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Chern rank of complex bundle

Bikram Banerjee

Abstract. Motivated by the work of A.C. Naolekar and A. S. Thakur (2014) we
introduce notions of upper chern rank and even cup length of a finite connected
CW-complex and prove that upper chern rank is a homotopy invariant. It turns
out that determination of upper chern rank of a space X sometimes helps to
detect whether a generator of the top cohomology group can be realized as
Euler class for some real (orientable) vector bundle over X or not. For a closed
connected d-dimensional complex manifold we obtain an upper bound of its even
cup length. For a finite connected even dimensional CW-complex with its upper
chern rank equal to its dimension, we provide a method of computing its even
cup length. Finally, we compute upper chern rank of many interesting spaces.
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1. Introduction

In [3] J. Korbaš introduced the idea of characteristic rank of a smooth closed
connected manifold X of dimension d. He defined characteristic rank of a d-
dimensional smooth closed connected manifoldX as the largest integer k such that
every cohomology class of Hi(X ;Z2), i ≤ k, can be expressed as a polynomial
of the Stiefel–Whitney classes of the tangent bundle of X . In the same paper
[3] J. Korbaš also used characteristic rank to get abound for Z2-cup length of
a manifold X . The Z2-cup length, denoted by Cup(X) of a space X is defined to
be the largest integer t such that there exist cohomology classes xi ∈ H∗(X ;Z2),
deg(xi) ≥ 1, so that the cup product x1x2 · · ·xt 6= 0. Later in 2014, A.C. Naolekar
and A. S. Thakur in [7] generalized the notion of characteristic rank to a real vector
bundle ξ over a finite connected CW-complex X . If ξ is a real n-plane bundle
over X then they defined characteristic rank (briefly char rank ξ) of ξ over X
to be the largest integer k such that every cohomology class x ∈ Hi(X ;Z2),
i ≤ k ≤ dimX , can be expressed as a polynomial of Stiefel–Whitney classes
of ξ. They also defined upper characteristic rank (X) of a finite connected CW-
complex X as the maximum of char rank ξ as ξ varies over all real vector bundles
overX and thus by naturality of Stiefel–Whitney classes upper characteristic rank

becomes a homotopy invariant. In [7] characteristic rank of real vector bundles
over product of spheres Sm × Sn, the real and complex projective spaces, the
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spaces S1 × CPn, the Dold manifold P (m,n), the Moore space M(Z2, n) and
the stunted projective space RPn/RPm were computed. Moreover, some general
facts about characteristic rank of real vector bundles were also proved.

This motivates us to define chern rank of a complex vector bundle over X .
Throughout, by a (topological) space we mean a finite connected CW-complex

and H∗(X) (H̃∗(X)) denotes the graded (reduced) integral cohomology ring of X .
We begin with the following definition.

Definition 1.1. Let ξ be a complex n-plane bundle over a finite connected CW-
complex X . By chern rank ξ we mean the largest even integer 2k, where 0 ≤
2k ≤ dimX , such that every cohomology class x ∈ H2i(X), i ≤ k, can be
expressed as a polynomial of Chern classes of ξ. The upper chern rank (X) (in
brief uch rank (X)) is defined to be the maximum chern rank ξ where ξ varies over
all complex vector bundles over X , that is,

uch rank (X) = max{chern rank ξ : ξ is a complex vector bundle over X}.

From the naturality of Chern classes it follows that if X and Y are homo-
topy equivalent then uch rank(X) = uch rank (Y ). We note that determining
upper chern rank of a topological space X sometimes helps to detect whether
a generator of the top cohomology group can be realized as Euler class for some
real (orientable) vector bundle over X or not. If for a 2n dimensional closed
connected smooth manifold X the only nontrivial even dimensional reduced co-

homology group is H̃2n(X) and uch rank (X) = 2n then clearly a generator of

H̃2n(X) can be realized as Euler class for some real (orientable) vector bundle
over X . For example we will see that uch rank (S1 × S3) = 4 (cf. Corollary 3.2)

and consequently a generator of H̃4(S1 × S3) can be realized as an Euler class
of some real (orientable) vector bundle over S1 × S3. Also for a finite connected
CW-complex consisting of only even dimensional cells upper chern rank of X gives
a lower bound for upper characteristic rank of X (cf. Lemma 2.2).

If X is a finite connected CW-complex, we denote by rX the smallest even

integer such that H̃rX (X) 6= 0. For X is a CW-complex with H̃2i(X) = 0 ∀ i, we
define rX = dimX + 2 if X is even dimensional and rX = dimX + 1 otherwise.
Clearly, for any complex vector bundle ξ over X ,

rX − 2 ≤ chern rank ξ ≤ uch rank (X).

For a finite connected CW-complex X we define the even cup length (de-
noted by CupE(X)) of X to be the largest integer t such that the cup product
x1 · x2 · · ·xt 6= 0 where each xi ∈ H∗(X) is of even degree and deg(xi) ≥ 2. If
X consists of only even dimensional cells then clearly 1 + CupE(X) is a suitable
lower bound of Cat (X) where Cat (X) denotes the Lyusternik–Shnirel’man cate-
gory. For a closed connected d-dimensional complex manifold we obtain a bound
for CupE(X) using chern rank. In particular we prove the following theorem.
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Theorem 1.2. Let X be a closed connected d-dimensional complex manifold
such that H2i(X) is a free Z-module for all i. If ξ is a complex vector bundle
over X and there exists some nonzero even integer 2k ≤ chern rank ξ such that
every monomial ci1(ξ) · · · cir (ξ), 1 ≤ it ≤ k, of total degree 2d is zero then

CupE(X) ≤ 1 +
2(d− k − 1)

rX
.

