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On certain non-constructive properties

of infinite-dimensional vector spaces

Eleftherios Tachtsis

Abstract. In set theory without the axiom of choice (AC), we study certain non-
constructive properties of infinite-dimensional vector spaces. Among several re-

sults, we establish the following:
(i) None of the principles ACLO (AC for linearly ordered families of nonempty

sets)—and hence ACWO (AC for well-ordered families of nonempty sets)—
DC(<κ) (where κ is an uncountable regular cardinal), and “for every infinite
set X, there is a bijection f : X → {0, 1} ×X”, implies the statement “there ex-
ists a field F such that every vector space over F has a basis” in ZFA set theory.
The above results settle the corresponding open problems from Howard and Ru-
bin “Consequences of the axiom of choice”, and also shed light on the question
of Bleicher in “Some theorems on vector spaces and the axiom of choice” about
the set-theoretic strength of the above algebraic statement.

(ii) “For every field F , for every family V = {Vi : i ∈ I} of nontrivial vector
spaces over F , there is a family F = {fi : i ∈ I} such that fi ∈ FVi for all i ∈ I,
and fi is a nonzero linear functional” is equivalent to the full AC in ZFA set
theory.

(iii) “Every infinite-dimensional vector space over R has a norm” is not prov-
able in ZF set theory.

Keywords: choice principle; vector space; base for vector space; nonzero linear
functional; norm on vector space; Fraenkel–Mostowski permutation models of
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1. Notation and terminology

◦ ZF denotes the Zermelo–Fraenkel set theory without AC.
◦ ZFC is ZF + AC.
◦ ZFA is ZF with the axiom of extensionality weakened to allow the exis-
tence of atoms.

Definition 1. Let X and Y be two sets:

(1) |X | ≤ |Y | if there is an injection (i.e., a one-to-one mapping) f : X → Y ;
(2) |X | = |Y | if there is a bijection (i.e., a one-to-one and onto mapping)

f : X → Y ;
(3) |X | < |Y | if |X | ≤ |Y | and |X | 6= |Y |.
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Let us also recall here the definition of alephs.

Definition 2. By transfinite recursion on ordinals α we define:

ω0 = ω (the set of natural numbers);

ωα+1 = H(ωα);

ωα = sup{ωβ : β < α}
(

=
⋃

{ωβ : β < α}
)

if α is a limit ordinal, α 6= 0.

(Where for a set A, H(A) is the Hartogs number of A, i.e., the least ordinal α
such that |α| 6≤ |A|.) As it is customary, ωα is denoted by ℵα.

For each ordinal number α, ℵα is an infinite well-ordered cardinal number,
i.e., an infinite initial ordinal (where an ordinal α is an initial ordinal if for any
β < α, |β| 6= |α|); in particular, ℵ0 is the first infinite cardinal, and ℵ1 is the first
uncountable cardinal.

Definition 3 (Definitions concerning set-theoretic principles/choice forms).

(1) AC is the axiom of choice (Form 1 in [5]): Every family of nonempty sets
has a choice function.

(2) MC is the axiom of multiple choice (Form 67 in [5]): For every family A
of nonempty sets there exists a function F with domain A such that for
all x ∈ A, F (x) is a nonempty finite subset of x. (The fuction F is called
a multiple choice function of A.)

It is known that MC is equivalent to AC in ZF, but not equivalent to
AC in ZFA (see [9, Theorems 9.1 and 9.2]).

(3) ACLO (Form 202 in [5]): Every linearly ordered family of nonempty sets
has a choice function.

It is known that ACLO is equivalent to AC in ZF, but not equivalent
to AC in ZFA (see [5]).

(4) ACWO (Form 40 in [5]): Every well-ordered family of nonempty sets has
a choice function.

It is known that ACWO is strictly weaker than AC in ZF (see [5]).

(5) ACℵ0 is the axiom of countable choice (Form 8 in [5]): Every countably
infinite family of nonempty sets has a choice function.

(6) MCℵ0 is the axiom of countable multiple choice (Form 126 in [5]): Every
countably infinite family of nonempty sets has a multiple choice function.

(7) CH is the continuum hypothesis: |2ω| = |ω1|.
(2ω is the set of all mappings from ω into 2 = {0, 1}; it is part of the

foklore that in ZF, |2ω| = |R| = |P(ω)|, where P(ω) is the power set of ω.)
(8) Wℵα

(Form 71 (α) in [5]): For all x, |x| ≤ ℵα ∨ ℵα ≤ |x|.
It is known that ∀κ(W (κ)) is equivalent to AC (see [9, Theorem 8.1]).

(9) DC(ℵα) (Form 87 (α) in [5]): Given a relation R such that for every
subset Y of a set X with |Y | < ℵα, there is an x ∈ X with Y R x then
there is a function f : ℵα → X such that {f(γ) : γ < β} R f(β) for all
β < ℵα.
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DC(ℵ0) is the principle of dependent choices DC (Form 43 in [5]).
DC(< ℵα): For all κ < ℵα(DC(κ)).
It is known that ∀κ(DC(κ)) is equivalent to AC (see [9, Theorem 8.1]).

(10) ACfin (Form 62 in [5]): Every family of nonempty finite sets has a choice
function.

It is known (see [5, Form 62 E]) that ACfin is equivalent to the Kinna–

Wagner selection principle for families of finite sets: For every family A
of finite sets there is a function f such that for all x ∈ A, if |x| > 1 then
f(x) is a nonempty proper subset of x.

(11) BPI is the Boolean prime ideal theorem (Form 14 in [5]): Every nontrivial
Boolean algebra has a prime ideal.

It is known (see [5]) that ACfin is strictly weaker than BPI in ZF.
(12) Form 3 in [5]: For every infinite set X , |X | = |2×X |.

It is known that ACLO 6⇒ (Form 3) in ZFA, and (Form 3) 6⇒ AC in
ZF (see [5]). Furthermore, Form 3 strictly implies Form 9 in ZF (Form
9 in [5]: “Every Dedekind-finite set is finite”, where a set X is called
Dedekind-finite if there is no injection f : ω → X).

Definition 4 (Definitions concerning vector spaces). Let (V,+, ·) be a vector
space over a field F .

(1) If X ⊆ V , then 〈X〉 denotes the linear span of X , i.e., the subspace of V
which consists of all finite linear combinations of elements of X .

(2) A set B ⊆ V is called a basis for V if B is linearly independent and
V = 〈B〉. (If B is a basis for V , then every vector v ∈ V can be expressed
uniquely as a finite linear combination of elements of B.)

(3) The vector space V is called finite-dimensional if V is finitely generated
(i.e., V is spanned by a finite set of vectors). Otherwise, V is called
infinite-dimensional .

(4) If F ∈ {R,Q}, then a mapping ‖·‖ : V → R+ ∪ {0} is called a norm on V
if it has the following properties:
(N1) ‖x‖ = 0 ⇒ x = 0V .
(N2) ‖λ · x‖ = |λ| · ‖x‖ for all λ ∈ F and x ∈ V .
(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

In the subsequent notations, the parameter F represents a field.

Definition 5 (Definitions concerning linear-algebraic principles).

(1) B(F ): Every vector space over F has a basis. The statements “∃F (B(F ))”
and “∀F (B(F ))” are, respectively, Form 428 and Form 66 in [5].

(2) S(F ) (Direct summand): For every vector space V over F and every
subspace W of V there is a subspace W ′ of V such that V = W ⊕W ′.
(Every v ∈ V can be written uniquely in the form v = w + w′ where
w ∈W and w′ ∈ W ′.)

S(F ) is AL21(F ) in [13] and is Form 95 (F ) in [5]. The following
notation is also used in [5]: Form [67 AD] for “∃F (S(F ))”, Form [67 AE]
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for “∃F of characteristic 0 (S(F ))”, Form [67 AF] for S(Q), Form [218 A]
for “∀F (S(F ))”.

(3) D(F ): For every nontrivial vector space V over F , there is a nonzero
linear functional f : V → F .

(4) MD(F ): For every family V = {Vi : i ∈ I} of nontrivial vector spaces
over F , there is a family F = {fi : i ∈ I} such that fi ∈ FVi and fi is
a nonzero linear functional for all i ∈ I,.

(5) ACVS(F ): For every family V = {Vi : i ∈ I} of nontrivial vector spaces
over F , there is a choice function of the family W = {Vi \ {0Vi

} : i ∈ I}.
(6) PIDSub(F ): Every infinite-dimensional vector space over F has a proper

infinite-dimensional subspace.
(7) ILI(F ): Every infinite-dimensional vector space over F has an infinite

linearly independent subset.
(8) For F ∈ {R,Q}, N(F ): Every infinite-dimensional vector space over F

has a norm.

