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1. Introduction

In 1937, John von Neumann proposed the problem of characterizing the com-
plete Boolean algebras that carry a strictly positive o-additive measure (The
Scottish Book [17], Problem 163). Such algebras satisfy the countable chain con-
dition (ccc), that is, every subset of mutually disjoint elements is countable. In
addition, von Neumann isolated a weak distributive law and asked whether these
two properties are sufficient for the existence of measure.

The first major contribution to von Neumann’s problem was given by D. Ma-
haram in [16] who identified a part of the problem as a topological problem. She
showed that a complete Boolean algebra carries a strictly positive continuous sub-
measure if and only if the sequential topology given by the algebraic convergence
is metrizable. This gives a natural decomposition of the von Neumann problem
into two parts:

I. Does every complete weakly distributive ccc Boolean algebra carry a strictly
positive continuous submeasure?

IT. Does the existence of a strictly positive continuous submeasure imply the
existence of a strictly positive o-additive measure?

Part II has become the well known and well-studied Control measure problem,
see [12], in functional analysis and remained open until Talagrand’s solution in
[22] in 2008.

As for Part I, D. Maharam showed that a negative answer would follow from
the existence of a Suslin algebra. Its existence is equivalent to the negation of
Suslin’s hypothesis in [20] from 1920 but was not known until 1967 (cf. [23], [9]).
The existence of a Suslin algebra is not provable; it is only consistent with the
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axioms of set theory [19]. The work of B. Balcar, T. Jech and T. Pazék [3] in
2003 established that the positive answer to Part I of Maharam’s problem is also
consistent.

The work on Maharam’s problem I followed in Maharam’s footsteps and was
carried out mostly by Bohuslav Balcar and his collaborators (cf. [1], [2], [3],
[4], [5]), with additional contributions of S. Todoré¢evié, see [24], [25]. The metriz-
ability assumption of Maharam was successively weakened to “ccc and Haus-
dorff”, see [1], “ccc, weakly distributive and Gs”, see [3], “weakly distributive
and o-finite cc”, see [25], and “uniformly weakly distributive”, see [4].

In this paper we generalize the topological characterization to finitely additive
measures on Boolean algebras, when neither the algebra nor the measure are
complete. As the Control measure problem has been solved by M. Talagrand,
and there exists an exhaustive submeasure that is not equivalent to a measure,
the goal is to characterize Boolean algebras that carry an exhaustive submeasure.
We give a necessary and sufficient condition in Theorem 3.6.

Our investigations were inspired by the work of Bohuslav Balcar who advocated
the use of sequential topology and who introduced me to Maharam’s problems.
This paper is dedicated to his memory.

2. Submeasures on Boolean algebras

A Boolean algebra is a set B with Boolean operations a Vb (join), a Ab (meet),
—a (complement) and a A b (symmetric difference), the partial order a < b, and
the smallest and greatest element, 0 and 1. To avoid trivialities we assume that
B is infinite and atomless. We let B* = B — {0}.

An antichain in B is a set A C B whose any two elements a, b are disjoint, i.e.
aANb=0. B satisfies the countable chain condition (ccc) if it has no uncountable
antichains.

Definition 2.1. A submeasure on a Boolean algebra B is a real valued function
m on B such that

(i) m(0) =0 and m(1) =1,
(i) if a < b then m(a) < m(b),
(iii) m(a Vv b) < m(a)+ m(d).
A submeasure m is strictly positive if
(iv) m(a) =0 only if a = 0.
A submeasure m is a measure if
(v) m(aVb) =m(a)+ m(b) whenever a and b are disjoint.
Following M. Talagrand in [21], a submeasure m is ezhaustive if for every
infinite antichain {ay, }n, lim, m(a,) = 0; m is uniformly ezhaustive if for every

€ > 0 there exists a K such that every antichain has at most K elements with
m(a) > e.
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Note that some condition like “exhaustive” is needed to exclude trivial exam-
ples of submeasures like m(a) = 1 for all @ # 0. Every measure is uniformly
exhaustive, and uniformly exhaustive implies exhaustive.

If m is a strictly positive exhaustive submeasure, let for each n € N

Cp = {a € B: m(a) > %}
Then C; € C, C --- C €, C --- and |J,,C, = BT, and for each n, every
antichain in C,, is finite. If m is uniformly exhaustive then there exist K,, n € N,
such that for each n, every antichain in C), has size at most K,. We say that B
is o-finite cc or o-bounded cc, respectively.

