in
[5, Proposition 2.8].

Proposition 2.4. Let I C R be an open interval, w € M and let f: I — R be
continuous. Then the following hold.

(i) If f is semiconvex with modulus w, then f! (x) € R for every x € I and
fi(zr) = fl(ze) < 2w(we — 21), x1,m0 €1, 21 < 29,
(ii) If f) (x) € R for every x € I and
fi(ey) = fl(ze) < w(zg —x1), z1,22 €I, 21 < T3,
then f is semiconvex with modulus w.

Proposition 2.5. Let X be a normed linear space, A C X an open convex set
and f € J,c SC¥(A). Then the following conditions are equivalent.

(i) The function f is locally Lipschitz.
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(ii) The function f is continuous.
(iii) The function f is locally bounded.

PROOF: Obviously (i) = (ii) = (iii). If (iii) holds, then (i) holds by (1) and
[13, Proposition 5]. O

We will need the following theorem whose part (i) is well known. Part (ii) is
essentially known at least in its local version (see [2, Theorem 3.3.7, page 60],
[6, Theorem A.19], and [10, Theorem 6.1]) but the present version is probably
new.

Theorem 2.6. Let X be a normed linear space, A C X an open convex set and
w € M. Then the following hold (where C(A) denotes the set of all continuous
f: A—=R).

(i) Ot (A) Cc C(A)NSCY(A)N (=SC¥(A)).

(ii) If A= X or A is bounded, then

(4) CL¥(A) = C(A) N SC¥(A) N (—SC¥(A)).

PRrROOF: (i) It follows easily from Lemma 2.3 (i) and [2, Proposition 2.1.2]. It can
be also deduced from Lemma 2.3 (i) and Proposition 2.4 (ii).

(ii) Let f € C(A) N SC¥(A) N (=SC¥(A)). By Proposition 2.5, f is locally
Lipschitz. Hence f and —f have nonempty Clarke subdifferential at every point
of A (cf. [3, Proposition 1.5, page 73]). Thus, by (1) and [14, Theorem 3], there
exists C' > 0 such that for every x € A we can find ¢, v, € X* with

f@+h) = f(x) = du(h) = =Cl[hllw(|[A])),  heA-u,
—f@+h)+ f(z) = da(h) = =Clhlw([Al)),  heA-uw

Adding these two inequalities together and using the standard argument we obtain
that ¢, = —¢,, x € A. Hence for every z € A

|f(x+Nh) = f(z) = ¢u(R)] < CllAllw(|n])),  he€A-a,
and f'(z) = ¢,. Thus f € CH¥(A) by [8, Corollary 126, page 58]. O

Remark 2.7. The corollary [8, Corollary 126, page 58] and the proof of Theo-
rem 2.6 show that (4) holds also for A such that there exist a € X, » > 0 and
a sequence (u,)n2; in X such that |u,| = n and U(a + u,,rn) C A for every
n € N. But (4) does not hold for an arbitrary open convex set A ([12, Exam-
ple 2.10, Remark 2.11]). However, if w(t) = ¢, t € [0,00), then (4) holds for any
open convex A (see [12, Theorem 2.9 (iv)]).

3. Insertion of a C'* function on the whole space

Here we prove the principal observation of this article. The main idea is based
on the choice of the function s in the proof of Theorem 3.1.
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Theorem 3.1. Let X be a normed linear space, f1, fo: X — R and wy,ws € M.
Suppose that f; is semiconvex with modulus w1, fo is semiconcave with modulus
wo and f1 < fs. Denote by S the set of all s: X — R which are semiconvex with
modulus wy and satisfy s < fs. Then the function

f(z) :==sup{s(z): s € S}, reX,

is semiconvex with modulus wy, semiconcave with modulus w- and satisfies f1 <

f < fa.

PRrOOF: It is clear that f1 < f < fy. By Lemma 2.3 (iv), f is semiconvex with
modulus wi. Now we will prove that f is semiconcave with modulus wo.
Let u,v € X and A € [0,1]. Set w:= Au+ (1 — A)v and define a function s by

s(@)=Af(x—w+u)+(1=Nf(z—w+w)
=AM = Nu —vlws([lu —of)),  zeX.

By Lemma 2.3 (ii), (iii), s is semiconvex with modulus Aw; + (1 — Nw; = wy.
Since fs is semiconcave with modulus wo, we have

5(2) < Malw — w+u) + (1= ) falw —w +0) = M1 = A — vllwa [l — ]
< oMz —w+u)+ (1= N (z —w+wv)) = fa(z), z e X.

