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Local-global convergence,

an analytic and structural approach

Jaroslav Nešetřil, Patrice Ossona de Mendez

In memory of Bohuslav Balcar

Abstract. Based on methods of structural convergence we provide a unifying view
of local-global convergence, fitting to model theory and analysis. The general

approach outlined here provides a possibility to extend the theory of local-global

convergence to graphs with unbounded degrees. As an application, we extend
previous results on continuous clustering of local convergent sequences and prove

the existence of modeling quasi-limits for local-global convergent sequences of
nowhere dense graphs.

Keywords: structural limit; Borel structure; modeling; local-global convergence

Classification: 03C13, 03C98, 05C99

The true logic of the world is in the calculus of probabilities.
James Clerk Maxwell

1. Introduction

The study of graph limits recently gained a strong interest, motivated both by
the study of large networks and the emerging studies of real evolving networks.
The different notions of graph limit (left convergence see [7], [8], [9], [10], [19],
local convergence see [5]), and the basic notions of graph similarity on which they
are based, opens a vast panorama. These frameworks have in common to be
built on statistics of locally defined motives when the vertices of the graphs in the
sequence are sampled uniformly and independently. A unified framework for the
study of convergence of structures has been introduced by the authors in [20].

In this setting the notion of convergence is, in essence, model theoretic, and
relies on the the following notions:

For a σ-structure A and a first-order formula ϕ (in the language of σ, with
free variables x1, . . . , xp), we denote by ϕ(A) the satisfying set of ϕ in A:

ϕ(A) = {(v1, . . . , vp) ∈ Ap : A |= ϕ(v1, . . . , vp)},
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and we define the Stone pairing of ϕ and A as the probability

〈ϕ,A〉 =
|ϕ(A)|
|A|p

that A satisfies ϕ for a (uniform independent) random interpretation of the ran-
dom variables.

A sequence AAA = (An)n∈N of finite σ-structures is FO-convergent if the sequence
〈ϕ,AAA〉 = (〈ϕ,An〉)n∈N converges for every first-order formula ϕ. One similarly de-
fines a weakened notion of X-convergence (for a fragment X of first-order logic) by
restricting the range of the test formulas ϕ to X. In particular, for a sequence of
graphs with growing orders, the QF-convergence (that is of convergence driven by
the fragment QF of quantifier-free formulas) is equivalent to left convergence, and

the FOlocal-convergence (that is of convergence driven by the fragment FOlocal of
the so-called local formulas) is equivalent to local convergence when restricting to
sequences of graphs with bounded degrees, see [20]. The study of X-convergence
of structures and the related problems is called shortly “structural limits”. It
extends all previously considered types of nongeometric convergence of combi-
natorial structures (two above and also, e.g. permutations) to general relational
structures. A survey of structural limits can be found in [22], [21].

In order to strengthen the notion of local convergence of sequences of connected
bounded degree graphs, the notion of local-global convergence has been introduced
by H. Hatami, L. Lovász and B. Szegedy in [12], based on the framework intro-
duced in [6]. The original definition of local-global convergence, which is based on
the total variation distance between the distributions of colored neighborhoods of
radius r in the graphs in the sequence, is admittedly quite technical (see Defini-
tions 3.3.1 and 3.4.1). Roughly speaking, the strengthening of local convergence
into local-global convergence relates to the extension of the considered properties
from first-order logic to existential monadic second order logic.

In this paper we introduce the notion of lift-Hausdorff convergence, which is
defined generally for graphs and relational structures, based on a simple subse-
quence completion property (see Definition 3.4.3). The basic notions underlying
this definition are the model theoretic notions of lift of a structure (that one can
see as an augmentation of a structure by colors, new relations, etc.) and the dual
notion of shadow consisting in forgetting all the additional relations of a lift (see
Figure 1). Note that the notions of lift and shadow are close to model theoretic
notions of expansion and reduct.

A lift/shadow pair is determined by the data of two signatures σ ⊂ σ+, the
signature of the shadows and the signature of the lifts. Given a lift/shadow
pair, the corresponding notion of lift-Hausdorff convergence is (roughly) defined
as follows: A sequence AAA = (An)n∈N is lift-Hausdorff convergent if for every
convergent subsequence AAA+

f = (A+
f(n))n∈N of lifts there exists a (full) convergent

sequence A∗A∗A∗ of lifts extending AAA+
f . (In this definition, the condition that AAAf

is a subsequence of lifts means that A+
f(n) is a lift of Af(n) and f : N → N is
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shadow lift

σ

σ+

Figure 1. The shadow operation consists in forgetting some of
the relations, while the lift operation consists in adding some
relations in all possible ways.

an increasing function defining a subsequence of indices; the condition that AAA∗

extends AAA+
f means that A∗f(n) = A+

f(n) for every integer n.)

We prove that this notion indeed extends the usual notion of local-global
convergence in the case of monadic lifts and gives a characterization of lift-
Hausdorff convergent sequences as Cauchy sequences for an appropriate metric
(Theorem 3.3.2). Note that the case of monadic lifts can be interpreted by means
of first-order formulas with set parameters.

We give a basic representation theorem for corresponding limits, which is based
on the representation theorem for structural limits, see [20]: every limit of a lift-
Hausdorff convergent sequence maybe represented by nonempty closed subset
of the space of probability measures on some Stone space (Theorem 3.3.3). In
Section 4.2 we discuss the possible notion of a limit object for lift-Hausdorff con-
vergent sequences. Two possible notions can be considered:

◦ a strong notion of limit L for a sequence AAA, such that for every convergent
sequence AAA+ of lifts there exists an admissible lift L+ of L that is the
limit of AAA+ and, conversely, for every admissible lift L+ of L there exists
a convergent sequence AAA+ of lifts with limit L+;

◦ a weaker notion of limit L (in the spirit of the representation of local-
global limits by graphings, see [12]) where we ask that for every ε > 0
and every convergent sequence AAA+ of lifts there exists an admissible lift
L+ of L such that for every formula ϕ we have

(1)
∣∣〈ϕ,L+〉 − lim

n→∞
〈ϕ,A+

n 〉
∣∣ < cϕε

(where cϕ is a positive constant depending only on ϕ) and, conversely,
for every admissible lift L+ of L there exists a convergent sequence AAA+ of
lifts such that (1) holds.

In these definitions, an essential difficulty lies in the definition of admissible
lifts. In the case of local-global convergent sequences of bounded degree graphs
with a graphing limit, the notion of admissible lift corresponds to Borel colorings.
In a more general setting, an admissible lift of a modeling should (at least) be
a modeling itself. However, Borel colorings of a fixed graphing does not induce
a closed subset of unimodular probability measures, as noticed in [12] and, more
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generally, probability measures associated to modeling lifts of a fixed modeling
does not form a closed subset, what is problematic for the stronger notion of limit.

When considering the weaker (standard) definition of a limit, the reverse di-
rection appears to be quite difficult to handle in general. Indeed, in the bounded
degree case, the r-neighborhood of a set with measure at most ε has measure at
most drε, what allows to easily approximates Borel colorings using a countable
base. However such a property does not hold in the general unbounded degree
case.

For this reason, we only consider one direction in the definition of limit: a quasi-
limit AAA is a modeling such that for every ε > 0, every formula ϕ and every
convergent sequence AAA+ of lifts there exists a modeling lift L+ of L such that (1)
holds. In this setting, we prove that modelings (introduced in [25]) are not only
limit objects for FO-convergent nowhere dense sequences (as proved in [26]) but
also quasi-limits for (monadic) lift-Hausdorff convergent nowhere dense sequences
(see Theorem 4.2.4).

Let us end this introduction by few remarks. The lifts involved in our local-
global structural convergence are all monadic (and can be seen as coloring of
vertices). It follows that the expressive power of such lifts is restricted to embed-
dings and classes which are hereditary. If we would consider more general lifts,
such as coloring of the edges1 then we could represent monomorphisms (not in-
duced substructures) which in turn leads to monotone classes. Monotone classes
of graphs which have modeling limits (of which graphing limits are a particu-
lar case) were characterized in [26] and coincides with nowhere dense classes (of
graphs). This also coincides (in the case of monotone classes of graphs) with the
notion of NIP and stable classes, see [1] (see also [23]). For hereditary classes
the structure theory and the existence of modeling limits is more complicated
(see [22]) and local-global convergence seems to provide a useful framework.

2. Preliminaries

2.1 Relational structures and first-order logic. A signature σ is a set of
relation symbols with associated arities. In this paper we will consider countable
signatures. A σ-structure A is defined by its domain A, which is a set, and by
interpreting each relation symbol R ∈ σ of arity k as a subset of Ak. We denote by
Rel(σ) the set of all finite σ-structures and by Rel(σ) the class of all σ-structures.

A first-order formula ϕ in the language of σ-structures is a formula constructed
using disjunction, conjunction, negation and quantification over elements, using
the relations in σ and the equality symbol. A variable used in a formula ϕ is free
if it is not bound by a quantifier. We always assume that free variables are named
x1, . . . , xn, . . . and we consider formulas obtained by renaming the free variables
as distinct. For instance, x1 = x2 and x2 = x3 are distinct formulas. We also

1This would require to add some first-order restrictions on the lifts, what would not funda-
mentally change the framework presented in this paper.
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Symbol Fragment

FO(σ) or FO All first order formulas
FOp(σ) or FOp All first order formulas with free variables within

{x1, . . . , xp}
FO0(σ) or FO0 Sentences

FOlocal(σ) or FOlocal Local formulas

FOlocal
p (σ) or FOlocal

p Local formulas with free variables within {x1, . . . , xp}
QF(σ) or QF Quantifier free formulas

Table 1. Principal fragments of first-order logic considered in
this paper.

consider two constants, 0 and 1 to denote the false and true statements. We
denote by FO(σ) the (countable) set of all first-order formulas in the language of
σ-structures. The conjunction and disjunction of formulas ϕ and ψ are denoted
by ϕ ∧ ψ and ϕ ∨ ψ, and the negation of ϕ is denoted by ¬ϕ. We say that two
formulas ϕ and ψ are logically equivalent , which we denote by ϕ ⇐⇒ ψ, if one can
infer one from the other (i.e. ϕ ` ψ and ψ ` ϕ). Note that in first-order logic the
notions of syntactic and semantic equivalence coincides. In this context we denote
by [ϕ] the equivalence class of ϕ with respect to logical equivalence. It is easily
checked that Bσ = FO(σ)/⇐⇒ is a countable Boolean algebra with minimum 0
and maximum 1, which is called the Lindenbaum–Tarski algebra of FO(σ).