2. Introduction, known results and aims

It is part of the folklore that AC implies that for every field F , every infinite-
dimensional vector space V over F has a basis (using either Zorn’s lemma or the
well-ordering theorem; each of which is equivalent to AC (see [5])). (Recall also
the standard result, taught in every undergraduate linear algebra course, that
every finitely generated vector space has a basis, without invoking any form of
choice.)

A. Blass in [2] showed that if for every field F , every vector space V over F
has a basis, then, in ZF, the axiom of multiple choice MC is true. Since in ZF,
MC is equivalent to AC (see [9, Theorem 9.1]), A. Blass established the following
result.

Theorem 1. In ZF, ∀F (B(F )) is equivalent to AC.

In [2], a multiple choice function is constructed for a given familyA of nonempty
sets using B(F ) for a field F which depends on the family A. If one considers
a specific field F (for instance, the field Q of rational numbers), then it is an open

problem whether the statement “every vector space over F (respectively, Q) has
a basis” implies AC.

Moreover, M.N. Bleicher in [3] asked whether or not AC is essential in proving
∃F (B(F )) (Form 428 in [5]), and if it is essential, is its full strength essential,
that is, if the aforementioned algebraic statement is equivalent to AC or to some
weak form of AC.

P. Howard and E. Tachtsis in [6] provided an answer, in the setting of ZFA,
to the first part of Bleicher’s question by establishing the following result, which
shows that AC is indeed essential in proving ∃F (B(F )).
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Theorem 2. The statement ∃F (B(F )) is false in the Dawson–Howard permuta-
tion model N 29 of [5]. Moreover, since BPI is true in N 29, BPI 6⇒ ∃F (B(F ))
in ZFA.

With regard to Bleicher’s questions on the set-theoretic strength of the state-
ment ∃F (B(F )), our aim in this paper is to supply considerably further informa-

tion by establishing (in Section 3.1) that

ACLO 6⇒ ∃F (B(F )) in ZFA,

and consequently

ACWO 6⇒ ∃F (B(F )) in ZFA.

(We note here that ACWO is false in N 29; see [5]. Recall also that ACLO is
equivalent to AC in ZF, but not equivalent to AC in ZFA.)

Furthermore, we shall prove that for any uncountable regular cardinal ℵα

DC(< ℵα) 6⇒ ∃F (B(F )) in ZFA,

and also that

“for every infinite set X, |X | = |2×X |” 6⇒ ∃F (B(F )) in ZFA.

By P. Howard and J.E. Rubin in [5], it is stated as unknown whether any
of ACLO, ACWO, DC(ℵα) and “for every infinite set X , |X | = |2 ×X |” implies
∃F (B(F )). Our aforementioned results to be proved in the sequel, settle these

open questions in the setting of ZFA.
Moreover, it is apparent that the above results indicate that ∃F (B(F )) is

a strong axiom.
A closely related subject that we will study in this paper (see Section 3.2)

concerns the existence of nonzero linear functionals on nontrivial vector spaces.
It is clear that for any field F , B(F ) implies D(F ). The set-theoretic strength of
the principle D(F ) for a given F , as well as of ∀F (D(F )) and ∃F (D(F )), has been
investigated thoroughly by P. Howard and E. Tachtsis in [6] and by M. Morillon
in [12]. In [6], among several results that we list below for the reader’s convenience,
it is shown that ∀F (D(F )) implies none of AC and ∀F (B(F )) in ZFA, and BPI
implies “∀ finite F (D(F ))”. The question of whether ∀F (D(F )) implies AC in
ZF is still open. Characterizations of D(F ), where F is any field, as well as the
deductive strength of D(Q) and D(Zp), where p is a prime number, are given by
M. Morillon in [12] and by P. Howard and E. Tachtsis in [6].

Now, it is clear that AC implies ∀F (MD(F )) (the latter principle being in-

troduced here), which in turn implies ∀F (D(F )), and hence the natural question
which arises here is whether or not any of the previous two implications is re-
versible.

We shall establish (in Section 3.2) that ∀F (MD(F )) is equivalent to the full
AC in ZFA, and therefore using the result from [6] that ∀F (D(F )) does not imply
AC in ZFA, we shall obtain that ∀F (D(F )) is strictly weaker than ∀F (MD(F ))
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in ZFA. Moreover, we shall prove that ∀F (ACVS(F )) is equivalent to AC in ZFA,
hence ∀F (MD(F )) is equivalent to ∀F (ACVS(F )).

Let us recall here (most of) the results from [12] and [6] on D(F ).

Theorem 3 ([12]). For any field F , the following statements are pairwise equiv-
alent:

(i) D(F );
(ii) DE(F ): for every nontrivial vector space V over F , for every vector sub-

space W of V and for every linear functional f : W → F there exists a linear
functional g : V → F such that f ⊆ g;

(iii) DS(F ): for every nontrivial vector space V over F and every a ∈ V \ {0},
there exists a linear functional f : V → F such that f(a) = 1;

(iv) multiple DS(F ): for every family V = {Vi : i ∈ I} of nontrivial vector
spaces over F , for every family A = {ai : i ∈ I} such that ai is a nonzero element
of Vi for all i ∈ I, there exists a family F = {fi : i ∈ I} such that fi : Vi → F is
a linear functional and fi(ai) = 1 for all i ∈ I.

Theorem 4 ([6]). The following statements hold:
(i) BPI implies the statement “for every finite field F , D(F )”. Hence, the latter

statement is strictly weaker than AC in ZF; in particular, “for every finite field F ,
D(F )” is true in the Basic Cohen model (Model M1 of [5]) of ZF+BPI+¬AC.

(ii) For any field F , S(F ) implies D(F ).
(iii) For any field F , D(F ) is equivalent to “for every system S of linear equa-

tions over F , S has a solution (in F ) if and only if every finite subsystem of S has
a solution (in F )” (the latter statement is Form 284 in [5]).

(iv) MC (which is equivalent to ∃F (S(F ))) implies ∃F (D(F )). Therefore,
∃F (D(F )) does not imply AC in ZFA.

(v) The statement ∀F (D(F )) does not imply AC in ZFA. In particular,
∀F (S(F )) is true in Lévy’s permutation model N 6 (in [5]) of ZFA + ¬AC, and
hence (by (ii)) ∀F (D(F )) is also true in N 6.

(vi) If F is a field of characteristic 0, then, in ZFA, MC implies D(F ).
(vii) ([12]) D(Q) implies van Douwen’s choice principle (i.e., every family A =

{(Ai,≤i) : i ∈ I} of linearly ordered sets isomorphic with (Z,≤), where “≤” is the
usual ordering on Z, has a choice function). Further, D(Q) does not imply B(Q).

(ix) ([12]) For every prime natural number p, D(Zp) implies C(p) (i.e., for every
family {Xi : i ∈ I} of nonempty finite sets, there is a function F with domain I
such that F (i) ⊆ Xi and p does not divide the cardinal number |F (i)| of F (i) for
all i ∈ I).

For any field F , D(F ) is also related to PIDSub(F ) (“every infinite-dimensional
vector space over F has a proper infinite-dimensional subspace”). In particular,
we will show (in Section 3.4) that for any field F , D(F ) implies PIDSub(F ) (and
hence, by Theorem 4 (v), we will deduce that ∀F (PIDSub(F )) does not imply
AC in ZFA) and that the latter principle is not provable in ZF. We do not know
what choice forms are implied by PIDSub(F ) for specific fields F , or whether
∀F (PIDSub(F )) implies AC in ZF. However, in view of Theorem 4 (i) and the
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fact that D(F ) implies PIDSub(F ), we shall obtain that for any finite field F ,
PIDSub(F ) 6⇒ AC in ZF. In addition to the above results, we shall also prove
that if F is any well-orderable field and if κ is any infinite well-ordered cardinal
number with κ > |F |, then Wκ implies PIDSub(F ). In particular, if κ > ℵ1, then
CH +Wκ implies PIDSub(R).

A ZFC-property of infinite-dimensional vector spaces over R or Q, which is
a consequence of the existence of a basis, is the existence of norms on such spaces.
Indeed, if V is an infinite-dimensional vector space over F (where F ∈ {R,Q}),
then firstly, we may let (by AC) B be a basis for V . Then for every element v ∈ V
there exists a unique finite set {b1, . . . , bn} ⊆ B and scalars λ1, . . . , λn from F
such that

v = λ1b1 + λ2b2 + · · ·+ λnbn.

The mappings ‖·‖1 : V → F+ ∪ {0} and ‖·‖2 : V → F+ ∪ {0} defined by

‖v‖1 = max{|λ1|, |λ2|, . . . , |λn|}

and

‖v‖2 =

n
∑

i=1

|λi|,

are easily seen to be norms on V . Since the above argument was carried out in
ZFC (in particular, the nonprovable (in ZF, see [12]) principle B(F ) suffices as
an assumption), the most natural question that emerges here is whether N(F ),
where F ∈ {R,Q}, is provable in set theory without choice. We answer this
question (in Section 3.3) in the negative by showing that there are permutation
models in which N(R) and N(Q) are false; the latter results are transferred to ZF
via the Jech–Sochor first embedding theorem. We also show that it is relatively
consistent with ZF that there exists an infinite-dimensional vector space over R
which has a norm, but has no basis.