In [13], N.J. Kalton and J. W. Roberts proved that if m is a uniformly ex-
haustive submeasure then it is equivalent to a measure. This reduced the Control
measure problem to the question whether there exists an exhaustive submeasure
that is not uniformly exhaustive. Such a submeasure was constructed by M. Ta-
lagrand in [22].

Let m be a strictly positive exhaustive submeasure. Letting

o(a,b) =m(a A b),

we obtain a distance function that makes B a metric space. The metric ¢ defines
a topology on B that is invariant under Boolean operations; in particular if U is
an open neighborhood of 0 then a A U is an open neighborhood of a.

We shall isolate a property of topological Boolean algebras that is necessary
and sufficient for the existence of an exhaustive submeasure.

3. Convergence ideals on Boolean algebras

We consider an abstract theory of convergent sequences in topological Boolean
algebras. This is inspired by an earlier work of B. Balcar, e.g. [1] and [2].

Definition 3.1. Let B be a Boolean algebra. A convergence ideal on B is a set
I of infinite sequences {ay}, in B with the following properties:
(i) A, an =0, i.e. there is no a > 0 such that a < a, for all n.
(ii) If s € I and if ¢ is an infinite subsequence of s then t € I.
(iii) If {an}n € I and b, < a,, for all n then {b,}, € I.

(iv) If {an}n € I and {by}, € I then {a, V by}, € I.
(v) If {an}n is an infinite antichain then {a,}, € I.

Given a convergence ideal I we write lim,, a,, = 0 instead of {a,}, € I and say
that {a,} converges to 0. We extend this to convergence to any a by

lima, =a whenever lim(ay, A a) = 0.

This notion of convergence has the obvious properties like

o each a, converges to at most one limit,
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o each constant sequence converges to the constant,
o lim(a, V b,) = lima, Vlimb,, etc.
Given a convergence ideal we define a topology on B as follows: a set A is
closed if it contains the limits of all sequences in A. We call such a topology
sequential.

Definition 3.2. A sequential topology on B is Fréchet if for every A, the closure
of A is the set of all limits of sequences in A.

It should be clear that a sequential topology is Fréchet if and only if it has
this property For every A, if for every k € N, {a*}, is a sequence in A with
lim,, a® = by, and if limy, by, = ¢, then there exists a sequence {cg }1, in A such that
limg ¢ = c.

Lemma 3.3. A sequential topology on B is Fréchet if and only if the conver-
gence ideal has the diagonal property: 1f lim,, x;, = O for all k, then there exists
a function F: N — N such that limy, .Z'F(k) =0.

PRrROOF: Assume that I has the diagonal property and let a¥, b, and ¢ be such
that hmn = b and limyg by, = ¢. We shall find a function F N — N such that
limy, a® F(k) =c.

Let :U = a A by; then lim, x; = 0 for each £, and so there exists a function
F' such that hmk :U’;,( k) = =0. NOW because

we have

lilrn(al}(k) Ac) < lilrn(a’}(k) Abg)V h}?l(bk Ac)=0

and so limy a’;(k) =c.

For the converse assume that the sequential topology is Fréchet and let 2* be
such that lim,, z;; = 0 for each k. Let A = {a}, be an infinite antichain, and let
for each n

yP=a%valv...vak and 2 =9k oy,

For each k we have lim,, y,’i = 0 and so lim,, z,’i = a.

Let Z = {zF: k,n € N}. Each a; is in the closure of Z, and so is 0 since
0 = limy, ax. Because the topology is Fréchet, there is a sequence in Z with limit 0;
hence there is an infinite set £ C N x N such that lim{z*: (k,n) € E} = 0. For
each k there are only finitely many n with (k,n) € E; this is because lim,, ¥ = a,.
Hence there is an infinite subset M of N and a function G on M such that
Hm{zg,,): m € M} =0. Let M = {m(0) <m(1) <--- <m(k) <---:k €N}
and let F(k) = G(m(k)). Then we have for every k

k k m(k) m(k)
Tr(k) SYF() S Yrk) < Za(mk)

and so limy % (k) = 0. O
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Definition 3.4. The sequential topology given by a convergence ideal I is uni-
formly Fréchet if there exist choice functions F} acting on infinite sequences such
that, whenever {acfl}n, k € N, are sequences converging to 0, then

1il£an({xZ}n) =0

(the kth term is the term of the kth sequence chosen by the kth function.)