In this paper we consider special fragments of first-order logic (see Table 1).
The Lindenbaum–Tarski algebra of a fragment X ⊆ FO(σ) will be denoted

by BXσ . For instance, BQF
σ = QF(σ)/⇐⇒ .

2.2 Functional analysis. Basic facts from functional analysis, which will be
used in this paper, are recalled now.

A standard Borel space is a Borel space associated to a Polish space, i.e. a mea-
surable space (X,Σ) such that there exists a metric on X making it a separable
complete metric space with Σ as its Borel σ-algebra. Typical examples of stan-
dard Borel spaces are R and the Cantor space. Note that according to Maharam’s
theorem, all uncountable standard Borel spaces are (Borel) isomorphic. (The au-
thors cannot resist the temptation to mention Balcar’s award-winning work [4] in
this context.)

In this paper, we shall mainly consider compact separable metric spaces. Note
that if (M,d) is a compact separable metric space, then linear functionals on the
space of real continuous functions on M can be represented, thanks to Riesz–
Markov–Kakutani representation theorem, by Borel measures on M . We denote
by P (M) the space of all probability measures on M . A sequence of probability
measures (µn)n∈N is weakly convergent if

∫
f dµn converges for every (real-valued)
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continuous function2 f . Weak convergence defines the weak topology of P (M),
and (as we assumed that (M,d) is a compact separable metric space) this space
is compact, separable, and metrizable by the Lévy–Prokhorov metric (based on
the metric d):

dLP(µ1, µ2) = inf{ε > 0: µ1(A) ≤ µ2(Aε) + ε and µ2(A) ≤ µ1(Aε) + ε

for all Borel A},

where Aε = {x ∈M : ∃ y ∈M d(x, y) < ε}.
The Hausdorff metric is defined on the space of nonempty closed bounded

subsets of a metric space. Consider a compact metric space (M, d), and let CM
be the space of nonempty closed subsets of M endowed with the Hausdorff metric
defined by

dH(X,Y ) = max
(
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)
)
.

One of the most important properties of Hausdorff metric is that the space of
nonempty closed subsets of a compact set is also compact (see [13], and [27] for
an independent proof). Hence the space (CM ,dH) is compact.

We can use the inverse function of a surjective continuous function from a com-
pact metric space (M,d) to a (thus compact) Hausdorff space T to isometrically
embed the space CT (of nonempty closed subsets of T ) into (CM ,dH). Then,
using the natural injection ι : T → CT (defined by ι(x) = {x}) we pull back the
Hausdorff distance on CM into T :

dT (x, y) = dH(f−1(x), f−1(y)).

The situation is summarized in the following diagram.

(M, d)
f // // T

��
ι

��

zz
f−1

zz
(CM ,dH) CToo

f̂−1

oo

In this diagram f−1 denotes the mapping from T to CM and f̂−1 the correspond-

ing mapping from CT to CM defined by f̂−1(X) = {y : f(y) ∈ X}. Also remark
that the metric dT defined on T is usually not compatible with the original topol-
ogy of T .

For the topology defined by the metric dT , one can define the compactification
of T , which may be identified with the closure of the image of T (by f−1 ◦ ι)
in CM .

We shall make use of the following folklore result, which we prove here for
completeness.

2We do not have to assume that f has compact support as we assumed that (M,d) is compact.
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Lemma 2.2.1. Let X,Y be compact standard Borel spaces and let f : X → Y be
continuous. Let P (X) and P (Y ) denote the metric space of probability measures
on X and Y (with Lévy–Prokhorov metric).

Then the pushforward by f , that is the mapping f∗ : P (X)→ P (Y ) defined by
f∗(µ) = µ ◦ f−1, is continuous.

Proof: Assume µn ⇒ µ is a weakly convergent sequence of measures in P (X).
Then for every continuous function g : Y → R it holds∫

Y

g(y) df∗(µ)(y) =

∫
X

g ◦ f(x) dµ(x) = lim
n→∞

∫
X

g ◦ f(x) dµn(x)

= lim
n→∞

∫
Y

g(y) df∗(µn)(y).

Hence f∗(µn)⇒ f∗(µ). �

2.3 Sequences. In this paper we denoted sequences by sans serif letters. In
particular, we denote by AAA a sequence of structures AAA = (An)n∈N, and by X =
(Xn)n∈N a sequence of sets Xn, where Xn is a subset of the domain An of An.

Subsequences will be denoted by AAAf and Xf , where f is meant to be a strictly
increasing function f : N → N, and represent the sequences (Af(n))n∈N and
(Xf(n))n∈N. Note that (AAAf )g = AAAg◦f .

In order to simplify the notations, we extend binary relations and standard
constructions to sequences by applying them component-wise. For instance X ⊆ Y
means (∀n ∈ N) Xn ⊆ Yn, X ∩ Y represents the sequence (Xn ∩ Yn)n∈N, and if
f : Rel(σ)→ R is a mapping then f(AAA) represents the sequence (f(An))n∈N.

We find these notations extremely helpful for our purposes.

2.4 Basics of structural convergence. Let σ be a countable signature, let
X be a fragment of FO(σ). For ϕ ∈ X with free variables within x1, . . . , xp
and A, we denote by 〈ϕ,A〉 the probability that ϕ is satisfied in A for a random
assignment of elements of A to the free variables of ϕ (for an independent and
uniform random choice of the assigned elements), that is:

〈ϕ,A〉 =
|{v ∈ Ap : A |= ϕ(v)}|

|A|p
.

(Note that the presence of unused free variables does not change the value in the
next equation.) In the special case where ϕ is a sentence, we get

〈ϕ,A〉 =

{
1 if A |= ϕ,

0 otherwise.

Two σ-structures A and B are X-equivalent , what we denote by A ≡X B, if
we have 〈ϕ,A〉 = 〈ϕ,B〉 for every ϕ ∈ X.
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Example 2.4.1. Let QF− be the fragment of quantifier-free formulas that do
not use equality.
If a graph G is obtained from a graph H by blowing each vertex into k vertices
(i.e. if G is the lexicographic product of H by an edgeless graph of order k) then
G ≡QF− H.

If X is a fragment including QF or FO0, then ≡X is trivial on finite relational
structures.

The case of FOlocal
1 -equivalence is settled by the next proposition.

Proposition 2.4.2. For any two finite σ-structures A and B we have that
A ≡FOlocal

1
B if and only if there exists a finite σ-structure C and two positive

integers a and b such that A is isomorphic to a copies of C and B is isomorphic
to b copies of C.

Proof: Let F1, . . . ,Fn, . . . be an enumeration of the finite σ-structures (up to
isomorphism), and let ϕi(x) be a local formula expressing that the connected
component of x is isomorphic to Fi (i.e. that the ball of radius |Fi| + 1 around
x is isomorphic to Fi). Then 〈ϕi,A〉 is equal to the product of |Fi|/|A| by
the number of connected components of A isomorphic to Fi. Thus there exists a
positive integer q and nonnegative integers p1, . . . , pn, . . . such that 〈ϕi,A〉 = pi/q
and the set of all positive pi values is setwise coprime. Then if C consists in thus
union (over i) of pi copies of Fi, it is immediate that A and B consist in a positive
number of copies of C. �

A sequence AAA of σ-structures is X-convergent if 〈ϕ,AAA〉 = (〈ϕ,An〉)n∈N con-
verges for each ϕ ∈ X. This provides a unifying to left and local convergence, as
mentioned in the introduction: left convergence coincides with QF−-convergence
and local convergence with FOlocal-convergence (when restricted to graphs with
bounded degrees). The term of structural convergence covers the general notions
of X-convergence.

The basic result of [20], which is going to provide us a guideline for a proper
generalization of local-global convergence is the representation theorem for struc-
tural limits in terms of probability measures. We adopt [20] to the setting of this
paper.

2.5 The representation theorem for structural limits. For a countable
signature σ and a fragment X of FO(σ) we denote by SσX the Stone dual of
the Lindenbaum–Tarski BXσ of X, which is a compact Polish space. Recall that
the points of BXσ are the maximal consistent subsets of X (or equivalently the
ultrafilters on BXσ ). The topology of SσX is generated by the base of the clopen
subsets of SσX , which are in bijection with the formulas in X by

ϕ 7→ K(ϕ) = {t ∈ SσX : ϕ ∈ t}.
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In the setting of this paper we work with metric (and, notably, pseudo-metric)
spaces. First note that the topology of SσX is metrizable by the several metrics,
including the metrics we introduce now.

A chain covering of X is an increasing sequence X = (X1, X2, . . . ) of finite
sets (i.e. X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . . ) such that every formula in X is logically
equivalent to a formula in

⋃
i≥1Xi. The metric δX induced by X on SXσ is defined

by

(2) δX(t1, t2) = inf
{ 1

n
: (t1 M t2) ∩Xn = ∅

}
,

where t1 M t2 stands for the symmetric difference of the sets t1 and t2.
First-order limits (shortly FO-limits) and, more generally, X-limits can be

uniquely represented by a probability measure µ on the Stone space S dual to the
Lindenbaum–Tarski algebra of the formulas. This can be formulated as follows.