In the concluding Section 3.5 of the paper, we investigate the question of
the placement of the principle ∀F (ILI(F )) (“for every field F , every infinite-
dimensional vector space over F has an infinite linearly independent subset”)
in the hierarchy of weak choice forms, and prove that the latter statement lies
in strength between the weak choice forms ACℵ0 and MCℵ0 . The above result
enhances the result of P. Howard and E. Tachtsis in [8, Theorem 6.1] that the
stronger principle “for every field F , every infinite-dimensional vector space over
F has a countably infinite linearly independent subset” also lies in strength be-
tween the aforementioned weak choice principles. In addition, we prove that
ILI(R) implies “every countably infinite family A = {An : n ∈ ω} of finite sets
each having at least two elements, has a partial Kinna–Wagner selection func-
tion” (actually, in Section 3.3, it is shown that the above implication holds if R
is replaced by any linearly orderable field of characteristic 0), and hence the im-

plication “∀F (ILI(F )) ⇒ MCℵ0” is not reversible in ZFA set theory (the Second
Fraenkel model—Model N 2 in [5]—witnesses MC + ¬ ILI(R)).
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3. Main results

This section is divided into five subsections. The first one deals with Bleicher’s
question from [3] about the set-theoretic strength of ∃F (B(F )).

3.1 On Bleicher’s question about the set-theoretic strength of ∃F (B(F )).
We start this part with the proof that ACLO (and hence ACWO) does not imply
∃F (B(F )) in ZFA set theory.

Theorem 5. (i) ACLO implies ∃F (B(F )) in ZF.
(ii) ACLO (and hence ACWO) does not imply ∃F (B(F )) in ZFA.

Proof: (i) This follows from the fact that, in ZF, ACLO ⇔ AC.
(ii) For our ZFA independence result, we shall use the permutation model

N 12 (ℵ1) of [5], whose description is as follows: We start with a model M of
ZFA + AC with an ℵ1-sized set A = {ai : i < ℵ1} of atoms. Let G be the
group of all permutations of A. For any element x of M , fixG(x) denotes the
subgroup {ϕ ∈ G : ∀ t ∈ x(ϕ(t) = t)} of G and SymG(x) denotes the subgroup
{ϕ ∈ G : ϕ(x) = x} of G. Let Γ be the normal filter of subgroups of G generated
by {fixG(E) : E ⊂ A and |E| ≤ ℵ0}. An element x of M is called symmetric

if SymG(x) ∈ Γ, and hence x is symmetric if there is some countable (finite
or countably infinite) set E ⊂ A such that fixG(E) ⊆ SymG(x). Under these
circumstances, E is called a support of x. The element x ofM is called hereditarily

symmetric if x and every element in the transitive closure of x is symmetric.
N 12 (ℵ1) is the FM model determined byM , G and Γ, that is, N 12 (ℵ1) consists
exactly of all the hereditarily symmetric elements of M .

It is known that ACLO is true in N 12 (ℵ1) (see [5]). Thus, we only need to
show that ∃F (B(F )) is false in N 12 (ℵ1).

To this end, let (F,+, ·) be any field in N 12 (ℵ1), and also let

Z =
⋃

{X × {X} : X ∈ [A]ω},

W = {f : Z → F : |{t ∈ Z : f(t) 6= 0}| < ℵ0}

and
V = {f ∈ W : ∀X ∈ [A]ω ,

∑

t∈X×{X}

f(t) = 0}.

For each u ∈ Z, let χu be the characteristic function of {u}. Clearly,W is a vector
space over F with basis BW = {χu : u ∈ Z} and V is a subspace of W . Let E0 be
a support for (F,+, ·); then E0 is a support for W , BW and V , so W , BW and V
are in N12 (ℵ1).

We shall prove that V does not have a basis in the model N 12 (ℵ1). By way
of a contradiction, assume that V has a basis B in N 12 (ℵ1) with support E and
without loss of generality assume that E0 ⊆ E. Since |A| = ℵ1 in the ground
model M and E is countable, there exists an element j ∈ ℵ1 which is greater
than sup{k ∈ ℵ1 : ak ∈ E}. Let X ∈ [A]ω such that ak ∈ X ⇒ k ≥ j. Clearly,
X ∩ E = ∅. Since B is a basis for V , there is an element a ∈ X and an element
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f ∈ B such that f(a′) 6= 0, where a′ = (a,X) and since
∑

t∈X×{X} f(t) = 0,

there is also an element b ∈ X \ {a} such that f(b′) 6= 0, where b′ = (b,X). Since
f ∈W , we have {t ∈ Z : f(t) 6= 0} is finite (and includes a′ and b′). Assume that
{t ∈ Z : f(t) 6= 0} \ {a′, b′} = {r1, r2, . . . , rm}. We may now write f as a linear
combination of elements of BW as follows:

(1) f = f(a′) · χa′ + f(b′) · χb′ +

m
∑

i=1

f(ri) · χri .

Choose a positive integer n for which n2 > 2n+m, and also choose two disjoint
subsets Sa′ and Sb′ of X (hence, (Sa′ ∪ Sb′) ∩ E = ∅) such that |Sa′ | = |Sb′ | = n
and (Sa′ ∪ Sb′) ∩ {a′, b′, r1, . . . , rm} = ∅.

For each ordered pair (s, t) ∈ Sa′ × Sb′ , let ϕ(s,t) = (a′, s)(b′, t) (i.e., ϕ(s,t) is
the product of the transpositions (a′, s) and (b′, t), so that ϕ(s,t)(u) = u for all
u ∈ Z \ {a′, b′, s, t}). Clearly, ϕ(s,t) ∈ fixG(E) for all (s, t) ∈ Sa′ × Sb′ , hence
ϕ(s,t)(B) = B and ϕ(s,t)((F,+, ·)) = (F,+, ·) for all (s, t) ∈ Sa′ × Sb′ .

It follows that for all (s, t) ∈ Sa′ × Sb′ and for all i, 1 ≤ i ≤ m, ϕ(s,t)(ri) = ri
and hence ϕ(s,t)(χri) = χri . Furthermore, ϕ(s,t)(χa′) = χs and ϕ(s,t)(χb′) = χt.
Therefore applying ϕ(s,t) to both sides of equation (1) we obtain

(2) ϕ(s,t)(f) = ϕ(s,t)(f(a
′)) · χs + ϕ(s,t)(f(b

′)) · χt +

m
∑

i=1

ϕ(s,t)(f(ri)) · χri .

Since, the restriction of ϕ(s,t) to F for all (s, t) ∈ Sa′ × Sb′ is a field auto-
morphism, and f(a′) 6= 0 and f(b′) 6= 0, it follows (from equation (2)) that
ϕ(s,t)(f)(s) = ϕ(s,t)(f(a

′)) 6= 0 and ϕ(s,t)(f)(t) = ϕ(s,t)(f(b
′)) 6= 0. However,

ϕ(s,t)(f)(u) = 0 for every u ∈ (Sa′ ∪ Sb′) \ {s, t}. Hence, if (s1, t1) and (s2, t2) are
two distinct elements of Sa′ × Sb′ , then ϕ(s1,t1)(f) 6= ϕ(s2,t2)(f). It follows that

the set D = {ϕ(s,t)(f) : (s, t) ∈ Sa′ × Sb′} has cardinality n2 = |Sa′ × Sb′ |.
Since ϕ(s,t) ∈ fixG(E) and E is a support of the basis B, we have D ⊆ B,

hence D is linearly independent. However, by equation (2), D is a subset of the
subspace of W spanned by {χri : 1 ≤ i ≤ m} ∪ {χs : s ∈ Sa′} ∪ {χt : t ∈ Sb′},
which has m + 2n elements. Since n2 > 2n+m, we have that D is not linearly
independent, which is a contradiction. �

Remark 1. In order to provide further insight to the reader, we note here that
∃F (B(F )) is also false in a model recently constructed by Howard and Tachtsis
in [7], whose description is as follows: We start with a model M of ZFA + AC
with an ℵ1-sized set A of atoms, which is a disjoint countably infinite union of
ℵ1-sized sets so that A =

⋃

{Ai : i ∈ ω}, where Ai = {ai,j : j < ℵ1}. Let G be the
group of all permutations of A, which fix Ai for all i ∈ ω. Let Γ be the normal
filter of subgroups of G generated by {fixG(E) : E ⊂ A and |E| ≤ ℵ0}. Let Mℵ1

be the FM model determined by M, G and Γ. (In [7], it has been shown that
if instead of G, one uses as a group of permutations the set of all permutations
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of A which fix each Ai but move only countably many atoms, then the resulting
permutation model is equal to Mℵ1

.)
In [7], it is shown that ACLO is true in Mℵ1

. On the other hand, the fact that
for every field F in Mℵ1

there exists a vector space V over F in Mℵ1
which has no

basis, can be established similarly to the proof of Theorem 5. Indeed, if (F,+, ·)
is any field in Mℵ1

, then we let

Z =
⋃

{X × {(i,X)} : i ∈ ω, X ∈ [Ai]
ω},

W = {f : Z → F : |{t ∈ Z : f(t) 6= 0}| < ℵ0}

and
V = {f ∈ W : ∀ i ∈ ω, ∀X ∈ [Ai]

ω,
∑

t∈X×{(i,X)}

f(t) = 0}.

