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More remarks on the intersection ideal M NN

TomMmASsZ WEISS

Abstract. We prove in ZFC that every M NN additive set is N additive, thus we
solve Problem 20 from paper [Weiss T., A note on the intersection ideal M NN,
Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437—445] in the negative.
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Introduction. In this paper, we continue our considerations (see [6]) of sets
belonging to the intersection ideal M N A in terms of their translations.

Suppose that “+” is the standard modulo 2 coordinatewise addition in 2%, and
I, J are o-ideals of subsets of 2“ with I C J.

Definition 1. We say that X C 2“ is I additive, or X € I*, if and only if
X+A={z+a:z€ X, ac A} € I for any set A €I, and X € (I,J)* if and
only if for everyset Ae I, X + A€ J.

The o-ideal of meager subsets of 2¢ is denoted by M, N is the o-ideal of
measure zero subsets of 2%, and £ denotes the o-ideal generated by F, measure
zero subsets of 2. It is well-known that & is strictly contained in the intersection
ideal M NN. The following diagram of inclusions holds, where “—” stands for
the inclusion and crossed arrow “<£” means that the reverse inclusion cannot be
proved in ZFC (Zermelo-Fraenkel set theory). See Proposition 19 in [6].

(£, M)* == SFC
=
N* == (MON) == & = M* == (£, MNN)*
? \\\

(EN) =SMZ
Recall that SMZ = {X C 2¥: forevery Ae M, X + A # 2%} and SFC =
{X C2¥: forevery BEN, X + B #2¥}.

Question 2 (Problem 20 in [6]). Is it consistent with ZFC that the class (MNN)*
contains sets that are not in N*7
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Main theorems. We begin with the answer to Question 2 which is surprisingly
negative.

Theorem 3. (M NN)* C N*.

To prove this theorem we apply the following sequence of lemmas. The first
one is Lemma 0 in [5].

Lemma 4. Let m > n + 2"k, k,m,n € w. Then there exists T C 2™ with
measure ju(T) = 27F such that for all {o;,7;) € 2" x 2["™) i € I, with o; distinct
the sets T + (0;,7;) are stochastically independent.

Lemma 5 (Theorem 23 in [6]). (M NN, M)* C £* = M*.

PROOF OF THEOREM 3: We combine the procedures of (#) in [5], Theorem 2.7.18
in [2] and Lemma 5 above.

Suppose that X € (MNAN)*, and an increasing f € w® is such that f(n+1) >
f(n) +n for every n € w. By Lemma 5 the set X is meager additive and by the
Bartoszyriski-Judah—Shelah characterization (see Theorem 2.7.17 from [2]), there
are an increasing g € w* and y € 2%, so that

XC{zxe2?:ImVn>mIk (gn) < fk)< f(k+1)<g(n+1) and
x| [f(k), f(k+1)) =y [ [f(k), f(k+1)))}.

Assume without loss of generality that ¢ is sufficiently fast increasing and put
an = g(2n), by, = g(2n + 1) for n € w. From now on, each number b; — a; and
a;+1 — b; will play the role of n and m — n, respectively, from Lemma 4. Each set
T; with p(T;) = 1/2% and used in the expression below plays the role of a set T
which appears in Lemma 4. Let A =), ., U, >, An, where for n € w,

A, ={z €2¥: x| |an,ant1) € Tn}.

Since u(Ayp) = 1/2™ for n € w, we have that p(A) = 0. Suppose that h € 2 is
such that

A=An{ze2:Im¥n>m x| |an,ani1) #h | [an,ani1)}

is nonempty. Notice that the second set in the above formula is meager (see
Theorem 2.2.4 in [2]), thus A’ € M NN, and by the assumption X + A’ € N.
Let G C 2%, u(G) < 1, be an open set such that X + A’ C G, and suppose

that for every 7 € 2<¢, [7] is the basic clopen set {z € 2¥: 7 C z}. Since we can
delete from 2%\ G every set [7] which satisfies u([7]\ G) = 0, we may assume that
for each basic clopen set [7], [T] € G, we have that u([7]\ G) > 0. By De Morgan
law

N (@+ @\ ) U+ B) 2 [\ G,

reX
where

B={xz€2”:VmIn>m z [ [an,an+1) =h | [an,ani1)}-
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It is easy to see that
N (@+@\A)U@E+B)C [ @+ \A)U J@+B).
zeX zeX reX
We show that the union at the end of the above expression is a null set.
Fact 6. X + B is of measure zero.

Proor: Notice that X + B C ), ,c,, U,>,, Cn, Where for n € w,

Cp={x€2¥ 3k (9(n) < f(k) < f(k+1) <g(n+1) and
x| [f(k), f(k+1)) =y [[f(k), f(k+1)))}
+{ze2v: 2T [g(n),g(n+1)) =hlg(n),g(n+1))}
C U {we2*:a | [f(k), f(k+1) =y | [f(k), f(k+1))}
ki g(n)<F(k)<f(h+1)<g(n+1)

+{ze2:a [ [f(k), f(k+1)) =h [ [f(K), f(k+1))}.