Theorem 2.5.1 ([20]). Let σ be a countable signature, let X be a fragment
of FO(σ) closed under disjunction, conjunction and negation, let BXσ be the
Lindenbaum–Tarski algebra of X, and let SXσ be the Stone dual of BXσ .

Then there is a map TXσ from the space Rel(σ) of finite σ-structures to the
space of P (SXσ ) of probability measures on the Stone space SXσ , such that for
every A ∈ Rel(σ) and every ϕ ∈ X we have

(3) 〈ϕ,A〉 =

∫
SXσ

1ϕ(t) dµA(t),

where µA = TXσ (A) and 1ϕ is the indicator function of the clopen subset K(ϕ)
of SXσ dual to the formula ϕ ∈ X in Stone duality, i.e.

1ϕ(t) =

{
1 if ϕ ∈ t,

0 otherwise.

Additionally, if the fragment X includes FO0 or QF then the mapping TXσ is
one-to-one3.

In this setting, a sequence AAA of finite σ-structures is X-convergent if and only
if the measures TXσ (An) converge weakly to some measure µ. Then for every
first-order formula ϕ ∈ X we have

(4)

∫
SXσ

1ϕ(t) dµ(t) = lim
n→∞

∫
SXσ

1ϕ(t) dµAn
(t) = lim

n→∞
〈ϕ,An〉,

where µAn
= TXσ (An).

Assume that a subgroup Γ of the group Sω of permutations of N acts on the
first-order formulas in X by permuting the free variables. Then this action induces
an action on SXσ , and the probability measure TXσ (A) associated with a finite

3Note that in [20] the condition on X was erroneously omitted.
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structure A is obviously Γ-invariant, thus so is the weak limit µ of a sequence
(TXσ (An))n∈N of probability measures associated with the finite structures of an
X-convergent sequence. It follows that the measure µ appearing in (4) has the
property to be Γ-invariant.

This theorem generalizes the representation of the limit of a left-convergent
sequence of graphs by an infinite exchangeable random graph [2], [16] and the
representation of the limit of a local-convergent sequence of bounded degree graphs
by a unimodular distribution, see [5]. Figure 2 schematically depicts some of the
notions related to the representation theorem.

Observables
Algebra A = C(Ω) with

uniform norm

States
space P (Ω) of probability

distributions on Ω

Phase space
space Ω of all types = Stone

dual of B

Boolean algebra
B is the Lindenbaum-Tarsky

algebra of FO(σ)

Stone duality

projections

completion
of the
vector
space

injective
embedding

entailment
order of
logical

equivalence
classes

States on B
space of additive functions

on B

≈
σ-structures

injective
embedding

Stone bracket 〈 · , · 〉

GelfandRiesz

Logic
First-order formulas in the
language of σ-structures

Figure 2. Sketch of the spaces involved in the distributional
representation of structural limits of σ-structures.

The weak topology of P (SXσ ) is metrizable by using the Lévy–Prokhorov met-
rics based on the metrics δX (where X is a fixed chain covering of X). Using the
fact that δX is an ultrametric, we obtain the following more practical expression
for the Lévy–Prokhorov metric dLP

X associated to δX:

(5) dLP
X (µ1, µ2) = inf

n∈N

{
max

(
1

n
, max
ϕ∈Xn

∣∣∣∣∫
SXσ

1ϕ(t) d(µ1 − µ2)(t)

∣∣∣∣)}.
This metric in turn uniquely defines a pseudometric distX on Rel(σ) such that

the mapping TXσ induces an isometric embedding of Rel(σ)/≡X into P (SXσ ):

distX(A,B) = dLP
X (TXσ (A), TXσ (B)).

Note that we have the following expression for distX:

(6) distX(A,B) = inf
n∈N

{
max

( 1

n
, max
ϕ∈Xn

|〈ϕ,A〉 − 〈ϕ,B〉|
)}
.
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It is easily checked that, as expected, a sequence AAA is X-convergent if and only
if it is Cauchy for distX.

We denote by MX
σ ⊆ P (SXσ ) the space of probability measures on SXσ associ-

ated to finite σ-structures:

MX
σ = {TXσ (A) : A ∈ Rel(σ)}.

We denote by MX
σ the weak closure of MX

σ in P (SXσ ) and by (Rel(σ)
X
,distX) the

completion of the pseudometric space (Rel(σ),distX). Note that (Rel(σ)
X
,distX)

has a dense subspace naturally identified with (Rel(σ)/≡X ,distX), and TXσ induces

an isometric isomorphism of (Rel(σ)
X
,distX) and (MX

σ ,d
LP
X ). Consequently both

spaces are separable compact metric spaces.

3. From interpretation to lift convergence

Our basic approach to local-global convergence is by means of lifts of structures,
which demands a change of signature. By doing so we still have to preserve some
functorial properties and this is done by means of interpretations.

3.1 A categorical approach to interpretations. Interpretations of classes
of relational structures in other classes of relational structures are a useful and
powerful technique to transfer properties from one class of structures to another
(with possibly a different signature).

First, we define interpretations syntactically (in the spirit of [18]), which allows
us to organize them as a category. This functorial view will be particularly useful
in our setting.

Let τ, σ be countable relational signatures. An interpretation I of σ-structures
in τ -structures is a triple (ν, η, (%R)R∈σ), where:

◦ ν(x) ∈ FO(τ) is a formula defined on p tuples of variables x;
◦ η(x, y) ∈ FO(τ) is a formula defining an equivalence relation on p-tuples

(satisfying ν);
◦ for each relation R ∈ σ of arity k, the formula %R(x1, . . . , xk) ∈ FO(τ)

(with |x1| = · · · = |xk| = p) is compatible with η, meaning

k∧
i=1

η(xi, yi) ` %R(x1, . . . , xk) ↔ %R(y1, . . . , yk).

By replacing equality by η, relation R by %R and by conditioning quantifications
using ν one easily checks that the interpretation I allows to associate to each
formula ϕ(x1, . . . , xk) ∈ FO(σ) a formula ϕ̂(x1, . . . , xk) ∈ FO(τ). We define

L(I) : FO(σ) → FO(τ)

as the mapping ϕ 7→ ϕ̂.
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Note that we have L(I)(1) = ν, L(I)(x1 = x2) = η, and L(I)(R) = %R for every
R ∈ σ. Hence L(I) fully determines I.

This definition allows us to consider interpretations I : τ → σ as morphisms
in a category of interpretations. The objects of this category are all countable
relational signatures (here denoted by σ, τ, . . . ) and morphisms I : τ → σ are
triples (ν, η, (%R)R∈σ) forming an interpretation as above. Morphisms compose as
if I : τ → σ and J : σ → κ are interpretations then we can define

J ◦ I = (L(J ◦ I)(x1 = x1), L(J ◦ I)(x1 = x2), (L(J ◦ I)(S))S∈κ).

The identity (for σ) is provided by the morphism (x1 = x1, x1 = x2, (R)R∈σ).
Thus we indeed have a category of interpretations.

A basic interpretation in [22] is an interpretation (ν, η, (%R)R∈σ) such that
ν(x) := (x = x) and η(x1, x2) := (x1 = x2). (For instance the identity interpre-
tation defined above is a basic interpretation.)

Note that every basic interpretation I : τ → σ induces a homomorphism

H(I) : Bσ → Bτ defined by H(I)([ϕ]) = [L(I)(ϕ)],

where [ϕ] denotes the class of ϕ for logical equivalence. The mapping H is actu-
ally a contravariant functor from the category of interpretations to the category
of Boolean algebras.

By Stone duality theorem, the interpretation I also defines a continuous func-
tion

F (I) : Sτ → Sσ defined by F (I)(t) = {ϕ : L(I)(ϕ) ∈ t}.
Note that F is a covariant functor from the category of interpretations to the
category of Stone spaces.

Finally, the interpretation I also defines a mapping

P (I) : Rel(τ)→ Rel(σ)
as follows:

◦ The domain of P (I)(A) is ν(A)/η, that is all the η-equivalence classes of
p-tuples in ν(A).

◦ For every relational symbol R ∈ σ with arity k (and associated formu-
la %R) we have

P (I)(A) |= R([v1], . . . , [vk]) if and only if A |= %R(v1, . . . , vk).

(Note that this does not depend on the choice of the representatives
v1, . . . , vk of the η-equivalence classes [v1], . . . , [vk].)

This mapping P (I) : Rel(τ) → Rel(σ) is what is usually meant by an interpre-
tation (of σ-structures in τ -structures, see [14]). It is easily checked that the
mapping P (I) has the property that for every formula ϕ ∈ FO(σ) with k free
variables and every [v1], . . . , [vk] in P (I)(A) we have

P (I)(A) |= ϕ([v1], . . . , [vk]) if and only if A |= L(I)(ϕ)(v1, . . . , vk).
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The interpretations, which we shall the most frequently consider, belong to
the following types of basic interpretations (which are easily checked to be basic
interpretations):

◦ forgetful interpretations that simply forget some of the relations;
◦ renaming interpretations that bijectively map a signature to another,

mapping a relational symbol to a relational symbol with same arity;
◦ projecting interpretations that forget some symbols and rename others.

