More remarks on the intersection ideal $\mathcal{M} \cap \mathcal{N}$

Tomasz Weiss

Abstract. We prove in ZFC that every $\mathcal{M} \cap \mathcal{N}$ additive set is \mathcal{N} additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal $\mathcal{M} \cap \mathcal{N}$, Comment. Math. Univ. Carolin. **54** (2013), no. 3, 437–445] in the negative.

Keywords: intersection ideal $\mathcal{M} \cap \mathcal{N}$; null additive set; meager additive set

Classification: 03E05, 03E17

Introduction. In this paper, we continue our considerations (see [6]) of sets belonging to the intersection ideal $\mathcal{M} \cap \mathcal{N}$ in terms of their translations.

Suppose that "+" is the standard modulo 2 coordinatewise addition in 2^{ω} , and I, J are σ -ideals of subsets of 2^{ω} with $I \subseteq J$.

Definition 1. We say that $X \subseteq 2^{\omega}$ is I additive, or $X \in I^*$, if and only if $X + A = \{x + a : x \in X, a \in A\} \in I$ for any set $A \in I$, and $X \in (I, J)^*$ if and only if for every set $A \in I$, $X + A \in J$.

The σ -ideal of meager subsets of 2^{ω} is denoted by \mathcal{M} , \mathcal{N} is the σ -ideal of measure zero subsets of 2^{ω} , and \mathcal{E} denotes the σ -ideal generated by F_{σ} measure zero subsets of 2^{ω} . It is well-known that \mathcal{E} is strictly contained in the intersection ideal $\mathcal{M} \cap \mathcal{N}$. The following diagram of inclusions holds, where " \rightarrow " stands for the inclusion and crossed arrow " $\not\leftarrow$ " means that the reverse inclusion cannot be proved in ZFC (Zermelo–Fraenkel set theory). See Proposition 19 in [6].

Recall that $SMZ = \{X \subseteq 2^{\omega} : \text{ for every } A \in \mathcal{M}, X + A \neq 2^{\omega}\}$, and $SFC = \{X \subseteq 2^{\omega} : \text{ for every } B \in \mathcal{N}, X + B \neq 2^{\omega}\}.$

Question 2 (Problem 20 in [6]). Is it consistent with ZFC that the class $(\mathcal{M} \cap \mathcal{N})^*$ contains sets that are not in \mathcal{N}^* ?

DOI 10.14712/1213-7243.2015.252

Main theorems. We begin with the answer to Question 2 which is surprisingly negative.

Theorem 3. $(\mathcal{M} \cap \mathcal{N})^* \subseteq \mathcal{N}^*$.

To prove this theorem we apply the following sequence of lemmas. The first one is Lemma 0 in [5].

Lemma 4. Let $m \ge n + 2^n k$, $k, m, n \in \omega$. Then there exists $T \subseteq 2^m$ with measure $\mu(T) = 2^{-k}$ such that for all $\langle \sigma_i, \tau_i \rangle \in 2^n \times 2^{[n,m)}$, $i \in I$, with σ_i distinct the sets $T + \langle \sigma_i, \tau_i \rangle$ are stochastically independent.

Lemma 5 (Theorem 23 in [6]). $(\mathcal{M} \cap \mathcal{N}, \mathcal{M})^* \subseteq \mathcal{E}^* = \mathcal{M}^*$.

PROOF OF THEOREM 3: We combine the procedures of (\spadesuit) in [5], Theorem 2.7.18 in [2] and Lemma 5 above.

Suppose that $X \in (\mathcal{M} \cap \mathcal{N})^*$, and an increasing $f \in \omega^{\omega}$ is such that $f(n+1) \geq f(n) + n$ for every $n \in \omega$. By Lemma 5 the set X is meager additive and by the Bartoszyński–Judah–Shelah characterization (see Theorem 2.7.17 from [2]), there are an increasing $g \in \omega^{\omega}$ and $y \in 2^{\omega}$, so that

$$X \subseteq \{x \in 2^{\omega} \colon \exists m \ \forall n \ge m \ \exists k \ (g(n) \le f(k) < f(k+1) \le g(n+1) \text{ and} \\ x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1)))\}.$$