This property is the uniform version of the diagonal property, that is, the
element chosen from the kth sequence depends only on k and the sequence, not
on the other sequences.

Proposition 3.5. Let m be a strictly positive exhaustive submeasure on B, and
let I be the ideal of all sequences {ay}, in B such that lim, m(a,) = 0. Then I
is a convergence ideal and the topology is uniformly Fréchet.

ProOOF: For {ay}, € I, F}, chooses some a,, such that m(a,) < 1/k. O

Theorem 3.6. A Boolean algebra B carries a strictly positive exhaustive sub-
measure if and only if it has a uniformly Fréchet convergence ideal.

We prove the theorem in the next section.

4. Fragmentations

If m is a measure (or an exhaustive submeasure) on a Boolean algebra B, let
for each n 1
C, = {a: m(a) > —}.
n
Every antichain in every C,, is finite (or of bounded size if m is uniformly exhaus-
tive) and so (in modern terminology), B is o-finite cc, or o-bounded cc. These
properties were considered in [8] and [7]. More recently, approximations of B
by a chain {Cy}, of sets with various properties have proved useful, see e.g. [4,
page 260]. In Balcar’s terminology, such approximations are called fragmenta-
tions.

Definition 4.1. A fragmentation of a Boolean algebra B is a sequence of subsets
CicCyC---CCy,C--- suchthat |J, C, = BT and for every n, if a € C,, and
a<bthenbe C,.

A fragmentation is o-finite cc if for every n, every antichain in C,, is finite.

A fragmentation is o-bounded cc if for every n there is a constant K,, such that
every antichain A C C), has size less than or equal to K,.

A fragmentation is graded if for every mn, whenever a Ub € C,, then either
a € Cn+1 orbe CnJrl.

In this section we prove that if B has a uniformly Fréchet ideal I then B has
a graded o-finite cc fragmentation.
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Let I be a uniformly Fréchet ideal and let Fj, k € N, be choice functions from
Definition 3.4. For each n, let

V. = {a: a < F, (&) for some & € I}, U,=Vin---NV,, C,=B-U,.

We claim that {C), }, is a fragmentation. It is enough to show that each a # 0
is in some Cy,. If a ¢ C,, for all n, then for every n there exists some Z™ € I such
that a < F,(Z™). By the uniform diagonality, {F,, (™)}, € I and it follows that
a=0.

A similar argument shows

Lemma 4.2. If {ay,}, is such that a,, ¢ C,, for each n then {ay}, € I.

PRrOOF: For each n there exists some ™ € I such that a,, < F,,(Z™). Because
{Fp(Z™)},, € I, we have {an}, € 1. O
Lemma 4.3. For every n, no @ € I is a subset of C,,.

PROOF: If some @ € I is a subset of C,, then for some & < n, some infinite

subsequence bof @ is disjoint from V}. But F} (5) € V. O

Note that the fragmentation is o-finite cc because every infinite antichain is
in 1.
Lemma 4.4. For every n there exists a k such that Uy vV Uy, C U,. Hence {Cy},
has a subfragmentation that is o-finite cc and graded.

PRrROOF: Let n € N and assume that for each k there exist a; and by in Uy such
that ¢, = ax V by € Cp,. By Lemma 4.2, {ax}r and {bi}r are in I and so
{ck}r € I. But {ci}r C Chp, a contradiction. O

5. Construction of an exhaustive submeasure

Let B be a Boolean algebra and assume that B has a graded o-finite cc frag-
mentation {C,},,. We shall define a submeasure on B.

For each n let U,, = B—C,, and Uy = B; we have Uy DU D --- DU, D ---
and ,, U, = {0}. For X,Y C B, let X VY denote the set {ztUy: z € X, y € Y}
As the fragmentation is graded, we have

Un+1 V Un+1 C Un
for all n > 0. Consequently, if n; < --- < ng then
Un1+1 VeV Unk+1 C Un1~

This is proved by induction on k.
Let D be the set of all r = Zle 1/2™ where 0 < nq < --- < ng. For each
reDweletV, =Uy, V---VU,, and V; = Uy = B. For each a € B define

m(a) =inf{re DU{1}:a € V. }.
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Using the above property of the U,, it follows that V. C Vi if r < s, and V, V
Vs C Vigs when r + s < 1. From this we have m(a) < m(b) if a C b, and
m(a Ub) < m(a) + m(b).

The submeasure m is strictly positive because if a # 0 then for some n,a ¢ U,
and hence m(a) > 1/2™.