Our categorical approach allows us to obtain a more functorial point of view:

τ

I

��

FO(τ) Bτ oo
Stone duality // Sτ

F (I)

��

Rel(τ)

P (I)

��

Tτ //Mτ
� � // P (Sτ )

F (I)∗

��
σ FO(σ)

L(I)

OO

Bσ

H(I)

OO

oo Stone duality // Sσ Rel(σ)
Tσ //Mσ

� � // P (Sσ)

In this diagram the mapping F (I)∗ is the pushforward defined by F (I) (see
Lemma 3.2.1 bellow).

One can also consider the case where we do not consider all first-order formulas.
Let X be a fragment of FO(τ) and let Y = L(I)−1(X). (Note that if X is closed by
disjunction, conjunction and negation, so is L(I)−1(X).) The basic interpretation I
then defines a homomorphism

H(I) : BYσ → BXτ ,

which is the restriction of H(I) to BYσ . By duality, this homomorphism defines
a continuous mapping

F̂ (I) : SXτ → SYσ .

In particular, if Kϕ is the clopen subset of SYσ defined by ϕ ∈ Y then F̂ (I)−1(Kϕ)

is the clopen subset KL(I)(ϕ) of SXτ . Note that we have F (I) = F̂ (I) ◦ ΠX
τ , where

ΠX
τ is the natural projection from Sτ to SXτ .

3.2 Metric properties of interpretations. We have seen in the previous sec-
tion that interpretations define continuous functions between Stone spaces. This
property can be used to transfer convergence from one signature to another. This
is done in a very general setting we introduce now.

Let I : τ → σ be a basic interpretation, let X be a fragment of FO(τ), let
Y = L(I)−1(X), let X be a chain covering of X, and let Y be a chain covering
of Y such that every formula in L(I)(Yn) is logically equivalent to a formula in Xn.

Let us explain this choice of Y .
In ImP (I) we should not distinguish two finite structures P (I)(A) and P (I)(B)

if there exist a chain C1, . . . ,C2n+1 of finite structures such that C1 = A,
C2n+1 = B, C2i−1 ≡X C2i, and P (I)(C2i) = P (I)(C2i+1) for i = 1, . . . , n.
But P (I)(A′) = P (I)(B′) holds if and only if 〈ϕ,A′〉 = 〈ϕ,B′〉 for every ϕ ∈
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L(I)(FO(σ)). Hence the conditions can be rewritten as

∀ϕ ∈ X 〈ϕ,C2i−1〉 = 〈ϕ,C2i〉,
∀ϕ ∈ L(I)(FO(σ)) 〈ϕ,C2i〉 = 〈ϕ,C2i+1〉.

A necessary (but maybe not sufficient) condition is obviously that

∀ϕ ∈ X ∩ L(I)(FO(σ)) 〈ϕ,A〉 = 〈ϕ,B〉,

that is:

∀ϕ ∈ L(I)−1(X) 〈ϕ, P (I)(A)〉 = 〈ϕ, P (I)(B)〉,

which we can rewrite as P (I)(A) ≡Y P (I)(B). This shows that the fragment Y
is sufficiently small to ensure the continuity of P (I). By our choice of the chain
covering Y we further get that P (I) induces a short map (that is a 1-Lipschitz
function). We summarize this in the following lemma.

Lemma 3.2.1. In the above setting and notation we have:

(7) distY(P (I)(A), P (I)(B)) ≤ distX(A,B).

This can be restated as follows: Let the quotients (Rel(τ)/ ≡X ,distX) and
(Rel(σ)/ ≡Y ,distY) be the quotient metric spaces induced by the pseudomet-
ric spaces (Rel(τ),distX) and (Rel(σ),distY). Then the unique continuous func-

tion P̂ (I) : (Rel(τ)/ ≡X ,distX) → (Rel(σ)/ ≡Y ,distY) such that P̂ (I)([A]X) =
[P (I)(A)]Y is a short map.

Proof: For every pair A,B of τ -structures we have

distY(P (I)(A), P (I)(B)) = inf
n∈N

{
max

( 1

n
, max
ϕ∈Yn

|〈ϕ, P (I)(A)〉 − 〈ϕ, P (I)(A)〉|
)}

= inf
n∈N

{
max

( 1

n
, max
ψ∈L(I)(Yn)

|〈ϕ,A〉 − 〈ϕ,B〉|
)}

≤ inf
n∈N

{
max

( 1

n
, max
ψ∈Xn

|〈ϕ,A〉 − 〈ϕ,B〉|
)}

= distX(A,B).

(In particular A ≡X B imply that distY(P (I)(A), P (I)(B)) = 0 thus P (I)(A) ≡Y
P (I)(B) hence P (I) descends to the quotient and there exists a unique map

P̂ (I) : (Rel(τ)/≡X ,distX) → (Rel(σ)/≡Y ,distY)

such that P̂ (I)([A]X) = [P (I)(A)]Y .) �

Let MX,I = F (I)∗(MX
τ ) and let MX,I = F (I)∗(MX

τ ) be the closure of MX,I in
(P (SYσ ),dLP

Y ). We tried to summarize in Figure 3 the relations between the differ-

ent (pseudo)metric spaces defined from signatures, fragments, and interpretations.
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(Rel(τ),distX)
TXτ // //

P (I)

����

[·]X

'' ''

(MX
τ ,d

LP
X ) // //

F (I)∗

����

(MX
τ ,d

LP
X )

F (I)∗

����

(Rel(τ)/≡X ,distX)

88

88 88

P̂ (I)

����

// // (Rel(τ)
X
,distX)

99

99 99

����

(ImP (I),distY)
TYσ // //

��

��

[·]Y

'' ''

(MX,I,d
LP
Y )

��

��

// // (MX,I,d
LP
Y )

��

��

(ImP (I)/≡Y ,distY)

88

88 88

��

��

// // (ImP (I)
Y
,distY)

99

99 99

����

(Rel(σ),distY)
TYσ // //

[·]Y

'' ''

(M Y
σ ,d

LP
Y ) // // (M Y

σ ,d
LP
Y )

(Rel(σ)/≡Y ,distY)

88

88 88

// // (Rel(σ)
Y
,distY)

::

:: ::

Figure 3. The considered (pseudo)metric spaces and their re-
lations. Unlabeled arrows correspond to inclusions // // or
isometric embeddings // // // . In this diagram the space

(ImP (I)
Y
,distY) is the completion of the pseudometric space

(ImP (I),distY).

3.3 Lift-Hausdorff convergence. We now show how all the above construc-
tions will nicely fit in Definition 3.3.1 of the lift-Hausdorff convergence. We first
show how the definition derives from the preceding notions dealing with general
basic interpretations.

Let I : τ → σ be a fixed interpretation, let X be a fixed fragment of FO(τ), let
X be a fixed cover chain of X, and let Y be any chain covering of Y such that
every formula in L(I)(Yn) is logically equivalent to a formula in Xn.

According to Lemma 2.2.1 the pushforward mapping F (I)∗ is a continuous

function from P (SXτ ) to P (SYσ ). Then the Lévy–Prokhorov distance dLP
X on MX

τ

defines a Hausdorff distance dH
X on the space C

MX
τ

of nonempty closed subsets

of MX
τ :

(8) dH
X(M1,M2) = max

(
sup

µ1∈M1

inf
µ2∈M2

dLP
X (µ1, µ2), sup

µ2∈M2

inf
µ1∈M1

dLP
X (µ1, µ2)

)
.
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(MX
τ ,d

LP
X )

F (I)∗
����

(C
MX
τ
,dH

X)

MX,I,d
LP
Y )
��

��

// ι //
77

F (I)−1
∗

77

(CMX,I
,dH

Y)

OO F̂ (I)∗
−1

OO

(M Y
σ ,d

LP
Y )

Also the pseudometric distX on Rel(τ) defines a Hausdorff pseudometric distHX
on the space of nonempty closed subsets of Rel(τ) (for the topology induced by
the pseudometric distX):

(9)

distHX(F1, F2) = max
(

sup
A1∈F1

inf
A2∈F2

distX(A1,A2), sup
A2∈F2

inf
A1∈F1

distX(A1,A2)
)
.

These (pseudo)metrics are related by the following equation (where F1 and F2

denote nonempty closed subsets of Rel(τ):

distHX(F1, F2) = dH
X(TXτ (F1), TXτ (F2)).

Using the injective mapping F (I)−1∗ we can transfer to MX,I the Hausdorff
distance dH

X defined on C
MX
τ

, thus defining a distance dH
X,I on MX,I:

dH
X,I(µ1, µ2) = dH

X(F (I)−1∗ (µ1), F (I)−1∗ (µ2)).

(Note that this metric usually does not define the same topology as dLPY .)

Using the mapping TYσ we can transfer to ImP (I) the metric distHX,I just defined

on MX,I. As TYσ is not injective in general we get this way a pseudometric distHX,I
on ImP (I):

distHX,I(A,B) = dH
X(F (I)−1∗ (TYσ (A)), F (I)−1∗ (TYσ (B)))

= dH
X(TXτ (P (I)−1(A)), TXτ (P (I)−1(B)).

Hence we have

(10) distHX,I(A,B) = distHX(P (I)−1(A), P (I)−1(B)).



Local-global convergence, an analytic and structural approach 113

The situation is summarized in the following diagram:

(C
MX
τ
,dH

X) (C
Rel(τ)

,distHX)
TXτoo

(MX,I,d
H
X,I)

F (I)−1
∗

OO

(ImP (I),distHX,I)

P (I)−1

OO

TYσoo

It follows from Lemma 3.2.1 that for every A,B ∈ ImP (I) we have

(11) distHX,I(A,B) ≥ distY(A,B).

(In particular the topology defined by the pseudometric distX,I is finer that the
topology defined by the pseudometric distY.)