Then, the vector space V over F has no basis in Mℵ1
. We leave the details to the

interested reader.

Theorem 6. Let κ be an uncountable regular cardinal number. Then the prin-
ciple DC(<κ) does not imply ∃F (B(F )) in ZFA.

Proof: The required model is a generalization of N 12 (ℵ1) which was used in
the proof of Theorem 5. So, one starts with a ground model M of ZFA + AC
whose set of atoms, A, has cardinality κ. Let G be the group of all permutations
of A, and let F be the normal filter on G which is generated by the subgroups
fixG(E) of G, where E ⊂ A has cardinality less than κ. Let N be the permutation
model which is determined by M , G and F .

The fact that the principle DC(λ) holds in N for every infinite cardinal λ < κ
follows from T. J. Jech, see [9, Lemma 8.4], which states that if β < κ and g is
a function on β with values in N , then g ∈ N . On the other hand, the proof that
∃F (B(F )) is false in N is similar to the proof of Theorem 5 and is left to the
reader. �

We note that for the proof of Theorem 6, we could also use the corresponding
generalization of the permutation model given in Remark 1.

Theorem 7. “For every infinite set X , |X | = |2×X |” does not imply ∃F (B(F ))
in ZFA.

Proof: For our independence result we shall use the Halpern–Howard Model
N 9 in [5]: We start with a ground model M of ZFA+AC with a set A of atoms
which has the structure of the set

ω(ω) = {s : ω → ω ∧ ∃n ∀ j > n, s(j) = 0}.

We identify A with the latter set to simplify the description of the group G.
A group G is the group of all permutations ϕ of A such that {a ∈ A : ϕ(a) 6= a}

(the support of ϕ) is bounded, that is the pseudo lengths of elements (for s ∈ A,
the pseudo length of s is the least number k such that for all l ≥ k, s(l) = 0,
see [4]) of the support of ϕ have a finite bound.
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The normal ideal I of supports is generated by S = {An
0
: n ∈ ω}, where 0 is

the sequence which is identically 0 and An
0
= {s ∈ A : ∀ j ≥ n, s(j) = 0}. A set

x has support An
0
if all permutations ϕ in G leaving

(a) An
0
pointwise fixed,

(b) {An
s : s ∈ A}, where An

s = {t ∈ A : ∀ j ≥ n, t(j) = s(j)} (called “the
n-block containing s” in [4]), fixed, i.e., ϕ(An

s ) = An
ϕ(s), and

(c) the first n coordinates of each s ∈ A pointwise fixed, also leave x fixed.
N 9 is the Fraenkel–Mostowski permutation model which is determined by M , G
and I.

J.D. Halpern and P. E. Howard in [4] have shown that, in N 9, the principle
“for every infinite set X , |X | = |2×X |” is true.

Therefore, we only need to show that ∃F (B(F )) is false in N 9. To this end,
let (F,+, ·) be any field in N 9 and also let (as in the proof of Theorem 5)

Z =
⋃

{X × {X} : X ∈ [A]ω},

W = {f : Z → F : |{t ∈ Z : f(t) 6= 0}| < ℵ0}

and
V = {f ∈ W : ∀X ∈ [A]ω,

∑

t∈X×{X}

f(t) = 0}.

(Note that Z ∈ N 9 since it has empty support, i.e., any permutation of A in
G fixes Z. Furthermore, recall that “for every infinite set X , |X | = |2 × X |”
(strictly) implies “every Dedekind-finite set is finite” (in ZF).)

Then, W is a vector space over F with basis BW = {χu : u ∈ A} and V is
a subspace of W . Let E0 be a support for (F,+, ·). As in the proof of Theorem 5,
we have that W , BW and V are in N 9.

We show that V does not have a basis inN 9. By way of a contradiction, assume
that V has a basis B in N 9 with support an n-block E = An

0
(containing 0) for

some n ∈ ω. Without loss of generality, we may assume that E0 ⊆ E. Let
r = (r0, . . . , rn−1) ∈ ωn, and also let

X = {s ∈ A : s ↾ n = r, s(n) ∈ ω \ {0}, and for all m > n, s(m) = 0}.

Then X ∈ N 9 and is countably infinite in N 9. Indeed, X is an infinite subset of
the (n+1)-block An+1

0
containing 0, which is countably infinite in N 9; |An+1

0
| =

|ωn+1| = ℵ0 in the ground model M , and An+1
0

is a support of any enumeration
of its elements by natural numbers—see conditions (a), (b), and (c) above for
an m-block Am

0
containing 0 to be a support for a set.

Furthermore, note that X ∩E = ∅ (since E = An
0
= {s ∈ A : ∀j ≥ n, s(j) = 0}

and for all s ∈ X , s(n) ∈ ω \ {0}) and that for any two distinct elements s and t
of X , s ↾ n = t ↾ n = r and s, t have the same pseudo length, namely n+ 1.

We may now continue identically to the proof of Theorem 5 in order to derive
the required contradiction. Thus, we conclude that ∃F (B(F )) is false in N 9,
finishing the proof of the theorem. �
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3.2 On the axiom of choice for families of sets of nonzero linear func-
tionals for nontrivial vector spaces over the same field. Clearly, AC (⇔
∀F (B(F )) in ZF) implies ∀F (MD(F )). So the natural question that arises is
whether ∀F (MD(F )) is equivalent to AC.

We show next that, in ZFA, the answer to the above question is in the af-

firmative. Furthermore, we prove that also ∀F (ACVS(F )) is equivalent to the
full AC in ZFA, thus ∀F (MD(F )) and ∀F (ACVS(F )) express the same truth in
ZFA. Our proof comprises two steps; firstly, we show that the above statements
imply MC, and secondly, that they imply ACfin in ZFA.

Theorem 8. In ZFA, the following statements are true:
(i) ∀F (MD(F )) implies MC.
(ii) ∀F (ACVS(F )) implies MC.

Proof: (i) Assume ∀F (MD(F )) is true. Let X = {Xi : i ∈ I} be a family of
nonempty sets. Without loss of generality, we assume that X is disjoint. Let
X =

⋃

X and let F be any field which is disjoint from X . Let F (X) be the field
of all rational functions with indeterminates from X and coefficients in F . (Every
element u ∈ F (X) is of the form (p1 + · · ·+ pn)/(q1 + · · ·+ qm), where pi and qi
are monomials, i.e., of the form a · xn1

1 · xn2

2 · . . . · xnk

k where a ∈ F , xr ∈ X (with
1 ≤ r ≤ k), and q1 + . . . + qm 6= 0.) For every i ∈ I, the i-degree of a monomial
p = a · xn1

1 · xn2

2 · . . . · xnk

k is defined as
∑

xr∈Xi
nr. A rational function u ∈ F (X)

is called i-homogeneous of degree 0 if all monomials appearing in the quotient
expression of u have the same i-degree. Let K be the subfield of F (X) consisting
of all rational functions in F (X) that are i-homogeneous of degree 0 for all i ∈ I.
Then F (X) is a vector space over K.

For each i ∈ I, let Vi be the subspace of F (X) which is generated by Xi, i.e.,
Vi is the linear span 〈Xi〉. Then for each i ∈ I, Vi is a finite-dimensional vector
space over K. Indeed, let x be any element of Xi. Then for all y ∈ Xi with y 6= x,
we have y = (y/x) · x and (y/x) ∈ K. It follows that Vi = 〈x〉.

By our hypothesis, we have that for the family V = {Vi : i ∈ I} there is a family
F = {fi : i ∈ I} such that for all i ∈ I, fi : Vi → K is a nonzero linear functional.

Claim 1. For every i ∈ I, there exists a unique element vi ∈ Vi such that
fi(vi) = 1K (where 1K denotes the multiplicative identity of the field K).

Proof: We prove the claim by contradiction. So assume that there exists an
index i ∈ I such that there are at least two elements u,w ∈ Vi with fi(u) =
fi(w) = 1K . Clearly, u 6= 0Vi

and w 6= 0Vi
. Since Vi = 〈x〉 for all x ∈ Xi, we have

that u = λw for some λ ∈ K \ {0}. Then we have

1K = fi(u) = fi(λw) = λfi(w) = λ · 1K = λ.