Assume without loss of generality that g is sufficiently fast increasing and put $a_n = g(2n), b_n = g(2n+1)$ for $n \in \omega$. From now on, each number $b_i - a_i$ and $a_{i+1} - b_i$ will play the role of n and m - n, respectively, from Lemma 4. Each set T_i with $\mu(T_i) = 1/2^i$ and used in the expression below plays the role of a set T which appears in Lemma 4. Let $A = \bigcap_{m \in \omega} \bigcup_{n > m} A_n$, where for $n \in \omega$,

$$A_n = \{ x \in 2^{\omega} \colon x \upharpoonright [a_n, a_{n+1}) \in T_n \}.$$

Since $\mu(A_n) = 1/2^n$ for $n \in \omega$, we have that $\mu(A) = 0$. Suppose that $h \in 2^{\omega}$ is such that

$$A' = A \cap \{ x \in 2^{\omega} \colon \exists m \ \forall n \ge m \ x \upharpoonright [a_n, a_{n+1}) \neq h \upharpoonright [a_n, a_{n+1}) \}$$

is nonempty. Notice that the second set in the above formula is meager (see Theorem 2.2.4 in [2]), thus $A' \in \mathcal{M} \cap \mathcal{N}$, and by the assumption $X + A' \in \mathcal{N}$.

Let $G \subseteq 2^{\omega}$, $\mu(G) < 1$, be an open set such that $X + A' \subseteq G$, and suppose that for every $\tau \in 2^{<\omega}$, $[\tau]$ is the basic clopen set $\{x \in 2^{\omega} : \tau \subseteq x\}$. Since we can delete from $2^{\omega} \setminus G$ every set $[\tau]$ which satisfies $\mu([\tau] \setminus G) = 0$, we may assume that for each basic clopen set $[\tau]$, $[\tau] \not\subseteq G$, we have that $\mu([\tau] \setminus G) > 0$. By De Morgan law

$$\bigcap_{x \in X} \left((x + (2^{\omega} \setminus A)) \cup (x + B) \right) \supseteq [\tau] \setminus G,$$

where

$$B = \{ x \in 2^{\omega} \colon \forall m \ \exists n \ge m \ x \upharpoonright [a_n, a_{n+1}) = h \upharpoonright [a_n, a_{n+1}) \}.$$

It is easy to see that

$$\bigcap_{x \in X} \left((x + (2^{\omega} \setminus A)) \cup (x + B) \right) \subseteq \bigcap_{x \in X} \left(x + (2^{\omega} \setminus A) \right) \cup \bigcup_{x \in X} (x + B).$$

We show that the union at the end of the above expression is a null set.

Fact 6. X + B is of measure zero.

PROOF: Notice that
$$X + B \subseteq \bigcap_{m \in \omega} \bigcup_{n \ge m} C_n$$
, where for $n \in \omega$,
 $C_n = \{x \in 2^{\omega} \colon \exists k \ (g(n) \le f(k) < f(k+1) \le g(n+1) \text{ and} x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1)))\}$
 $+ \{x \in 2^{\omega} \colon x \upharpoonright [g(n), g(n+1)) = h \upharpoonright [g(n), g(n+1))\}$
 $\subseteq \bigcup_{\substack{k \colon g(n) \le f(k) < f(k+1) \le g(n+1) \\ k \in 2^{\omega} \colon x \upharpoonright [f(k), f(k+1)) = y \upharpoonright [f(k), f(k+1))\}}$

Clearly, $\sum_{n \in \omega} \mu(C_n) < \infty$. This finishes the proof of Fact 6.

By Fact 6 for each basic clopen $[\tau]$, $[\tau] \not\subseteq G$, there is $a_{\tau} \subseteq [\tau] \setminus G$ such that $\mu(a_{\tau}) > 0$, and

$$a_{\tau} \subseteq \bigcap_{x \in X} (x + (2^{\omega} \setminus A)).$$

This implies that for every such a_{τ} we have that

$$\left(\bigcup_{x\in X} (x+A)\right) \cap a_{\tau} = \emptyset.$$

We now follow the main argument and the notation from (\blacklozenge) in [5]. By earlier remarks we have that for every $x \in X$ and every basic clopen set $[\tau], [\tau] \not\subseteq G$,

$$\left(\bigcap_{m\in\omega}\bigcup_{n\geq m}(x+A_n)\right)\cap a_{\tau}=\emptyset.$$