Our basic notion of convergence with respect to an interpretation is the follow-
ing (which we sketched in the introduction):

Definition 3.3.1 (Lift–Hausdorff convergence). Let I : τ → σ be a basic inter-
pretation and let X be a fragment of FO(τ). A sequence AAA of finite σ-structures
in ImP (I) is I∗(X)-convergent if for every X-convergent subsequence BBBf of lifts
of AAA (meaning P (I)(BBBf ) = AAAf ) there exists an X-convergent sequence CCC of lifts
of AAA extending BBBf (i.e. such that P (I)(CCC) = AAA and CCCf = BBBf ).

We refer to the general notion of I∗(X)-convergence as lift-Hausdorff conver-
gence (or simply lift convergence).

This convergence admits an alternative equivalent definition, which justifies
the term of “lift-Hausdorff convergence”:

Theorem 3.3.2 (Metrization). Let X be an arbitrary cover chain of X, and let
Y be an arbitrary chain covering of Y = L(I)−1(X) such that every formula in
L(I)(Yn) is logically equivalent to a formula in Xn.

Then a sequence AAA of σ-structures in ImP (I) is I∗(X)-convergent if and only

if it is Cauchy for distHX,I.

Proof: We consider the two implications.
First assume that the sequence AAA of σ-structures in ImP (I) is I∗(X)-convergent

and let BBBf be an X-convergent subsequence such that P (I)(BBBf ) = AAAf . For every
positive integer m, let N(m) be minimum integer such that f(N(m)) ≥ m. Let
Cm be a τ -structure in P (I)−1(AN(m)) such that distX(Cm,Bf(N(m))) is min-

imum. Note that the minimum is attained as P (I)−1(AN(m)) is compact. By
definition we have

distX(Cm,Bf(N(m))) ≤ distX,I(Am,Af(N(m))).

As AAA is Cauchy for distX,I and BBBf is Cauchy for distX it directly follows that CCC is
Cauchy for distX, i.e. that CCC is X-convergent.
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We now consider the other direction. Assume that for every X-convergent
subsequence BBBf such that P (I)(BBBf ) = AAAf there exists a sequence CCC such that
CCCf = BBBf and P (I)(CCC) = AAA, and assume for contradiction that the sequence AAA
is not I∗(X)-convergent. Then there exists α > 0, such that for every integer
N there exist integers n,m > N and Bm ∈ P (I)−1(Am) such that for every
Cn ∈ P (I)−1(An) we have distX(Bm,Cn) > α. This allows to construct sub-
sequence BBBf and CCCg (where (f(i), g(i)) correspond to a pair of admissible val-
ues of m and n with min(m,n) > max(f(i − 1), g(i − 1)). Moreover, we can
assume that BBBf is X-convergent. By assumption the subsequence BBBf can be ex-
tended into a full X-convergent sequence, which we (still) denote by BBB such that
P (I)(BBB) = AAA. In particular, there exist some N such that for every n,m > N we
have distX(Bn,Bm) < α. In particular, distX(Bf(n)Bg(n)) < α, what contradicts
the minimality hypothesis on distX(Bf(n),Cg(n)). �

Note that Theorem 3.3.2 clearly states that the property of a sequence to be
Cauchy for distHX,I is independent of the particular choice of the chain coverings
X and Y.

Theorem 3.3.3 (Representation). The I∗(X)-limit of a sequence of an I∗(X)-
convergent sequence can be uniquely represented by means of a nonempty compact

subset of MX
τ .

Proof: Let AAA be an I∗(X)-convergent sequence. Let Y = L(I)−1(X). We fix
a cover chain X of X and a cover chain Y of Y such that every formula in
L(I)(Yn) is logically equivalent to a formula in Xn.

According to Lemma 2.2.1 the pushforward mapping F (I)∗ is a continuous
function from P (SXτ ) to P (SYσ ) hence for every A the set

L (A) = {TXτ (A+) : P (I)(A+) = A}

is a nonempty closed (hence compact) subset of MX
τ . According to Theorem 3.3.2,

the I∗(X)-convergence of AAA is equivalent to the convergence of AAA according to

distHX,I metric. As noticed in beginning of Section 3.3 we have

distHX,I(A,B) = dH
X(TXτ (P (I)−1(A)), TXτ (P (I)−1(B)) = dH

X(L (A),L (B)).

Thus, as dH
X is the Hausdorff distance on the space C

MX
τ

of nonempty closed

subsets of MX
τ defined by the Lévy–Prokhorov distance dLP

X on MX
τ , the I∗(X)-

convergence of AAA is equivalent to the convergence of the sequence L (AAA) =
(L (An))n∈N in the Hausdorff sense.

It follows that the limit of AAA can be represented uniquely by the Hausdorff limit

of L (AAA), which is a nonempty compact subset of MX
τ . �

This lemma gives an easy proof of the following result.
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Proposition 3.3.4. Let C be a class of σ structures, let I : τ → σ be an interpre-
tation, and let X,Y be fragments of FO(τ).

If X-convergence implies Y -convergence in the class D = {B : P (I)(B) ∈ C} of
τ -structures then I∗(X)-convergence implies I∗(Y )-convergence in the class C.

Proof: Let AAA be an I∗(X)-convergent sequence of τ -structures in C and let BBBf be
a Y -converging subsequence of τ -structures (in D) such that P (I)(Bf(n)) = Af(n).
Let BBBg◦f be an X-converging subsequence of BBBf . By Definition 3.3.1 there exists
an X-convergent sequence CCC such that CCCg◦f = BBBg◦f and P (I)(CCC) = AAA (hence CCC
is in D). As X-convergence implies Y -convergence on D the sequence DDD is Y
convergent, and has the same Y -limit as the Y -convergent sequence BfBfBf as they
share infinitely many elements. It follows that the sequence DDD defined by

Dn =

{
Bn if (∃ i) n = f(i),

Cn otherwise,

has the property that DDDf = BBBf and P (I)(DDD) = AAA. We deduce that AAA is I∗(Y )-
convergent. �

Here are some more remarks indicating convenient properties of I∗(X)-conver-
gence.

First note that if I : σ → σ is the identity interpretation, then distX,I = distX
and I∗(X)-convergence is the same as X-convergence. Also, we have that every
sequence AAA in ImP (I) has an I∗(X)-convergent subsequence. Finally, let us remark
that for every I : τ → σ, I∗(FO)-convergence implies FO-convergence.

Let τ̂ be the signature obtained from τ by duplicating each relation symbol
countably many times, which we denote by τ̂ = Nτ . To each symbol R ∈ τ
correspond the symbols Ri in τ̂ for i ∈ N. We define the interpretation Ii obtained
from I by replacing relations R by Ri (Ii is a clone of I based on the relations Ri).

Proposition 3.3.5 (Almost I∗(X)-limit probability measure). Let AAA be an I∗(X)-
convergent sequence of finite σ-structures.

There exists a probability measure µ̂ ∈MX
τ̂ such that for every ε > 0 and for

every CCC such that P (I)(CCC) = AAA there exists i ∈ N such that

dLPX
(
F (Ii)∗(µ̂), lim

n
TXτ (Cn)

)
< ε,

where limn stands for the weak limit of probability measures.

Proof: For i ∈ N we choose Bi
n such that P (I)(Bi

n) = An. We construct the

τ̂ -structure B̂n by amalgamating all the relations of all the Bi
n. We denote by Si
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the interpreting projection B̂n 7→ Bi
n. Note that Ii = I ◦ Si. Then we have

τ̂ -structures B̂n

P (S1)

ww
P (S2)~~

P (Si)

  
τ -structures B1

n

P (I)
((

B2
n

P (I)

!!

· · · Bi
n

P (I)}}

· · ·

σ-structures An

Then we consider an X-convergent subsequence B̂̂B̂Bf of B̂̂B̂B, the limit of which is
represented by the probability measure µ̂ ∈ MX

τ̂ . The measure µ̂ has obviously
the claimed property. �

3.4 Local-global convergence. In this section we show how the abstract frame-
work of Section 3.3 provides a proper setting for local-global convergence.

The notion of local-global convergence of graphs with bounded degrees has
been introduced by B. Bollobás and O. Riordan in [6] based on a colored neigh-
borhood metric. In [12], H. Hatami, L. Lovász, and B. Szegedy gave the following
equivalent definition:

Definition 3.4.1 ([12]). A graph sequence GGG of graphs with maximum degree D
is local-global convergent if for every r, k ∈ N and ε > 0 there is an index l such
that if n,m > l, then for every coloring of the vertices of Gn with k colors, there is
a coloring of the vertices of Gm with k colors such that the total variation distance
between the distributions of colored neighborhoods of radius r in Gn and Gm is
at most ε > 0.

The following is the principal result which relates local-global convergence to
a lift-Hausdorff convergence.

Let us consider a fixed countable signature σ and the signature τ obtained from
σ by adding countably many unary symbols. Thus σ ⊂ τ . Let

Sh : σ → τ

be the forgetful interpretation (Sh for “Shadow”). This means Sh = (ν, η,(%R)R∈σ),
where ν(x1) := (x1 = x1), η(x1, x2) := (x1 = x2), and %R(x1, . . . , xp) :=
R(x1, . . . , xp) for R ∈ σ with arity p. Then, for instance:

◦ for a τ -structure A, the σ-structure P (Sh)(A) is obtained from A by
forgetting all unary relations in τ \ σ;

◦ for a formula ϕ ∈ FO(σ), we have L(Sh)(ϕ) = ϕ;
◦ for t ∈ Sτ we have F (Sh)(t) = t ∩ FO(σ).
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By [20] we know that FOlocal-convergence coincides with FOlocal
1 -convergence

for graphs with bounded degree. By Proposition 3.3.4 the notions of Sh∗(FOlocal)-

convergence and Sh∗(FOlocal
1 )-convergence will also coincide for graphs with boun-

ded degrees. These notions actually coincide with the notion of local-global con-
vergence of graphs with bounded degrees:

Proposition 3.4.2. Let GGG be a sequence of graphs with maximum degree D.
Then the following are equivalent:

(1) GGG is local-global convergent;

(2) GGG is Sh∗(FOlocal
1 )-convergent;

(3) GGG is Sh∗(FOlocal)-convergent.