We conclude that u = w, which is a contradiction. This completes the proof of
the claim. �
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For each i ∈ I, fix the unique element vi ∈ Vi guaranteed by Claim 1. We
define a mapping F on I by requiring for all i ∈ I,

F (i) = {x ∈ Xi : x appears in the quotient expression of vi in reduced form}.

It is clear that F is a multiple choice function of X . Thus, MC holds as desired.
(ii) The proof is similar to the proof of part (i), so we leave it to the interested

reader. �

Theorem 9. In ZFA, the following statements are true:
(i) ∀F (MD(F )) implies ACfin.
(ii) ∀F (ACVS(F )) implies ACfin.

Proof: (i) It suffices to show that ∀F (MD(F )) implies the Kinna–Wagner se-
lection principle for families of finite sets, each having at least two elements. To
this end, assume that ∀F (MD(F )) is true. Let A = {Ai : i ∈ I} be a family of
finite sets such that for all i ∈ I, |Ai| > 1. For each i ∈ I, consider the set RAi

equipped with pointwise addition and scalar multiplication, and also let

Wi =

{

f ∈ RAi :
∑

x∈Ai

f(x) = 0

}

.

We identify RAi with the set Ui =
{
∑

x∈Ai
axx : ax ∈ R

}

, i.e., with the set of
all formal sums with indeterminates from Ai and coefficients in R, which can
be considered to be a vector space over R under the usual conventions about
addition and scalar multiplication. Consequently, we identify Wi with the set
{
∑

x∈Ai
axx : ax ∈ R,

∑

x∈Ai
ax = 0

}

. Clearly,Wi is a nontrivial vector subspace
of Ui for all i ∈ I. For each i ∈ I, we let

Vi = 〈Si〉, where Si =

{(

∑

x∈Ai\{z}

x

)

− (|Ai| − 1)z : z ∈ Ai

}

,

that is, Vi is the (nontrivial) vector subspace of Wi spanned by Si. (Note that
|Si| = |Ai|.) It is not hard to verify that Si is a linearly dependent subset of
the vector space Wi for all i ∈ I, and also that any subset of Si with cardinality
|Ai| − 1 is a basis for Vi.

From our hypothesis, we may let for each i ∈ I, fi ∈ RVi be a nonzero linear
functional. It follows that for all i ∈ I, there exists s ∈ Si with fi(s) 6= 0;
otherwise if there exists i ∈ I such that for all s ∈ Si, fi(s) = 0, then fi is zero
on a basis of Vi which is contained in Si. But this is absurd since fi is a nonzero
function. Furthermore, by the previous observation, as well as the fact that fi is
a linear mapping, it follows that fi is not constant on the set Si for all i ∈ I.

Therefore, let ri for all i ∈ I be the least real number r for which there exists
s ∈ Si such that fi(s) = r. For each i ∈ I, we let

Mi = {s ∈ Si : fi(s) = ri},
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and we also let

Ni = {z ∈ Ai : “−(|Ai| − 1)z” appears in the expression of some s ∈Mi}.

From the above arguments, we conclude a nonempty proper subset Ni of Ai for
all i ∈ I. Thus, the mapping

g = {(i, Ni) : i ∈ I}

is a Kinna–Wagner selection function of the family A = {Ai : i ∈ I}, and conse-
quently ACfin is true, as required. This completes the proof of (i).

(ii) As in the proof of part (i) of the current theorem, it suffices to show that
∀F (ACVS(F )) implies the Kinna–Wagner selection principle for families of finite
sets, each having at least two elements. To this end, assume that ∀F (ACVS(F ))
is true. Let A = {Ai : i ∈ I} be a family of finite sets such that |Ai| > 1 for all
i ∈ I. For each i ∈ I, consider the nontrivial vector subspace Vi =

{

f ∈ RAi :
∑

x∈Ai
f(x) = 0

}

of RAi (i.e., the set of functions from Ai to R equipped with
pointwise addition and scalar multiplication with scalars from R).

By our hypothesis, we may let F = {(i, fi) : i ∈ I} be a choice function of the
family U = {Vi \ {0Vi

} : i ∈ I}. Since fi 6= 0Vi
and

∑

x∈Ai
fi(x) = 0 for all i ∈ I,

it follows that

∅ 6= {x ∈ Ai : fi(x) > 0} ( Ai for all i ∈ I.

We let

g = {(i, {x ∈ Ai : fi(x) > 0}) : i ∈ I}.

Then g is a Kinna–Wagner selection function of A. Thus, ACfin holds, finishing
the proof of the theorem. �

Corollary 1. In ZFA, the following statements are true:
(i) ∀F (MD(F )) is equivalent to AC.
(ii) ∀F (ACVS(F )) is equivalent to AC.

Corollary 2. The statement ∀F (D(F )) is strictly weaker than ∀F (MD(F )) (and
hence strictly weaker than ∀F (ACVS(F ))) in ZFA.

Proof: This follows immediately from Corollary 1 and Theorem 4 (v). �

3.3 On the existence of norms on vector spaces over the fields R and Q.
In this section, we establish that for F ∈ {R,Q}, the principle N(F ) (“every
infinite-dimensional vector space over F has a norm”) is not a theorem of ZF.
Recall that B(F ) ⇒ N(F ) and that B(F ) is not provable in ZF. It is unknown

whether the above implications (for F = R and F = Q) are reversible in ZF. It is
also unknown whether any of B(F ) and N(F ) implies AC(R), i.e., AC restricted
to families of nonempty sets of reals.
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For use in the proof of the forthcoming Theorem 10, we include here the fol-
lowing well-known ZF-result of Lemma 1 below.

Lemma 1 (ZF). Let (X, ‖·‖) be a normed vector space over F , where F ∈ {R,Q}.
If Z is a proper vector subspace of X , then int(Z) = ∅ (i.e., Z has empty interior).

Proof: Assume the contrary, then there exist z ∈ Z and ǫ > 0 such that the
open ball B(z, ǫ) = {x ∈ X : ‖z−x‖ < ǫ} is contained in Z. Let x be any element
of X . Then there is a positive rational number a such that ‖ax‖ < ǫ. It follows
that z + ax ∈ B(z, ǫ) ⊆ Z, so x = a−1((z + ax) − z) ∈ Z. Thus, X = Z, which
contradicts the fact that Z is a proper subspace of X . �

Theorem 10. Let F ∈ {R,Q}. Then there is a permutation model N of ZFA
in which there is an infinite-dimensional vector space (A,+, ·) over F which does
not have a norm. The result can be transferred to ZF.

Proof: We start with a ground model M of ZFA + AC with a set A of atoms
such that |A| ≥ |F |. Endow A with operations “+” and “·” so that (A,+, ·) is an
infinite-dimensional vector space over F . Let G be the group of all vector space
automorphisms of (A,+, ·), and let F be the finite support (normal) filter, i.e., F
is generated by the subgroups fixG(E) = {ϕ ∈ G : ∀ e ∈ E(ϕ(e) = e)}, E ⊂ A is
finite. Let N be the Fraenkel–Mostowski model determined by M,G and F . (If
F = Q and |A| = ℵ0, then N is exactly Läuchli’s permutation model presented
in the proof of [9, Theorem 10.11], see also [10].)

In the model N , A is an infinite-dimensional vector space over F which does
not have a basis; in particular, as in the proof of Jech’s Theorem 10.11 of [9], it
can be shown that if B ∈ N is a linearly independent subset of A, then B is finite,
and thus A (being infinite-dimensional) has no basis in N .

We now prove the stronger result in N , namely that A does not have a norm
in N . Towards a contradiction, we assume that A has a norm ‖·‖ in N and we
let T be the topology on A induced by ‖·‖ (i.e., if d is the metric on A induced by
the norm ‖·‖, then T is the metric topology on A which is induced by d). Then
(A, T ) is clearly Hausdorff. (Note also that (A, T ) is dense-in-itself, that is, there
are no isolated points; indeed, if there exists an element a ∈ A such that {a} ∈ T ,
then let H = 〈{a}〉 be the subspace of A spanned by {a}. Since H is a proper
subspace of A, it follows by Lemma 1, that int(H) = ∅, which contradicts the fact
that {a} ⊂ H and {a} ∈ T .)

Claim 2. If O and Q are two nonempty disjoint subsets of A, then at least one
of the subspaces 〈O〉 and 〈Q〉 of A is finite-dimensional.

Proof: Assume the hypothesis. If any of O and Q is finite, then the conclusion of
the claim is straightforward. So assume that each of O and Q is infinite. Towards
a contradiction, we assume that both of the subspaces 〈O〉 and 〈Q〉 of A are
infinite-dimensional.