By applying the Baire category theorem in $2^{\omega} \setminus G$ for each $x \in X$ one can find $m_x \in \omega$ and a basic clopen τ_x , $[\tau_x] \not\subseteq G$ such that

$$\left(\bigcup_{n\geq m_x} (x+A_n)\right)\cap a_{\tau_x} = \emptyset, \quad \text{or equivalently} \quad a_{\tau_x} \subseteq \bigcap_{n\geq m_x} (x+(2^{\omega}\setminus A_n)).$$

Define for $n \in \omega$ and $[\tau] \not\subseteq G$

$$K_n^{\tau} = \{ x \upharpoonright [a_n, b_n) \colon x \in X, \text{ and } (x + A_n) \cap a_{\tau} = \emptyset \}.$$

It is clear that for every $x \in X$, $x \upharpoonright [a_n, b_n) \in K_n^{\tau_x}$, where $n \ge m_x$.

Let $\{x_{k,n}^{\tau} : k < |K_n^{\tau}|\}$ be a list of all x's such that $x \upharpoonright [a_n, b_n)$ are distinct and give the entire set K_n^{τ} . We have

$$a_{\tau} \subseteq \bigcap_{n \in \omega} \left(2^{\omega} \setminus \bigcup_{k < |K_n^{\tau}|} (x_{k,n}^{\tau} + A_n) \right)$$

thus by the stochastic independence condition from Lemma 4 above this implies that

$$\prod_{n \in \omega} \left(1 - \frac{1}{2^n} \right)^{|K_n'|} > 0.$$

Hence

$$\sum_{n\in\omega}\frac{|K_n^\tau|}{2^n}<\infty.$$

For each τ , $[\tau] \not\subseteq G$, let $n(\tau)$ be such that $|K_n^{\tau}| \leq 2^n$ for $n \geq n(\tau)$. Let $\{\tau_n\}$ be a list of all τ 's which satisfy $[\tau] \not\subseteq G$. Define for every $n \in \omega$

$$D_n = \bigcup_{m < n} \{ K_n^{\tau_m} \colon \tau_m \text{ is such that } n(\tau_m) \le n \}.$$

Clearly, $|D_n| \leq n2^n$ for $n \in \omega$. This shows that there exists a sequence $\{D_n\}_{n \in \omega}$ with $D_n \subseteq 2^{[a_n, b_n]}$ and $|D_n| \leq n2^n$ for $n \in \omega$ such that for each $x \in X$ and almost every $n \in \omega$

$$x \upharpoonright [a_n, b_n) \in D_n.$$

Notice that by using simultaneously the same procedure for intervals of the form $[b_n, b_{n+1})$ we show that there is a sequence $\{D'_n\}_{n \in \omega}$ with $D'_n \subseteq 2^{[b_n, a_{n+1})}$ and $|D'_n| \leq (n+1)2^{n+1}$ for $n \in \omega$ so that for each $x \in X$ and almost every $n \in \omega$

$$x \upharpoonright [b_n, a_{n+1}) \in D'_n.$$

To obtain this sequence we can choose the function $g \in \omega^{\omega}$ at the beginning of the proof of Theorem 3 sufficiently fast increasing, so that each interval $[b_n, a_{n+1})$ is "large enough" in comparison to $[a_n, b_n)$ (each number $a_{n+1} - b_n$ and $b_{n+1} - a_{n+1}$ will play the role of n and m - n, respectively, from Lemma 4) and then we can define the sets \widetilde{T}_n , $\widetilde{T}_n \subseteq 2^{[b_n, b_{n+1})}$ for $n \in \omega$, and \widetilde{A} , $\widetilde{A'}$ analogously to the sets from the first part of the proof of Theorem 3. By Theorem 2.7.18.4 in [2] this proves that $X \in \mathcal{N}^*$.

According to the referees' suggestions we consider two classes $(\mathcal{M} \cap \mathcal{N}, \mathcal{N})^*$ and $(\mathcal{M} \cap \mathcal{N}, \mathcal{M})^*$ which have not been explored before.

Proposition 7.
$$(\mathcal{M} \cap \mathcal{N}, \mathcal{M})^* \not\longrightarrow (\mathcal{M} \cap \mathcal{N}, \mathcal{N})^*$$
.

PROOF: See Theorem 22 in [6].

Question 8. $(\mathcal{M} \cap \mathcal{N}, \mathcal{N})^* \to (\mathcal{M} \cap \mathcal{N}, \mathcal{M})^*$?

In [6], the author asks the following question (see Problem 21 in [6]).