Proof: For classes of colored graphs with degree at most D, FOlocal
1 -convergence

is equivalent to FOlocal-convergence (see [20]). It follows from Proposition 3.3.4

that for these graphs Sh∗(FOlocal
1 )-convergence is equivalent to Sh∗(FOlocal)-con-

vergence. Thus we only have to prove the equivalence of local-global convergence
and Sh∗(FOlocal

1 )-convergence.

We consider the fragment X ⊂ FOlocal
1 of formulas consistent with the property

of having maximum degree D. Consider a cover chain X = (Xr)r∈N of X where
Xr contains (one representative of the equivalence class of) each formula in X
that is r-local and use only the r first unary predicates. (Note that |Xr| is finite.)

It is easily checked that every r-local formula ϕ ∈ Xr is equivalent (on graphs
with maximum degree D) to a formula of the form

∨
B∈Fϕ ζB,r(x) where ζB,r(x)

expresses that the ball of radius r rooted at x is isomorphic to the rooted graph B,
and Fϕ is a finite set of rooted graphs of radius at most r. It easily follows that the
maximum of |〈ϕ,G1〉− 〈ϕ,G2〉| over ϕ ∈ Xr equals the total variation distance of
the distributions of r-balls in G1 and G2 where we consider only the r first colors,

which we denote by d
(r)
TV (G1, G2). Then we have

(12) distX(G1, G2) = inf
r∈N

{
max

(1

r
,d

(r)
TV (G1, G2)

)}
.

As one easily checks that dTV (r′)(G1, G2) ≥ dTV (r)(G1, G2) if r′ ≥ r we have
that for every fixed integer r we have

(13) min
(1

r
,d

(r)
TV (G1, G2)

)
≤ distX(G1, G2) ≤ max

(1

r
,d

(r)
TV (G1, G2)

)
.

Now assume GGG is Sh∗(FOlocal
1 )-convergent. Let k, r be fixed integers. Then

Sh∗(FOlocal
1 )-convergence of GGG easily implies the convergence of the lifts of Gn by

k colors, which means that for every ε > 0 there is an index l such that if n,m > l,
then for every coloring G+

n of Gn with k colors, there is a coloring G+
m of Gm with

k colors such that distX(G+
n , G

+
m) < ε hence by (13) the total variation distance

between the distributions of colored neighborhoods of radius r in Gn and Gm is
at most ε > 0, provided that ε < 1/r. Hence GGG is local-global convergent.
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Assume GGG is local-global convergent. Then for every ε > 0, letting r = d1/εe,
there exists an integer l such that if n,m > l, then for every coloring G+

n of Gn
with r colors, there is a coloring G+

m of Gm with r colors such that the to-
tal variation distance between the distributions of colored neighborhoods of ra-
dius r in Gn and Gm is at most ε. Hence by (13) we have distX(G+

n , G
+
m) <

max(ε, d
(r)
TV (Gn, Gm)) ≤ ε. (Note that we do not need to use any of the colors

with index greater than r.) It follows that GGG is Sh∗(FOlocal
1 )-convergent. �

Motivated by this theorem we can extend the definition of local-global conver-
gence to general graphs and relational structures:

Definition 3.4.3 (Local-global convergence). A sequence AAA is local-global con-

vergent if it is Sh∗(FOlocal)-convergent.

The weaker notion of Sh∗(FOlocal
1 )-convergence already implies convergence of

some graph invariants in an interesting way. This is, for instance, the case of the
Hall ratio %(G) = α(G)/|G|.

Proposition 3.4.4. Let GGG be an Sh∗(FOlocal
1 )-convergent sequence of graphs.

The Hall ratio %(Gn) = α(Gn)/|Gn| converges.

Proof: Let a = lim sup %(Gn). Let G+
n be obtained by marking (by M) a maxi-

mum independent set in Gn. (Thus Gn = P (Sh)(G+
n ).) We extract a subsequence

of G+G+G+ with limit measure of M(G+
n ) equal to a, then an FOlocal

1 -convergent subse-
quence. According to the lifting property, this subsequence can be extended into
a full sequence G∗G∗G∗. Consider the formula

ψ(x) := M(x) ∧ (∃ y) M(y) ∧Adj(x, y).

Then ψ(G∗n) is the set of all marked vertices of Gn with a marked vertex in their
neighborhood. Hence limn→∞〈ψ,G∗n〉 = 0 (as it converges to 0 on the subsequence
where M marks an independent set). Moreover, M(G∗n) \ ψ(G∗n) is independent.
It follows that

a = lim
n→∞

〈M,G∗n〉 = lim
n→∞

|M(G∗n) \ ψ(G∗n)|
|G∗n|

≤ lim inf %(Gn) ≤ lim sup %(Gn) = a.

Hence %(Gn) converges. �

Let us add the following remarks: In such a context it is not possible to distin-
guish (at the limit) a maximal independent set from a near maximal independent
set. Of course this does not change the property that α(Gn)/|Gn| converges nor
the measure of the (near) maximal independent set found in the limit.

For the chromatic number, local-global convergence is clearly not strong
enough, as witnessed by a local-global convergent sequence GGG of bipartite graphs
modified by replacing Gn by the disjoint union of Gn and K100 for (say) half of
the values of n. The obtained sequence is still local-global convergent but the
chromatic numbers of Gn oscillate between 2 and 100. To ensure the convergence



Local-global convergence, an analytic and structural approach 119

of the chromatic number one needs at least Sh(FO0)-convergence. However, with

Sh(FOlocal
1 )-convergence it is possible to get the convergence of the minimum in-

teger c such that the graphs Gn can be made c-colorable by removing o(|Gn|)
vertices.

We end this section by giving an example showing that not every graphing
is a strong local-global limit of a sequence of finite graphs (for a proof that not
every graphing is a weak local-global limit of a sequence of finite graphs, that is
an answer to the problem posed in [12], see [17]).

Example 3.4.5. Consider the graphing G with domain (R/Z) × {1, 2, . . . , 6},
and edge set

E = {{(x, 1), (y, 1)}, {(x, 6), (y, 6)} : x ∈ [0, 1], y = x+ α mod 1}
∪ {{(x, i), (x, i+ 1)} : x ∈ [0, 1], 1 ≤ i < 5}
∪ {{(x, 2), (x, 4)}, {(x, 3), (x, 5)} : x ∈ [0, 1]}

represented on Figure 4.

α

Figure 4. Example of a 3-regular graphing that is not a strong
local-global limit.

Assume G is the strong local-global limit of a sequence GGG = (Gn)n∈N of graphs.
Almost all neighborhoods in Gn (for n large) look the same: color crossed circle
all vertices with two adjacent neighbors and color black all the vertices having
exactly two non crossed circle neighbors.
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Then, apart from a negligible set of vertices all the vertices are colored either as
crossed circle or black. Moreover, almost all black vertices belong either to a long
black cycle or a long black path. Recolor the black vertices in blue, green, and
purple by dividing all these paths and cycles in almost equal parts (and taking
care of globally balancing these colors).

Now consider a local convergent subsequence of the colored Gn. By definition
this local subsequence can be extended into a local convergent sequence G+G+G+ of
colorings of the graphs in GGG. By local convergence, every connected component of
the sub-graphing induced by green, blue, and violet vertices are monochromatic
(apart from a 0 measure set), and these components are invariant by the transfor-
mation (x, y) 7→ (x+ α mod 1, y) (hence y ∈ {1, 6}). However, this sub-graphing
has two ergodic components, each of measure 1/6 although each of the blue, green,
and violet color contains asymptotically 1/9 of the vertices, a contradiction.

4. Applications

4.1 Clustering. Monadic lifts (i.e. lifts by unary relations) were considered

in [24] in the context of continuous clustering of the structures in an FOlocal-
convergent sequence. One of the main results (see Theorem 4.1.1 bellow) ex-

presses that every FOlocal-convergent sequence has monadic lift tracing compo-
nents while preserving FOlocal-convergence. This will be refined in this section
under the stronger assumption of Sh∗(FOlocal)-convergence (see Theorem 4.1.6).

The analysis in [24] leads to interesting notions: globular cluster (corresponding
to a limit nonzero measure connected component), residual cluster (corresponding
to all the zero-measure connected components taken as a whole), and negligible
cluster (corresponding to the stretched part connecting the other clusters, which
eventually disappears at the limit).

Negligible sets intuitively correspond to parts of the graph one can remove,
without a great modification of the statistics of the graph: A sequence X ⊆ A is
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Figure 5. Typical shape of a structure continuously segmented
by a clustering: dense spots correspond to globular clusters, and
the background to the residual cluster. Biggest globular clusters
appear first and then move apart from each other, while new
(smaller) globular clusters appear and residual cluster becomes
sparser and sparser.

negligible in a local-convergent sequence AAA if

∀ d ∈ N lim sup
n→∞

νAn
(Nd

An
(Xn)) = 0.

This we simply formulate as ∀ d ∈ N lim sup νAAA(Nd
AAA(X)) = 0.

Two sequences X and Y of subsets are equivalent in AAA if the sequence X∆Y =
(Xn ∆Yn)n∈N is negligible in AAA. This will be denoted by X ≈ Y. We denote by 0
the sequence of empty subsets. Hence X ≈ 0 is equivalent to the property that X
is negligible. We further define a partial order on sequences of subsets by X � Y
if the sequence X \ Y = (Xn \ Yn)n∈N is negligible in AAA. Hence “�” has 0 for its
minimum and X ≈ Y if and only if X � Y and Y � X.