Clearly, Z 1(Cy) < oo. This finishes the proof of Fact 6. O

new

By Fact 6 for each basic clopen [7], [7] € G, there is a. C [7] \ G such that
w(ar) >0, and

ar C () (z+ (22 4)).

zeX

This implies that for every such a, we have that
< U (z+A)> Na, =0.
zeX

We now follow the main argument and the notation from (#) in [5]. By earlier
remarks we have that for every € X and every basic clopen set [7], [7] € G,

(m@w nym(x + An)> Na, = 0.

By applying the Baire category theorem in 2¥ \ G for each z € X one can find
m, € w and a basic clopen 7., [7;] € G such that

( U (x+ An)) Nar, =0, or equivalently  a,, C m (x+ (29 \ An)).

n>mey n>my

Define for n € w and [7] € G
K’:; = {.Z' r [a/n)bn): S X, and (fL‘ + An) ﬂaT = (Z)}

It is clear that for every z € X, z [ [ap,b,) € K=, where n > m,.
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Let {z] ,: k < |K7|} be alist of all 2’s such that @ | [an,b;,) are distinct and
give the entire set K. We have

ar € ) (2“\ U (zz,n+An>)
new k<|KT|

thus by the stochastic independence condition from Lemma 4 above this implies

that
27’7,
necw
Hence
Z | K7 < o
2n
new

For each 7, [1] € G, let n(7) be such that |K7| < 2™ for n > n(7). Let {r,} be
a list of all 7’s which satisfy [7] € G. Define for every n € w

Dn = U {K;;m: Tm is SU-Ch that n(Tm) S n}

m<n

Clearly, |D,| < n2" for n € w. This shows that there exists a sequence {Dy, }new
with D,, C 2[en:bn) and |Dy,| < n2™ for n € w such that for each € X and almost
every n € w

x | lan,bn) € Dy

Notice that by using simultaneously the same procedure for intervals of the
form [b,,, b, 1) we show that there is a sequence {D/},c., with D! C 2[bn.an+1)
and | D) | < (n+1)2"*! for n € w so that for each x € X and almost every n € w

x| [bn,ani1) € D).

To obtain this sequence we can choose the function g € w* at the beginning of the
proof of Theorem 3 sufficiently fast increasing, so that each interval [b,, ant1) is
“large enough” in comparison to [an, b,) (each number a1 — b, and b1 — ant1
will play the role of n and m — n, respectively, from Lemma 4) and then we can
define the sets T, T), C 20 botn) for n € w, and A, A’ analogously to the sets
from the first part of the proof of Theorem 3. By Theorem 2.7.18.4 in [2] this
proves that X € A/*. O

According to the referees’ suggestions we consider two classes (M NN, N)*
and (M NN, M)* which have not been explored before.

Proposition 7. (M NN, M)* -/ (M NN, N)*.
PROOF: See Theorem 22 in [6]. O
Question 8. (M NN, N)* = (MNN, M)*?

In [6], the author asks the following question (see Problem 21 in [6]).
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Question 9. Is there a model of ZFC in which every element of the class (€, M)*
is at most countable?

Question 10 (B. Tsaban, personal communication). Does ZFC imply that there
is an uncountable X C 2“ such that X + F # 2% for every F' € £7

Below we show that the positive answer to B. Tsaban’s question proves that
there is in ZFC a particularly small uncountable set, that is an uncountable
X € (&, M)*. This solves Question 9 in the negative. By Theorem 2 in [1]
the following holds: if b = Ny, then there is X C 2% |X| = 8y, and X is meager
additive. In Theorem 3.6 from [4], the authors prove that under b = N;, there
is an uncountable X C 2%, |X| = N;, with a stronger property than meager
additivity. For the other case (i.e. b > N;) we use the following proposition.

Proposition 11. If X C2“ |X| < b, is such that X + F # 2% for every F € &,
then X + F' is meager for every F € £.

PROOF: Suppose that X + F # 2% for a fixed F' € £. We may assume without
loss of generality that FF+ Q = F, where Q = {z € 2*: 3m Vn >m z(n) =0}.
Thus there is zg € 2 such that

(20 +Q)N(X + F)=0.
Hence

(z0+Q)m<U(z+F)> =0.

zeX

Since zp + Q is dense, and |X| < b, we can follow directly the implication
(5) = (1) from Lemma 2.2.6 in [2] and the arguments from Lemma 2.2.7 and
after Lemma 2.2.8 both in [2] to show that 2%\ (|J,cx (4 F)) contains a dense
Gs set. O

Notice that the only property of a set F' € £ that we use in the proof of
the above proposition is the assumption that it is an F, meager set. Thus we
essentially proved the following.

Corollary 12. If X € SMZ and |X| < b, then X € M*.
ProOOF: Clear. O

An example of a meager set X € SMZ, | X| = b, which is not meager additive
is given in Theorem 10 from [6].

It was also pointed out by the referees that by earlier remarks and Proposi-
tion 11 a positive answer to Question 9 provides a negative answer to Question
10 which in turn implies the result Con(ZFC + Borel conjecture + dual Borel
conjecture) of the paper [3].
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