Question 9. Is there a model of ZFC in which every element of the class $(\mathcal{E}, \mathcal{M})^*$ is at most countable?

Question 10 (B. Tsaban, personal communication). Does ZFC imply that there is an uncountable $X \subseteq 2^{\omega}$ such that $X + F \neq 2^{\omega}$ for every $F \in \mathcal{E}$?

Below we show that the positive answer to B. Tsaban's question proves that there is in ZFC a particularly small uncountable set, that is an uncountable $X \in (\mathcal{E}, \mathcal{M})^*$. This solves Question 9 in the negative. By Theorem 2 in [1] the following holds: if $\mathfrak{b} = \aleph_1$, then there is $X \subseteq 2^{\omega}$, $|X| = \aleph_1$, and X is meager additive. In Theorem 3.6 from [4], the authors prove that under $\mathfrak{b} = \aleph_1$, there is an uncountable $X \subseteq 2^{\omega}$, $|X| = \aleph_1$, with a stronger property than meager additivity. For the other case (i.e. $\mathfrak{b} > \aleph_1$) we use the following proposition.

Proposition 11. If $X \subseteq 2^{\omega}$, $|X| < \mathfrak{b}$, is such that $X + F \neq 2^{\omega}$ for every $F \in \mathcal{E}$, then X + F is meager for every $F \in \mathcal{E}$.

PROOF: Suppose that $X + F \neq 2^{\omega}$ for a fixed $F \in \mathcal{E}$. We may assume without loss of generality that $F + \mathbf{Q} = F$, where $\mathbf{Q} = \{x \in 2^{\omega} : \exists m \forall n \geq m \ x(n) = 0\}$. Thus there is $z_0 \in 2^{\omega}$ such that

Hence

$$(z_0 + \mathbf{Q}) \cap (X + F) = \emptyset.$$
$$(z_0 + \mathbf{Q}) \cap \left(\bigcup_{x \in X} (x + F)\right) = \emptyset.$$

Since $z_0 + \mathbf{Q}$ is dense, and $|X| < \mathfrak{b}$, we can follow directly the implication $(5) \Rightarrow (1)$ from Lemma 2.2.6 in [2] and the arguments from Lemma 2.2.7 and after Lemma 2.2.8 both in [2] to show that $2^{\omega} \setminus (\bigcup_{x \in X} (x+F))$ contains a dense G_{δ} set.

Notice that the only property of a set $F \in \mathcal{E}$ that we use in the proof of the above proposition is the assumption that it is an F_{σ} meager set. Thus we essentially proved the following.

Corollary 12. If $X \in SMZ$ and $|X| < \mathfrak{b}$, then $X \in \mathcal{M}^*$.

PROOF: Clear.

An example of a meager set $X \in SMZ$, $|X| = \mathfrak{b}$, which is not meager additive is given in Theorem 10 from [6].

It was also pointed out by the referees that by earlier remarks and Proposition 11 a positive answer to Question 9 provides a negative answer to Question 10 which in turn implies the result Con(ZFC + Borel conjecture + dual Borel conjecture) of the paper [3].

Acknowledgment. The author thanks the referees for many helpful suggestions.

Weiss T.

References

- Bartoszyński T., Remarks on small sets of reals, Proc. Amer. Math. Soc 131 (2003), no. 2, 625–630.
- [2] Bartoszyński T., Judah H., Set Theory. On the Structure of the Real Line, A K Peters, Wellesley, 1995.
- [3] Goldstern M., Kellner J., Shelah S., Wohofsky W., Borel conjecture and dual Borel conjecture, Trans. Amer. Math. Soc. 366 (2014), no. 1, 245–307.
- [4] Orenshtein T., Tsaban B., Linear σ-additivity and some applications, Trans. Amer. Math. Soc. 363 (2011), no. 7, 3621–3637.
- [5] Pawlikowski J., A characterization of strong measure zero sets, Israel J. Math. 93 (1996), 171–183.
- [6] Weiss T., A note on the intersection ideal M ∩ N, Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437–445.

T. Weiss:

INSTITUTE OF MATHEMATICS, COLLEGE OF SCIENCE, CARDINAL STEFAN WYSZYŃSKI UNIVERSITY, DEWAJTIS 5, 01-815 WARSAW, POLAND

E-mail: tomaszweiss@o2.pl

(Received July 6, 2016, revised June 5, 2018)