Let E ⊂ A be a finite support of (O,Q), and also let W = 〈E〉 be the subspace
of A spanned by E. Since W is finite-dimensional, we have O 6⊆W and Q 6⊆W .
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We assert that A \W (which is nonempty since W is finite-dimensional and A
is infinite-dimensional) is a subset of both O and Q so that O ∩Q 6= ∅, which is
a contradiction. Let q ∈ O \W and also let r ∈ A \W . If r = q, then r ∈ O,
so we assume that r 6= q. Let E′ be a maximal linearly independent subset of E.
In the ground model M which satisfies AC, pick a basis B for A which extends
the linearly independent set {q} ∪E′. Consider a one-to-one mapping ϕ : B → A
such that ϕ(q) = r and ϕ ∈ fixG(E

′), and then take the unique vector space
automorphism of (A,+, ·), say ψ, which extends ϕ. It is fairly easy to see that
ψ ∈ fixG(E), and hence ψ(O) = O. Furthermore,

q ∈ O ⇒ ψ(q) ∈ ψ(O) ⇒ r ∈ O.

Therefore, A \W ⊆ O, and similarly we have A \W ⊆ Q. We have thus reached
a contradiction, and hence at least one of 〈O〉 and 〈Q〉 is finite-dimensional as
claimed. �

To complete the proof that (A,+, ·) does not have a norm in N , we first let
O and Q be two nonempty disjoint open subsets of A (|A| > 1 and (A, T ) is
Hausdorff, and note that O and Q are infinite). By Claim 2, we have that at
least one of the subspaces 〈O〉 and 〈Q〉 of A is finite-dimensional, and thus at
least one of them is a proper subspace of A. Since O and Q are open sets, each of
the above two possibilities contradicts the result of Lemma 1. Hence A does not
admit a norm in N as desired.

The above ZFA independence result can be transferred to ZF, since for F ∈
{R,Q}, the statement “there exists an infinite-dimensional vector space (A,+, ·)
over F without a norm” is a boundable statement (see [9, Chapter 6, Problem 1
on page 94] and [5, Note 103]), hence the Jech–Sochor first embedding theorem
(see [9, Theorem 6.1]) applies in order to obtain a symmetric model M of ZF,
in which there is an infinite-dimensional vector space (A,+, ·) over F without
a norm. This completes the proof of the theorem. �

Next, we shall prove that if F ∈ {R,Q}, then it is relatively consistent with ZF
that there exists an infinite-dimensional vector space over F which has a norm,
but has no basis. For use in the proof, we first establish the subsequent Lemma 2
and Theorem 11.

Lemma 2. Let F be any field and let {Vn : n ∈ ω} be a family of nontrivial finite-
dimensional vector spaces over F . Let V =

⊕

n Vn be the weak direct product of
the Vn (which is an infinite-dimensional vector space over F ).1 For each n ∈ ω, let
V (n) =

(
∏

i≤n Vi
)

×
(
∏

i>n{0}
)

(which is isomorphic to the vector space
∏

i≤n Vi
equipped with pointwise operations, and hence is a finite-dimensional subspace
of V ).

If there exists an infinite linearly independent subset S of V , then V = {V (n) :
n ∈ ω} has a partial multiple choice function; in particular, there is a sequence

1That is, V =
{

f ∈
∏

i∈ω
Vi : |{i ∈ ω : f(i) 6= 0}| < ℵ0

}

and V is equipped with pointwise

operations.
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(Lni
)i∈ω , where (ni)i∈ω is a strictly increasing sequence of natural numbers, such

that
Ln0

= V (n0) ∩ S

and for i > 0
Lni

= (V (ni) ∩ S) \ V (ni−1).

Proof: Assume that V has an infinite linearly independent subset, say S. Clear-
ly, f 6= 0 for all f ∈ S. On the basis that S is a linearly independent subset of V
and via mathematical induction, we will construct the required sequence (Lni

)i∈ω,
and thus a multiple choice function of V .

Let n0 be the least n ∈ ω such that Ln := V (n) ∩ S 6= ∅. Since V (n0) is
finite-dimensional and Ln0

is linearly independent, it follows that Ln0
is finite.

For the inductive step, assume that we have chosen natural numbers n0 <
n1 < . . . < nk and nonempty finite sets Lni

= (V (ni) ∩ S) \ V (ni−1), 1 ≤
i < k + 1. Since V (nk) is a finite-dimensional vector space and S is an infinite
linearly independent subset of V , it follows that S 6⊆ V (nk). Let nk+1 be the
least natural number n > nk such that (V (n) ∩ S) \ V (nk) 6= ∅. Let Lnk+1

=
(V (nk+1) ∩ S) \ V (nk), then Lnk+1

is a nonempty finite set. This completes the
inductive step.

Then, the function g = {(i, Lni
) : i ∈ ω} is the required partial multiple choice

function of V . �

Theorem 11. Let (F,≤) be a linearly ordered field of characteristic 0. Then
ILI(F ) implies “every countably infinite family A = {An : n ∈ ω} of finite sets
each having at least two elements, has a partial Kinna–Wagner selection function”.

Proof: Assume the hypothesis on F and that ILI(F ) is true. Let A = {An :
n ∈ ω} be a countably infinite family of finite sets such that |Ai| ≥ 2 for all
n ∈ ω. For each n ∈ ω, let

Vn =

{

f ∈ FAn :
∑

x∈An

f(x) = 0

}

equipped with pointwise operations “+” and “·”. Then (Vn,+, ·) is a nontriv-
ial finite-dimensional vector space over F . Let V =

⊕

n Vn be the weak di-
rect product of the Vn’s, which is an infinite-dimensional vector space over F .
For each n ∈ ω, we consider the finite-dimensional subspace of V , V (n) =
(
∏

i≤n Vi
)

×
(
∏

i>n{0}
)

. By ILI(F ), let S be an infinite linearly independent

subset of V ; then by Lemma 2, there exists a sequence (Lni
)i∈ω (where (ni)i∈ω

is a strictly increasing sequence of natural numbers) of finite subsets of S such
that Ln0

= V (n0) ∩ S and for i > 0, Lni
= (V (ni) ∩ S) \ V (ni−1). Since for each

i ∈ ω, Lni
is finite, and the addition “+” on V is commutative, we may let for

each i ∈ ω,

lni
=

∑

l∈Lni

l.
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As
⋃

i∈ω Lni
⊆ S and S is linearly independent, we conclude that

lni
6= 0 for all i ∈ ω.

Furthermore, for each i ∈ ω, lni
∈ V (ni) and L = {lni

: i ∈ ω} is a countably
infinite linearly independent subset of V .

Now, let k0 be the least integer k such that πk(ln0
) 6= 0 (where πk is the

canonical projection of V onto Vk, and 0 is the function on Ak which is identically
zero). Let zk0

= ≤-min(range(πk0
(ln0

))) (note that range(πk0
(ln0

)) is a finite
subset of F since πk0

(ln0
) ∈ FAk0 and Ak0

is finite, and also recall that “≤” is
a linear order on F ) and also let

Gk0
= {x ∈ Ak0

: πk0
(ln0

)(x) = zk0
}.

Since πk0
(ln0

) 6= 0,
∑

x∈An
πk0

(ln0
)(x) = 0 and F is of characteristic 0, it follows

that Gk0
is a nonempty proper subset of Ak0

.
Assume that we have chosen integers j0 = 0 < j1 < . . . < jr and k0 <

k1 < . . . < kr such that for all m = 0, 1, . . . , r, πkm
(lnjm

) 6= 0 and Gkm
=

{x ∈ Akm
: πkm

(lnjm
)(x) = zkm

}, where zkm
= ≤-min(range(πkm

(lnm
))), is

a nonempty proper subset of Akm
. Since L is a countably infinite linearly in-

dependent set, there exist integers j > jr and k > kr such that πk(lnj
) 6= 0.

(If there are no such integers j and k, then the infinite linearly independent set
{lni

: i ∈ ω, i > jr} is contained in the finite-dimensional space V (kr), which is
impossible.) Let jr+1 and kr+1 be the least such integers, and also let zkr+1

=
≤-min(range(πkr+1

(lnjr+1
))) and

Gkr+1
= {x ∈ Akr+1

: πkr+1
(lnjr+1

)(x) = zkr+1
}.

Then (as with Gk0
) we have Gkr+1

is a nonempty proper subset of Akr+1
. This

concludes the inductive step.
Let H = {(i, Gki

) : i ∈ ω}. Then H is a Kinna–Wagner selection function of
the infinite subfamily B = {Aki

: i ∈ ω} of A, and thus a partial Kinna–Wagner
selection function of A, finishing the proof the theorem. �

Theorem 12. Let F ∈ {R,Q}. It is relatively consistent with ZF that there
exists an infinite-dimensional vector space over F which has a norm, but has no
basis.