The notion of cluster of a local-convergent sequence is a weak analog of the
notion of union of connected components, or more precisely of the topological
notion of “clopen subset”: A sequence X of subsets of a local-convergent sequence
AAA is a cluster of AAA if the following conditions hold:

(1) the lifted sequence LX(AAA) obtained by marking set Xn in An by a new
unary relation MX is local-convergent;

(2) the sequence ∂AAAX is negligible in AAA.

Condition (1) can be seen as a continuity requirement for the subset selection.
Condition (2) is stronger than the usual requirement that there are not too many
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connections leaving the cluster. We intuitively require that the (asymptotically
arbitrarily large) ring around a cluster is a very sparse zone.

A cluster X is atomic if for every cluster Y of AAA such that Y � X either Y ≈ 0
or Y ≈ X; the cluster X is strongly atomic if Xf is an atomic cluster of AAAf for every
increasing function f : N → N. To the opposite, the cluster X is a nebula if for
every increasing function f : N→ N, every atomic cluster Yf of AAAf with Yf ⊆ Xf
is trivial (i.e. Yf ≈ 0). Finally, a cluster X is universal for AAA if X is a cluster of
every conservative lift of AAA.

Two clusters X and Y of a local-convergent sequence AAA are interweaving , and
we note X G Y if every sequence Z with Zn ∈ {Xn, Yn} is a cluster of AAA.

We say that two clusters C1 and C2 are

◦ weakly disjoint if C1 ∩ C2 ≈ 0;
◦ disjoint if C1 ∩ C2 = 0;
◦ strongly disjoint if (NAAA(C1) ∩ C2) ∪ (C1 ∩NAAA(C2)) = 0.

A cluster C of a local-convergent sequence AAA is globular if for every ε > 0 there
exists d ∈ N such that

lim inf
n→∞

sup
vn∈Cn

νAn
(Nd

An
(vn)) > (1− ε) lim

n→∞
νAn

(Cn).

In other words, a cluster C is globular if for every ε > 0 and sufficiently large n,
ε-almost all elements of Cn are included in some ball of radius at most d in Cn for
some fixed d. (Note that for a cluster C and vn ∈ Cn, considering νAn(Nd

An
(vn)) or

νAn
(Nd

An[Cn]
(vn)) makes asymptotically no difference.) Every globular cluster is

clearly strongly atomic, but the converse does not hold as witnessed, for instance,
by sequence of expanders. The strongly atomic clusters that are not globular are
called open clusters. Opposite to globular clusters are residual clusters: A cluster
X of AAA is residual if for every d ∈ N it holds

lim sup
n→∞

sup
vn∈An

νAn(Nd
An

(vn)) = 0.

Theorem 4.1.1 ([24]). Let AAA be a local convergent sequence of σ-structures.
Then there exists a signature σ+ obtained from σ by the addition of countably
many unary symbols MR and Mi,j , i ∈ N, 1 ≤ j ≤ Ni, and a clustering AAA+ of AAA
with the following properties:

◦ For every i ∈ N,
⋃Ni
j=1Mi,j(AAA) is a universal cluster.

◦ For every i ∈ N and every 1 ≤ j ≤ Ni, Mi,j(AAA) is a globular cluster.
◦ Two clusters Mi,j(AAA) and Mi′,j′(AAA) are interweaving if and only if i = i′.
◦ MR(AAA) is a residual cluster.

This structural theorem is assuming the local convergence of the sequence. If
we assume local-global convergence we get stronger results (Theorem 4.1.6 bellow)
involving expanding properties which we will define now. This is pleasing as the
decomposition into expanders was one of the motivating examples [6] and [12].
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The following is a sequential version of expansion property: A structure A is
(d, ε, δ)-expanding if for every X ⊂ A it holds

ε < νA(X) < 1− ε =⇒ νA(Nd
A(X)) > (1 + δ)νA(X).

This condition may be reformulated as:

inf
{νA(Nd

A(X) \X)

νA(X)
: ε < νA(X) < 1− ε

}
> δ.

Note that the left hand size of the above inequality is similar to the magnification
introduced in [3], which is the isoperimetric constant hout defined by

hout = inf
{ |NA(X) \X|

|X|
: 0 <

|X|
|A|

<
1

2

}
.

A local-convergent sequenceAAA is expanding if for every ε > 0 there exist d, t ∈ N
and δ > 0 such that every An with n ≥ t is (d, ε, δ)-expanding. A nontrivial cluster
X of AAA is expanding of AAA if AAA[X] is expanding. We have the following equivalent
formulations of this concept:

Lemma 4.1.2 ([24]). Let X 6≈ 0 be a cluster of a local convergent sequence AAA.
The following conditions are equivalent:

(1) X is an expanding cluster of AAA;
(2) for every ε > 0 there exist d, t ∈ N such that for every Z ⊆ X with

νAAA(Z) > ενAAA(X) it holds

νAAA(Nd
AAA(Z)) > (1− ε)νAAA(X);

(3) the sequence X is a strongly atomic cluster of AAA;
(4) for every ε > 0 there exists no Y ⊆ X such that ∂AAAY ≈ 0 and

ε < lim inf νAAA(Y) < lim νAAA(X)− ε.

Note that for local-global convergent sequences, the notions of atomic, strongly
atomic, and expanding clusters are equivalent.

The case of bounded degree graphs is particularly interesting and our defini-
tions capture this as well. Recall that a sequence GGG of graphs is a vertex expander
if there exists α > 0 such that lim inf hout(Gn) ≥ α. (For more information on
expanders we refer the reader to [15].)

Lemma 4.1.3 ([24]). Let GGG be a sequence of graphs with maximum degree at
most ∆ and let C 6≈ 0 be a cluster of GGG. The following are equivalent:

◦ C is an expanding cluster;
◦ for every ε > 0 there exists X ⊆ C such that for every n ∈ N it holds
|Xn| < ε|Cn| and GGG[C \ X] is a vertex expander.
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We consider a fixed enumeration ϕ1, ϕ2, . . . of FOlocal. The profile Prof(C) of
a cluster C is the sequence formed by lim νAAA(C) followed by the values lim〈ϕi,AAA[C]〉
for i ∈ N. The lexicographic order on the profiles is denoted by “≤”.

In [24] it was proved that two expanding clusters are either weakly disjoint or
interweaving. We now prove a lemma with similar flavor.

Lemma 4.1.4. Let C1 be an expanding cluster of a local-convergent sequence AAA
and let C2 be a cluster of AAA.

Then the limit set of νAAA(C1 ∩ C2) is included in {0, lim νAAA(C1)}.

Proof: Let X = C1 ∩ C2. Assume for contradiction that there exists 0 <
α < lim νAAA(C1) and a subsequence AAAf such that LXf (AAAf ) is local convergent
and lim νAAAf (Xf ) = α. As δAAAX ⊆ δAAAC1 ∪ δAAAC2 we deduce that Xf is a cluster
of AAAf . But Xf ⊆ (C1)f , Xf 6≈ 0, and Xf 6≈ C1 (as lim νAAAf (Xf ) /∈ {0, lim νAAA(C1)}),
what contradicts the hypothesis that C1 is expanding hence strongly atomic (see
Lemma 4.1.2). �

The following lemma is a restated version of a Lemma proved in [24].

Lemma 4.1.5. Two nonnegligible clusters C1 and C2 are interweaving if and
only if Profile(C1) = Profile(C2).

Our main result in this section reveals the expanding structure of local-global
convergent sequences.

Theorem 4.1.6. Let σ be a countable relational signature, let σ+ be the exten-
sion of σ by countably many unary symbols N and Ui, i ∈ N, and let σ∗ be the
extension of σ by countably many unary symbols N and Mi,j . Let I : σ∗ → σ+ be
the basic interpretation defined by %Ui(x) :=

∨
Mi,j(x) (and all other relations

unchanged), and let Sh∗ : σ∗ → σ and Sh+ : σ+ → σ be the natural forgetful
interpretations.

Then for every local-global convergent sequence AAA of σ-structure there exists
a local-convergent sequence AAA∗ such that

◦ P (Sh∗)(AAA∗) = AAA;
◦ for every i, j ∈ N, Mi,j(AAA

∗) is either null or an atomic cluster of AAA∗, which
is interweaving with Mi′,j′(AAA

∗) if and only if i = i′;
◦ N(AAA∗) is a nebula cluster of AAA∗;

and such that AAA+ = P (I)(AAA∗) has the following properties:

◦ AAA+ is a local-global convergent sequence such that P (Sh+)(AAA+) = AAA;
◦ for every i ∈ N, Ui(AAA

+) is either null or a cluster of AAA+, which can be
covered by (finitely many) interweaving atomic clusters;

◦ N(AAA+) is a nebula cluster of AAA+.

Note that this result is in agreement with the intuition: The σ∗-lift is “finer”
than the σ+-lift and thus less likely to be local-global convergent. For instance,
we can refer to the subsequence extension property stated in the definition of
lift-Hausdorff convergence (Definition 3.3.1).
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Proof: Let AAA be a local-global convergent sequence. We select inductively ex-
panding clusters Ci,j of AAA as follows: We start with Z = 0, i = 1, j = 1 and
let P be the maximum profile of an expanding cluster of AAA. Then we repeat
the following procedure as long as there exists an expanding cluster of AAA that is
weakly disjoint from Z.

◦ If there exists an expanding cluster in AAA with profile P that is weakly
disjoint from Z we select one as Ci,j , we let Z← Z∪Ci,j , and we increase
j by 1.
◦ Otherwise, we select one with maximum profile as Ci+1,1, we let Z ←
Z ∪ Ci+1,1, we let P be the profile of Ci+1,1, we increase i by 1, and let
j = 1.