Hence s € S and consequently s < f. So
fOu+ (1 =MNv) = s(w) = Af(u) + (1 =2 f(v) = A1 = A)|lu = v]jwz([lu = v]).
O

Corollary 3.2. Let X be a normed linear space, w € M, f; € SC¥(X) and
f2 € =SC¥(X). Suppose that f1, fo are continuous and fi < fy. Then there
exists f € C1%(X) such that f; < f < fa.

PROOF: By Theorem 3.1 there exists f € SC¥(X) N (=SC¥(X)) such that
fi < f < fa. Since fi1, fo are continuous, f is locally bounded. Hence, by
Proposition 2.5, f is continuous and thus, by Theorem 2.6, f € C1¥(X) . O

. 1 .
4. Insertion of a C;; function

In this section we will use Corollary 3.2 and partitions of unity to obtain
a version (Theorem 4.5) of Ilmanen lemma which works with locally semiconvex
and locally semiconcave functions defined on an open subset of a Hilbert space.
Recall that Theorem 4.5 gives a positive answer to a problem formulated by
A. Fathi and M. Zavidovique (see [7, Problem 5.1]).

We will need the following obvious fact.
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Fact 4.1. Let X,Y be normed linear spaces, A C X, and f: A - Y. If A is
bounded and f is uniformly continuous with some modulus w € M, then f is
bounded.

Lemma 4.2. Let X be a normed linear space, A C X a bounded open convex
set,w € M, g1 € C1*(A) and go € SC¥(A). Suppose that g; > 0, g2 is Lipschitz,
and liminf,_,o+ w(t)/t > 0. Then g g2 € SC¥(A).

PRrROOF: By Fact 4.1, g} is bounded and thus, by [8, Proposition 71, page 29],
g1 is Lipschitz. By the assumptions and Fact 4.1 we can find C' > 0 big enough
such that 0 < g1 < C, |g2| < C, g} is uniformly continuous with modulus Cw,
g2 is semiconvex with modulus Cw and g1,g2 are C-Lipschitz. By (3) there
exists M > 0 such that ¢t < Mw(t), t € [0,diam(A)]. We will show that g1g2 is
semiconvex with modulus (2M + 3)C?w.

Let 2,h € X, ||h|| = 1. Set I := {t € R: z +th € A} and for i = 1,2 define
a function f;(t) := g;(z+th), t € I. By Lemma 2.3 (i), it is sufficient to show that
f1f2 is semiconvex with modulus (2M + 3)C%w. Since g} is uniformly continuous
with modulus Cw, we easily obtain that f{(¢) € R for every t € I and

|f1(t1) = fi(t2)] < Cw(ts — t1), ti,te €1, t1 < to.

By Lemma 2.3 (i), f2 is semiconvex with modulus Cw and thus, by Proposi-
tion 2.4 (i), (f2)!, (t) € R for every ¢t € I and

(f2)(t1) = (f2)L(t2) < 2Cw(ta — t1), ti,ta €1, t1 < to.

Clearly f1, f2 are C-Lipschitz and hence also |fi| < C and [(f2)!. | < C. Thus
(fif2)! (t) € R for every t € I and

(fif2)\ (1) = (fif2)'y (t2)
= filt) f2(t1) + fr(t)(f2) (1) — fit2) fa(t2) — fi(t2)(f2))(t2)
= filt1)(f2(tr) = f2(t2)) + fa(t2) (fi(tr) — fi(t2))
+ () () (fi(t) = fitz)) + fi(t2)((F2) 0 (t) = (f2)4(E2))
< C%(ta —t1) + CPw(ta — t1) + C%(t2 — t1) + 2C%w(ta — t1)
< (2M + 3)C%w(ty — t1)
for every tq,ty € I, t; < ta. Hence f1 fo is semiconvex with modulus (2M + 3)C?w
by Proposition 2.4 (ii). O

Lemma 4.3. Let X be a normed linear space, f: X — R, and w € M. Suppose
that there exists an open convex set U C X such that supp f C U and f|y is
semiconvex with modulus w. Then f is semiconvex with modulus 2w.