Proof: Assume the hypothesis on F . Since the statement “there exists an
infinite-dimensional vector space over F with a norm, but without a basis” is
boundable, it suffices in view of the Jech–Sochor first embedding theorem to find
a permutation model of ZFA + ¬AC in which the above statement is true. To
this end, we shall use the Second Fraenkel Model (Model N 2 in [5]): The set A
of atoms is a countable disjoint union A =

⋃

{An : n ∈ ω}, where for each n ∈ ω,
An = {an, bn}. The group G is the group of all permutations ϕ of A such that
ϕ(An) = An for all n ∈ ω. F is the finite support normal filter, that is, F is the
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filter generated by the subgroups fixG(E), E ⊂ A is finite. The Second Fraenkel
Model N 2 is the permutation model which is determined by A, G and F .

It is known (see [5]) that in N 2, MC is true and the countable family A =
{An : n ∈ ω} does not have a partial choice function.

Let U = {f ∈ FA : |{a ∈ A : f(a) 6= 0}| < ℵ0} equipped with pointwise
operations “+” and “·”. Then (U,+, ·) is an infinite-dimensional vector space over
F for which B = {χ{a} : a ∈ A}, where χ{a} is the characteristic function of {a},
is a basis. It follows that U , as well as any vector subspace of U , has a norm (see
Section 2). Consider the subspace of U , V = {f ∈ U : ∀n ∈ ω,

∑

a∈An
f(a) = 0}.

Then V is an infinite-dimensional vector space which has a norm. (Note that for
every positive integer n, V (n) = {f ∈ V : ∀m > n, f ↾ Am = 0} is a finite-
dimensional subspace of V .) Furthermore, V has no infinite linearly independent
subsets in N 2; otherwise if S were such a subset of V , then as in the proof of
Theorem 11, S would give rise to a partial choice function ofA, which is impossible
in the model N 2. Therefore, V has no basis in N 2, finishing the proof of the
theorem. �

3.4 On the existence of proper infinite-dimensional subspaces. In this
section, we prove that for any field F , PIDSub(F ) is not provable in ZF. Further-
more, we prove that if F is any well-orderable field and κ any infinite well-ordered
cardinal number such that κ > |F |, then Wκ implies PIDSub(F ); in particular, if
κ > ℵ1, then CH+Wκ implies PIDSub(R). We also observe that for any field F ,
D(F ) ⇒ PIDSub(F ), and that BPI implies “ for all finite field F , PIDSub(F )”,
hence the latter statement is strictly weaker than AC in ZF. Indeed, we have the
following theorem.

Theorem 13. The following hold:
(i) For any field F , D(F ) implies PIDSub(F ).
(ii) BPI implies “for every finite field F , PIDSub(F )”. Hence, “for every finite

field F , PIDSub(F )” does not imply AC in ZF.
(iii) The principle “ ∀F (PIDSub(F ))” does not imply AC in ZFA. In particular,

“ ∀F (PIDSub(F ))” is true in Lévy’s permutation model N 6 (in [5]) of ZFA +
¬AC.

(iv) Let F be any well-orderable field and let κ be any infinite well-ordered
cardinal number with κ > |F |. Then Wκ implies PIDSub(F ). In particular, if
κ > ℵ1, then CH+Wκ implies PIDSub(R).

(v) For any field F , PIDSub(F ) is not provable in ZF.

Proof: (i) The conclusion follows from Theorem 4.15 of [6], which states that
for any field F , D(F ) is equivalent to the statement “for every nontrivial vector
space V over F and every u ∈ V \ {0} there is a subspace W of V such that
V = W ⊕ 〈u〉” (where “V = W ⊕ 〈u〉” means that V is the direct sum of W
and 〈u〉, that is, every u ∈W is written uniquely as u = x+ y where x ∈ W and
y ∈ 〈u〉); W is essentially the subspace ker(f) of V , i.e., the kernel of the linear
functional f : V → F with f(u) 6= 0.

(ii) This follows from (i) and Theorem 4 (i).
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(iii) This follows from (i) and Theorem 4 (v).
(iv) Let F and κ be as in the statement of (iv) and assume thatWκ is true. Let

V be an infinite-dimensional vector space over F . By Wκ we have that |V | ≤ κ
or κ ≤ |V |. If the first possibility occurs, then V is well-orderable. By transfinite
induction, we may then construct a basis B for V , which in turn gives rise to
a nonzero linear functional f : V → F . But then, for any v ∈ V \ {0} such that
f(v) 6= 0, we have (from Theorem 4.15 of [6]) that V = ker(f)⊕〈v〉, and so ker(f)
is the required proper infinite-dimensional subspace of V . (Note that once B is
constructed, one may avoid to define a nonzero linear functional. Indeed, as V
is infinite-dimensional, it follows that for some infinite cardinal λ ≤ κ, there is
a bijection f : λ→ B. ThenW = 〈{f(2i) : i < λ}〉 is a proper infinite-dimensional
subspace of V .)

If the second possibility occurs, that is, κ ≤ |V |, then V has a well-orderable
subset H such that |H | = κ. Let W = 〈H〉. Since H can be well-ordered, we
may effectively (i.e., without choice) construct a maximal linearly independent
subset of H , thus a basis for W , say B. Then for any element w ∈ W , there is
a unique pair ({a1, . . . , an}, {b1, . . . , bn}), where n ∈ ω \ {0}, {a1, . . . , an} ⊆ F
and {b1, . . . , bn} ⊆ B, such that w =

∑n
i=1 aibi. It follows that

(3) κ = |H | ≤ |W | ≤ |[F ]<ω × [B]<ω|.

If B is finite, then since κ is infinite, we must have that F is infinite, and since F
is well-orderable, we have (in ZF) that |[F ]<ω| = |F | (see [11, Proposition 4.21]).
Then, from the inequalities given by (3), we infer that κ ≤ |F×[B]<ω| = |F | (since
for any ℵ and any nonempty finite set x, |ℵ × x| = ℵ; see [11, Proposition 3.25]).
This contradicts our assumption that κ > |F |. Therefore, B is infinite, and
consequently W is infinite-dimensional. As in the first possibility, it follows that
there is a nonzero linear functional f : W → F , which yields a proper infinite-
dimensional subspace of W , and hence of V . This completes the proof of (iv).

(v) Let F be any field. Let N be the permutation model of the proof of
Theorem 10. (We consider F to be an element of the kernel V = P∞(∅) of the
ground model M of ZFA + AC, hence F is well-orderable in N . Furthermore, if
|F | = ℵ0, then we consider that A (the set of atoms) has cardinality ℵ0 in M .)

We prove that every nonempty proper subspace of A is finite-dimensional. To
this end, letW be a nonempty proper subspace of A; hence we may let a ∈ A\W .
Then the setsW andW+a are nonempty and disjoint, and thus by Claim 2 of the
proof of Theorem 10, we have that at least one of the subspaces W and W + 〈a〉
of A is finite-dimensional. Since W is a subspace of W + 〈a〉, it follows that W is
necessarily finite-dimensional. Hence, PIDSub(F ) is false in N as required.

The above independence result can be transferred to ZF via the Jech–Sochor
first embedding theorem, see [9, Theorem 6.1]. This completes the proof of (v)
and of the theorem. �
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3.5 On the existence of infinite linearly independent subsets. We first
note that given a field F , ILI(F ) is not a theorem of ZF, since there is a Läuchli-
type permutation model in which there is an infinite-dimensional vector space
(A,+, ·) over F such that every linearly independent subset of A is finite (see the
proof of Theorem 10 or [9, Theorem 10.11]).

In Theorem 6.1 of [8], it has been shown that the stronger than ∀F (ILI(F ))
principle “for every field F , every infinite-dimensional vector space over F has
a countably infinite linearly independent subset” lies in strength between ACℵ0

and MCℵ0 . We shall prove next that this is also the case with the principle
∀F (ILI(F )), and thus we strengthen the result of Theorem 6.1 of [8].

Theorem 14. The following hold:
(i) In ZF, ACℵ0 ⇒ (∀F (ILI(F ))) ⇒ MCℵ0 .
(ii) ILI(R) implies “every countably infinite family A = {An : n ∈ ω} of finite

sets each having at least two elements, has a partial Kinna–Wagner selection
function”. Thus, MC (and hence MCℵ0) does not imply ∀F (ILI(F )) in ZFA.

(iii) In the Basic Fraenkel Model, the statement “For every linearly orderable

field F , ILI(F )” is true, whereas MCℵ0 , and thus (by (i)) ∀F (ILI(F )), is false.

Proof: (i) The first implication follows from Theorem 6.1 of [8].
For the second implication, assume that “∀F (ILI(F ))” is true. Let X =

{Xi : i ∈ ω} be a countably infinite family of nonempty sets which, without loss

of generality, we assume that it is disjoint. Since MCℵ0 is equivalent to its partial
version, i.e., is equivalent to “every countably infinite family of nonempty sets
has an infinite subfamily with a multiple choice function” (see [5]), it suffices to
show that X has a partial multiple choice function. To this end, let X =

⋃

X
and let F be any field which is disjoint from X . Let F (X) be the field of all
rational functions with indeterminates from X and coefficients in F . Then F (X)
is a vector space over the subfield K of all rational functions in F (X) which are
i-homogeneous of degree 0 for all i ∈ ω.