It is easily checked that by modifying marginally the clusters Ci,j we can make
them disjoint and such that N = A \

⋃
i,j C

i,j is a nebula cluster. Then by [24,

Corollary 5] lifting AAA by marking Mi,j the cluster Ci,j and N the cluster N we get
a local-convergent sequence AAA∗, which obviously satisfies the conditions stated in
the Theorem 4.1.6.

Let AAA+ = P (I)(AAA∗). The only property we still have to prove is that AAA+ is
local-global convergent. According to Definition 3.3.1 this boils down to proving
that every local-convergent subsequence BBB+

f of lifts of AAA+ can be extended into

a full local-convergent sequence of lifts of AAA+. We can transfer the relations Mi,j

from AAA∗ to BBB+
f . This way we obtain a subsequence BBB∗f of lifts of AAA∗ (which does

not need to be local convergent), such that P (I)(BBB∗f ) = BBB+
f . Let BBB∗g◦f be a local-

convergent subsequence of BBB∗f . As P (Sh∗)(BBB∗g◦f ) = AAAg◦f and AAA is local-global
convergent there exists a local-convergent sequenceDDD∗ of lifts of AAA extendingBBB∗g◦f ,

that is: P (Sh∗)(DDD∗) = AAA and DDD∗g◦f = BBB∗g◦f . Let Ĉi,j = Mi,j(DDD
∗). As (Ĉi,j)g◦f =

(Ci,j)g◦f we get that Ĉi,j is a cluster of AAA with same profile as Ci,j . According

to Lemma 4.1.4, the limit set of νAAA(Ĉi,j ∩ Ci,j
′
) is included in {0,m}, where

m = lim νAAA(Ĉi,j) = lim νAAA(Ci,j
′
). It follows that either Ĉi,j �

⋃
j′ C

i,j′ or there

exists a subsequence AAAh of AAA such that (Ĉi,j)h is weakly disjoint from the cluster

(
⋃
j′ C

i,j′)g. Marking all the clusters Ci,j and Ĉi,j in AAAh we get a local-convergent
subsequence of lifts, which can be extended into full local-convergent sequence of

lifts of AAA. In this sequence, the marks corresponding to the extension of (Ĉi,j)g
will correspond to a cluster of AAA disjoint from all the clusters Ci,j

′
but with the

same profile, which contradicts the construction procedure of the clusters Ci,j .

Thus Ĉi,j �
⋃
j′ C

i,j′ , and
⋃
j Ĉ

i,j �
⋃
j′ C

i,j′ . As these two clusters have same

limit measure we have
⋃
j Ĉ

i,j ≈
⋃
j′ C

i,j′ . This means that P (I)(DDD∗) and P (I)(BBB∗)

are sufficiently close, so that if we consider the lifts of AAA+ defined by BBB+ for indices
of the form f(n) for some n ∈ N and by P (I)(DDD∗) for the other indices, we get
a local-convergent sequence of lifts of AAA+ which extends BBB+

f . It follows that AAA+

is local-global convergent, what concludes our proof. �
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4.2 Local-global quasi-limits. Let us finish this paper in an ambitious way.
In [25], [22] we defined the notion of modeling as a limit object from structural
convergence.

Modeling limits generalize graphing limits and thus it follows from [20] that
FO-convergent sequences of graphs with bounded degrees have modeling limits.
In [25] we constructed modeling limits for FO-convergent sequences of graphs with
bounded tree-depth, and extended the construction to FO-convergent sequences
of trees in [22]. Then existence of modelings for FO-convergent sequences has been
proved for graphs with bounded path-width in [11], and eventually for sequences
of graphs in an arbitrary nowhere dense class, see [26], which is best possible
when considering monotone classes of graphs, see [22]. In fact this provides us
with a high level analytic characterization of nowhere dense classes.

Definition 4.2.1. Let AAA be a local-global convergent sequence. A modeling L is
a local-global quasi-limit of AAA if for every local convergent sequence AAA+ of lifts of
AAA and every ε > 0 there exists an admissible lift L+ of L (that is a lift L+ of L
that is a modeling), such that for every local formula ϕ we have∣∣〈ϕ,L+〉 − lim

n→∞
〈ϕ,A+

n 〉
∣∣ < cϕε,

where cϕ is a positive constant, which depends only on ϕ.

In other words, the closure of the measures associated to admissible lifts of L
includes the limit Hausdorff limit of the sets of measures associated to lifts of the
sequence.

For local-global convergence, it was proved in [12] that graphings still suffice as
limit objects. We don’t know, however, if every local-global convergent sequence
of graphs in a nowhere dense class has a modeling local-global limit. We close
this paper by proving that this is almost the case, in the sense that every local-
global convergent sequence of graphs in a nowhere dense class has a modeling
local-global quasi-limit.

We consider a fixed countable signature σ and the signature τ obtained by
adding countably many unary symbols M1,M2, . . . ,Mn, . . . to σ, and the forget-
ful interpretation Sh : τ → σ. As before we understand local-global convergence
as Sh∗(FOlocal)-convergence. We fix a chain covering X of FOlocal(τ) (see Sec-
tion 2.5), from which we derive metrics and pseudo-metrics as in Sections 3.2
and 3.3. We also fix a bijection β : N× N → N (for Hilbert hotel argument) and
let Zc be the renaming interpretation which renames Mβ(c,i) as Mi and forget all
the marks not being renamed.

Lemma 4.2.2. There exists a function h : (0, 1)→ N with the following property:
For every local-global convergent sequence AAA of σ-structures there exists a local

convergent sequence BBB of τ -structures with P (Sh)(BBB) = AAA, such that for every
ε > 0 there exists some integer n0 such that

for every n ≥ n0 and every C ∈ P (Sh)−1(An) there exists 1 ≤ c ≤ h(ε) with

distX(C, P (Zc)(Bn)) < ε.
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Proof: As the space (Rel(τ),distX) is totally bounded there exists a mapping
g : (0, 1) → N such that for each ε > 0 and each σ-structure A there is a subset
BA,ε of P (Sh)−1(A) of cardinality at most g(ε) with the property that every
C ∈ P (Sh)−1(A) is at distX-distance at most ε from a τ -structure in BA,ε. (Such

a set may be called an ε-covering.) We construct an infinite sequence (A(i))i∈N
of τ -structures by listing all the structures in BA,1/2 then all the structures in
BA,1/4, etc.

We now construct a τ -structure A+ ∈ P (Sh)−1(A) by letting Mβ(i,j)(A
+) =

Mj(A
(i)). Hence A(i) = P (Zi)(A

+). We say that A+ is a universal lift of A.
Define the function h : (0, 1)→ N by

h(x) =

d− log xe+1∑
i=1

g(2−i).

Then for every ε > 0 and every B ∈ P (Sh)−1(A) there is an index c ≤ h(ε) such
that distX(C,A(c)) < ε/2, that is such that distX(C, P (Zc)(A

+)) < ε/2.
Now consider the local-global convergent sequence AAA and a sequence AAA+ where

A+
n is a universal lift of An. This last sequence has a local convergent subsequence

AAA+
f , which we extend into a sequence BBB lifting AAA.

Let ε > 0. According to local-global convergence of AAA and local convergence
of BBB there exists n0 such that for every n,m ≥ n0 we have distHX,Sh(An,Am) < ε/4
and distX(Bn,Bm) < α, where α is such that for every i ≤ h(ε/2) we have

distX(X,Y) < α ⇒ distX(P (Zi)(X), P (Zi)(Y)) <
ε

4
.

Let n ≥ n0 (hence f(n) ≥ n0). Let C ∈ P (Sh)−1(An). Then there exists
C′ ∈ P (Sh)−1(Af(n)) such that distX(C,C′) < ε/4. As Bf(n) = A+

f(n) is a uni-

versal lift of Af(n) there exists c ≤ h(ε) such that distX(P (Zc)(Bf(n)),C
′) < ε/2.

As distX(Bn,Bf(n)) < α we have distX(P (Zc)(Bf(n)), P (Zc)(Bn)) < ε/4. Alto-
gether, we get distX(P (Zc)(Bn),C) < ε as wanted. �

Definition 4.2.3. A σ-modeling L is a quasi-limit of a local-global convergent
sequenceAAA of σ-structures if for every local convergent sequenceAAA+ of τ -structures
with P (Sh)(AAA+) = AAA and for every ε > 0 there exists a τ -modeling L+ with
P (Sh)(L+) = L such that lim sup distX(L+,AAA+) < ε.

In other words, for every local-global convergent sequence AAA there is a model-
ing L such that any local convergent sequence lifting AAA has a limit which is ε-close
to an admissible lifting of L. (By admissible, we mean that the lift of L is itself
a modeling.)

Theorem 4.2.4. Every local-global convergent sequence of graphs in a nowhere
dense class has a modeling quasi-limit.

Proof: Let AAA be a local-global convergent of graphs in a nowhere dense class.
According to Lemma 4.2.2 there exists a local convergent sequence BBB of marked
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graphs with P (Sh)(BBB) = AAA, such that for every ε > 0 there exists some integer n0
such that for every n ≥ n0 and every C ∈ P (Sh)−1(An) there exists 1 ≤ c ≤ h(ε)
with

distX(C, P (Zc)(Bn)) < ε.

According to [26] the sequence BBB has a modeling limit L+. Then L = P (Sh(L+)
is a modeling quasi-limit of AAA. �

We conjecture that it is possible to refine the notion of admissible lift and get
the reverse direction.

Conjecture 4.2.5. Every local-global convergent sequence of graphs in a nowhere
dense class has a modeling limit.
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