Finally, m is exhaustive: If A is an infinite antichain, then for each n only
finitely many elements of A belong to C,, and hence only finitely many have
m(a) > 1/2™.

6. Measures and submeasures

Following D. Maharam’s work [16], the early work on the von Neumann prob-
lem and the Control measure problem isolated the following classes of Boolean
algebras: complete Boolean algebras that carry a o-additive measure (measure
algebras), complete Boolean algebras that carry a continuous submeasure (Ma-
haram algebras), Boolean algebras that carry a finitely additive measure and
Boolean algebras that carry exhaustive submeasure. (For a detailed analysis, see
D. H. Fremlin’s article [6] in the Handbook of Boolean algebras [18], and B. Balcar
et al. [1].)

The Control measure problem was reduced to the question whether every ex-
haustive submeasure is equivalent to a finitely additive measure. The result of
N.J. Kalton and J.W. Roberts in [13] shows that every uniformly exhaustive
submeasure is equivalent to a finitely additive measure, and in 2007, M. Tala-
grand answered the question in [22] by constructing an exhaustive measure (on
a countable Boolean algebra) that is not uniformly exhaustive.

Returning to the characterization of algebras with submeasure by convergence,
we have the following:

Definition 6.1. Let I be a convergence ideal on a Boolean algebra B. The
algebra B is I-concentrated if for every sequence {A,}, of finite antichains with
|Ay| > n there exists a sequence {ay}, € I such that a,, € A4, for all n.

Theorem 6.2. A Boolean algebra carries a strictly positive finitely additive
measure if and only if it has a uniformly Fréchet convergence ideal I and is
I-concentrated.

PROOF: Let {C,},, be the fragmentation constructed in Section 4. We claim that
each Cj has a bound on the size of antichains. Otherwise, let A,, be antichains in
C, of size at least n, and let {a,}, € I be such that a,, € A,,. This contradicts
Lemma 4.3.

It follows that B has a o-bounded cc graded fragmentation. Using the Kalton—
Roberts method, one can verify Kelley’s condition, see [15], for the existence of
a strictly positive measure; for details, see [11]. O

We wish to mention a subtle point here. In the proof of Theorem 6.2 we use
a graded o-bounded cc fragmentation. It is not enough to have a o-bounded cc
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algebra with a graded fragmentation because the metric completion of Talagrand’s
example is a Maharam algebra that does not carry a measure but is o-bounded cc.

7. Continuity and weak distributivity

Let B be a complete Boolean algebra. The algebra B has a o-additive measure
if and only if it has finitely additive measure and is weakly distributive. This
is explicitly stated in J. L. Kelley’s work [15] but was already known to Pinsker,
see [14]. Moreover, the proof of continuity is exactly the same when applied to
submeasures, see D. H. Fremlin [6, page 946]:

Theorem 7.1. Let B be a complete Boolean algebra.

(a) The algebra B carries a strictly positive o-additive measure if and only
if it is weakly distributive and carries a strictly positive finitely additive
measure.

(b) The algebra B carries a strictly positive continuous submeasure if and
only if it is weakly distributive and carries a strictly positive exhaustive
submeasure.

We note that (for ccc algebras) weak distributivity is equivalent to the Fréchet
property for the algebraic convergence (and uniform weak distributivity is equiv-
alent to uniformly Fréchet). Thus:

Theorem 7.2. Let B be a complete Boolean algebra.

(a) The algebra B is a Maharam algebra if and only if it is uniformly weakly
distributive, see [4], [5].

(b) The algebra B is a measure algebra if and only if it is uniformly weakly
distributive and concentrated, see [10].

8. Fréchet and uniformly Fréchet

The Fréchet property does not (provably) imply uniform Fréchet. This is be-
cause a Suslin algebra (the algebra obtained from a Suslin tree) is weakly dis-
tributive but not o-finite cc. This counterexample is only consistent with ZFC
(Zermelo—Fraenkel set theory with the axiom of choice), see [23], [9], and does not
exist in some models of set theory, see [19]. Moreover, by [3] it is consistent that
every weakly distributive ccc complete Boolean algebra is a Maharam algebra
(and hence uniformly weakly distributive). This shows that Fréchet could imply
uniformly Fréchet for the algebraic convergence but the proof does not seem to
work in general. Thus we end with the following open problem:

Problem 8.1. Is there (in ZFC) a Boolean algebra with a convergence ideal I

that is Fréchet but not uniformly Fréchet?
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