PrOOF: By Lemma 2.3 (i) we may suppose that X = R. Then f is continuous
on U by [2, Theorem 2.1.7]. Since supp f C U, it follows that f is continuous and
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f'(x) = 0 for every x € R\ U. By Proposition 2.4 (i), f\ (z) € R for every x € U
and

(5) fi(zr) = fi(ze) < 2w(xg — 1)

for every x1,29 € U, 21 < x9. Let x1,29 € R, 21 < x9. By Proposition 2.4 (ii)
it is enough to show that (5) holds. This is clear if ¢1,22 € U or x1,22 € R\ U.
Suppose that 1 € R\ U and 22 € U. Then f'(z1) = 0 and there exists ¢ € U
such that 21 < ¢ < a9 and f’(c) = 0. Hence

fi(@) = fi(@e) = fie) = filae) < 2w(ze — ) < 2w(z2 — 1)
The case z1 € U, 2o € R\ U is analogous. (I

Lemma 4.4. Let X be a Hilbert space, a € X, r > 0 and w € M. Suppose
that liminf, o+ w(t)/t > 0. Then there exists b € C1*(X) such that 0 < b < 1,
suppb C U(a,2r) and b=1 on Ula,r).

PROOF: Set g(z) := ||z —al?>, z € X, and ¢(t) := t, t € [0,00). It is well
known that g € C1%(X), g is Lipschitz on U := U(a,2r) and that we can find
f € CY#(R) such that 0 < f <1, supp f C (—1,4r?) and f =1 on [0,7?].

Set b = fog. Then clearly 0 < b < 1, suppb C U and b = 1 on U(a,r).
By Fact 4.1 and [8, Proposition 128, page 59] we have b|y€ C1¥(U). Hence,
blye C+(U) by (3). Since suppb C U, we easily obtain that b € C**(X). O

Theorem 4.5. Let X be a Hilbert space, G C X an open set, f1, fo: G — R and
w € M. Suppose that fi, fo are continuous, f1 < fo, liminf, g+ w(t)/t > 0 and
the following condition holds.
o For every a € G there exist r,C' > 0 such that U :=Ul(a,r) C G, fily is
semiconvex with modulus Cw and fs[y is semiconcave with modulus Cw.

Then there exists f € Ci>“(G) such that fi < f < fo.

loc

PRrOOF: We claim that for every a € G there exists r, > 0 and F, € C1*(X)
such that U(a,r,) C G and

(6) fl(x) SFa(l') §f2(z)ﬂ xGU(a,ra).

To prove this, choose a € G. By the assumptions and Proposition 2.5 there exists
re > 0 such that U := U(a,2r,) C G, f1, f2 are Lipschitz on U, f1]y€ SC¥(U)
and foly€ —SC¥(U). By Lemma 4.4 there exists b € C1%(X) such that b > 0,
suppb C U and b=1 on U(a,r,). For i = 1,2 we define a function

N b(l‘)fz(l‘), T e Ua
bil) = {o, reX\U.

Then by < b, suppby C U, supp by C U, and by, b2 are continuous. By Lemma 4.2
we have by [ye SC¥(U) and —bs[ye SC¥(U). Thus by € SC¥(X) and —by €
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SC“(X) by Lemma 4.3. Hence, by Corollary 3.2, there exists F,, € C**(X) such
that b; < F, < by. Then (6) holds and we are done.

Since {U(a,r,): a € G} forms an open cover of G, we can, by [15, Theorem 3]
and [11, Lemma 2.5], find a locally finite C*°-partition of unity Q on G subor-
dinated to {U(a,7q): a € G}. So, for every ¢ € Q there exists a; € G such that
suppq C Ulag,7q,). Set

f(z) = Z q(x)Fy, (), z € G.

qeQ

It follows from [8, Proposition 71, page 29] that ¢, ¢’ and F,, are locally Lipschitz
whenever ¢ € Q. Hence, ¢F,, € C’I’W(X)7 q € Q, by (3) and [8, Proposition 129,

loc
page 59]. Since Q is locally finite, it follows that f is well defined and f €
CL¥(G). Finally, for every 2 € G we have > geod(@) fi(z) = fi(z), i=1,2, and

loc

q(z)f1(z) < q(x)Fo,(x) < q(z)f2(z), ¢ € Q. Thus f1 < f < fo. a

Theorem 4.5 holds also for some non-Hilbertian Banach spaces as noted in the
following remark.

Remark 4.6. If, in Theorem 4.5, X is a Banach space and G admits locally finite
CY“_partitions of unity, then the proof works essentially the same. Moreover, it
can be proved that if a Banach space X admits an equivalent norm with modulus
of smoothness of power type 2 (e.g. X = ¢ for p > 2) and w € M is such
that liminf,_,o+ w(t)/t > 0, then every open G C X admits locally finite C1+-
partitions of unity. The proof of this fact is quite technical and thus we restricted
ourselves to the case of a Hilbert space.
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