For each i ∈ ω, let Vi = 〈Xi〉 be the subspace of F (X) spanned by Xi.
Then for each i ∈ ω, Vi is finite-dimensional (see the proof of Theorem 8). Let
V =

⊕

i∈ω Vi be the weak direct product of the Vi’s (i.e., V = {f ∈
∏

i∈ω Vi :
|{i ∈ ω : f(i) 6= 0}| < ℵ0} equipped with pointwise operations). Then V is an
infinite-dimensional vector space over K. For each n ∈ ω, we consider the finite-
dimensional subspace of V , V (n) =

(
∏

i≤n Vi
)

×
(
∏

i>n{0}
)

.
By our hypothesis, there exists an infinite linearly independent subset of V ,

say S. By Lemma 2 (see Section 3.3), there exists a sequence (Lni
)i∈ω (where

(ni)i∈ω is a strictly increasing sequence of natural numbers) of finite subsets of S
such that Ln0

= V (n0) ∩ S and for i > 0, Lni
= (V (ni) ∩ S) \ V (ni−1).

For every f ∈ V \ {0} and for every i ∈ supp(f), where supp(f) = {i ∈ ω :
f(i) 6= 0} is the support of f , let Af(i) be the nonempty finite set of all elements
x ∈ Xi which appear in the quotient expression (in reduced form) of f(i). By
induction, we construct now a partial multiple choice function of X . Let Mn0

=
{i : i ∈ (n0 + 1) ∩ supp(f) for some f ∈ Ln0

}. For every i ∈ Mn0
, let Fi =
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⋃

{Af(i) : f ∈ Ln0
such that i ∈ supp(f)}. Clearly, Fi is a nonempty finite subset

of Xi for all i < Mn0
.

Assume that for i < k + 1 we have defined sets Mni
⊆ ni + 1 and for every

j ∈ Mni
a nonempty finite subset Fj of Xj . Let Mnk+1

= {i : i ∈ (nk, nk+1] ∩
supp(f) for some f ∈ Lnk+1

} and for every i ∈ Mnk+1
, let Fi =

⋃

{Af(i) : f ∈
Lnk+1

such that i ∈ supp(f)}. This completes the inductive step. Then the
function

G =

{

(i, Fi) : i ∈
⋃

j∈ω

Mnj

}

is a partial multiple choice function of X as required. Thus, MCℵ0 holds, finishing
the proof of (i).

(ii) The implication follows immediately from Theorem 11.
The second part of (ii) (that is, MC 6⇒ ∀F (ILI(F )) in ZFA) follows from the

first one and the fact that in the Second Fraenkel Model (Model N 2 in [5]), MC
is true, whereas there is a countably infinite family of unordered pairs of atoms
which does not have a partial choice function in the model.

(iii) We recall first the description of the Basic Fraenkel Model; Model N 1
in [5]: We start with a ground model M of ZFA + AC with a countably infinite
set A of atoms. Let G be the group of all permutations of A and let F be the
finite support normal filter of subgroups of G. Then the Basic Fraenkel Model
N 1 is the permutation model determined by M,G and F .

It is known that MCℵ0 is false in N 1 (see [5]), thus (by (i)) “for every field F ,
every infinite-dimensional vector space over F has a countably infinite linearly in-
dependent subset” is also false in N 1. We also recall here that A is an amorphous
set in N 1, that is, the only subsets of A in N 1 are the finite and the cofinite ones
(see [5], [9, Section 4.6, Problem 7]), and that in N 1, every linearly ordered set
can be well-ordered (see [5] and Form 90 therein).

Now we show that “for every linearly orderable field, ILI(F )” is true in N 1. To
this end, let F be any linearly orderable field in N 1, and also let (V,+, ·) be an
infinite-dimensional vector space over F in N 1. By the discussion in the previous
paragraph, we have F is well-orderable. If V is well-orderable, then via transfinite
induction we may easily construct an infinite linearly independent subset of V .
So we may assume that V is not well-orderable in N 1. Let E ⊂ A be a finite
support for (V,+, ·) and for each element of F (F is well-orderable in N 1, and
hence there is a finite subset K of A such that fixG(K) ⊆ fixG(F )).

Since V is not well-orderable in N 1, it follows from a result of [1] that V
contains a copy of an infinite subset of A, say B. Without loss of generality, we
assume that B ⊂ A. Then B is a cofinite subset of A and we let C = B \ E.
Since E is finite, we have that C is infinite and we assert that C is a linearly
independent subset of the vector space V . Assume the contrary, then there exist
scalars λ1, . . . , λn ∈ F , not all of them zero, and elements c1, . . . , cn ∈ C such
that

λ1c1 + · · ·+ λncn = 0.
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It follows that for some integer i with 1 ≤ i ≤ n, we have

(4) ci =
∑

j∈{1,...,n}\{i}

µjcj ,

where for j ∈ {1, . . . , n} \ {i}, µj = −λj/λi. Pick an atom a ∈ C \ (E ∪ {cj : 1 ≤
j ≤ n}) and consider the transposition ψ = (a, ci), that is, ψ interchanges a and ci,
but fixes all the other atoms. Then, ψ ∈ fixG(E) ⊆ fixG(F ) ∩ SymG((V,+, ·)). It
follows that

((µ1c1, . . . , µi−1ci−1, µi+1ci+1, . . . , µncn), ci) ∈ +

⇒ ψ(((µ1c1, . . . , µi−1ci−1, µi+1ci+1, . . . , µncn), ci)) ∈ ψ(+)

⇒ ((µ1c1, . . . , µi−1ci−1, µi+1ci+1, . . . , µncn), a) ∈ +.

Thus, a =
∑

j∈{1,...,n}\{i}

µjcj, and consequently by equation (4), we have a = ci,

which is a contradiction. Therefore, C is an infinite linearly independent subset
of V , finishing the proof of (iii) and of the theorem. �

From the proof of Theorem 14 (iii), we obtain the following corollary.

Corollary 3. It is relatively consistent with ZFA that for every linearly orderable
field F , every infinite-dimensional vector space over F has an amorphous (and
hence infinite and Dedekind-finite) linearly independent subset. In particular,
the latter statement is true in the Basic Fraenkel Model of ZFA.

Remark 2. We would like to point out here that the proof of Theorem 11 (see
Section 3.3) yields an enhancement of the result of Theorem 6.3 (i) of [8], which
states that if every infinite-dimensional Banach space has a countably infinite
linearly independent subset then every countably infinite family of finite sets each
having at least two elements has a partial Kinna–Wagner selection function. In
particular, the proof of Theorem 11 suggests that the weaker statement “every
infinite-dimensional Banach space has an infinite linearly independent subset”
implies the above weak choice principle. Indeed, assume the hypothesis, and let
A = {An : n ∈ ω} be a countably infinite family of finite sets each having at least
two elements. Let A =

⋃

A and H =
{

f ∈ RA : |{x ∈ A : f(x) 6= 0}| < ℵ0 and

∀n ∈ ω
∑

x∈An
f(x) = 0

}

. It is clear that H equipped with pointwise operations

is a vector space over R which is isomorphic to the vector space V =
⊕

n∈ω Vn of
the proof of Theorem 11 (where the linearly ordered field (F,≤) of characteristic
0 therein, is replaced by the field R with its usual ordering). Moreover, ‖f‖ =
(

∑

x∈A(f(x))
2
)1/2

is a norm on H , and furthermore, (H, ‖·‖) is a Banach space;

see the proof of Theorem 6.3 (i) of [8]. We may now follow exactly the proof of
Theorem 11 in order to construct a partial Kinna–Wagner selection function for
the family A.
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4. Open questions

(1) Does ∃F (B(F )) imply AC? Does B(R) imply AC(R) (i.e., AC for families
of nonempty sets of reals)?

(2) Does ∀F (D(F )) imply AC in ZF?
(3) Does N(F ), where F ∈ {R,Q}, imply AC(R)?
(4) Does N(R) imply B(R) or D(R)? Does D(R) imply N(R)?
(5) Does BPI imply N(R)? Is N(R) false in the Dawson–Howard Model N 29

of [5]? (Recall that by Theorem 2, B(R) is false in N 29.)
(6) What is the deductive strength of PIDSub(F ) for specific fields F?
(7) Does ∀F (PIDSub(F )) imply AC in ZF?
(8) Given a field F , what is the relationship between PIDSub(F ) and ILI(F )?

(9) Does ∀F (ILI(F )) imply ACℵ0 or “every Dedekind-finite set is finite”?
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