If X is a finite connected even dimensional CW-complex with

uch rank (X) = dimX

then the following theorem tells us that CupE(X) can be computed as the maximal
length of nonzero product of Chern classes of a suitable complex vector bundle ξ
over X .

Theorem 1.3. Let X be an even dimensional finite connected CW-complex. If
uch rank (X) = dimX then there exists a complex vector bundle ξ such that

CupE(X) = max{k : ∃ i1, i2, . . . , ik ≥ 1 with ci1(ξ) · ci2(ξ) · · · cik(ξ) 6= 0}.

Finally, we compute uch rank of projective spaces FPn (F is real, complex or
quaternionic). We give a full description of uch rank of product of spheres Sm×Sn

where m,n are even integers and in the case where m is even and n is an odd
integer. If m and n are both odd integers then we compute uch rank of Sm × Sn

for some special cases. We also give computation of uch rank of X where X is
wedge sum of spheres Sm∨Sn, RPn×S2m, CPn×S2m, complex Stiefel manifolds
Vk(C

n), 1 < k < n, for n−k is even or n−k 6= 2t−1, t > 0, and stunted complex
projective spaces CPn/CPm.

2. Some general facts and proofs of Theorem 1.2 and Theorem 1.3

We recall that if X is a finite connected CW-complex then rX denotes the

smallest even integer such that H̃rX (X) 6= 0. For any X , H̃2i(X) = 0 ∀ i, we
define rX = dimX + 2 if X is even dimensional and rX = dimX + 1 if X is odd
dimensional CW-complex. We start with the following lemma.

Lemma 2.1. Let ξ and η be two complex vector bundles over a finite connected
CW-complex X .

(1) If ξ is the conjugate bundle of ξ then

chern rank ξ = chern rank ξ.

(2) If ω = Hom(ξ,C), the dual bundle of ξ then

chern rank ξ = chern rankω.

(3) If crX (ξ) = 0 then chern rank ξ = rX − 2.
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(4) If H̃rX (X) is not cyclic then uch rank (X) = rX − 2.
(5) If c(ξ) = 1 then chern rank ξ = rX − 2.
(6) If c(η) = 1 then chern rank (ξ ⊕ η) = chern rank ξ. Moreover,

K̃(X) = 0 implies uch rank (X) = rX − 2.

(7) If ξ and η are stably isomorphic then chern rank ξ = chern rankη.
(8) There exists a complex vector bundle ξ′ such that

chern rank (ξ ⊕ ξ′) = rX − 2.

Proof: (1) follows from the fact that the Chern class ck(ξ) = (−1)kck(ξ). As
X is compact we may assume that ξ admits an Hermitian metric. Consequently
ω =Hom(ξ,C) becomes canonically isomorphic to ξ. Hence

chern rank ξ = chern rankω,

proving (2). Assertions (3) and (4) are obvious and (5) follows from (3). Asser-
tion (6) follows from the fact that if c(η) = 1 then c(ξ ⊕ η) = c(ξ) and again

K̃(X) = 0 implies c(η) = 1 for any complex vector bundle η over X . To prove
the statement (7), suppose ξ and η are stably isomorphic. Then ξ ⊕ εm ∼= η ⊕ εn

for some m and n and hence c(ξ) = c(η). Finally, as X is compact so for any
bundle ξ over X there exists a bundle ξ′ over X such that ξ⊕ ξ′ ∼= εk for some k.
Thus (8) follows from (5). �

Lemma 2.2. If X is a finite connected CW-complex consisting of only even
dimensional cells then upper characteristic rank (X) ≥ uch rank (X) + 1.

Proof: It is clear that the coefficient homomorphism H∗(X ;Z) → H∗(X ;Z2)
becomes an epimorphism as X consists of only even dimensional cells. Now it is
known that if ξ is a complex vector bundle over X then the coefficient homomor-
phism maps the total Chern class c(ξ) onto the total Stiefel–Whitney class w(ξR),
see [5], Problem 14-B. Hence the proof follows. �

If X = ΣY , where ΣY denotes the reduced suspension of Y then H̃∗(X) ∼=

H̃∗(Y )⊗ H̃∗(S1) and consequently the cup product of two positive degree coho-

mology classes of H̃∗(X) becomes zero. Thus we have the following lemma.

Lemma 2.3. Suppose X = ΣY and let kX = max{2k : H2j(X) is cyclic, 0 ≤
j ≤ k, 2k ≤ dimX}. Then uch rank (X) ≤ kX .

In the above lemma trivial groups are considered to be cyclic. We note that if
X is ordinary (nonreduced) suspension, then it is covered by two open contractible
subsets, hence the cup product is trivial in this case as well and Lemma 2.3 applies.

Lemma 2.4. Let f : X → Y be a map where X,Y are finite connected CW-
complexes and let f∗ : H∗(Y ) → H∗(X) be a surjection. Then chern rank f∗(ξ) ≥
min{chern rank ξ, dimX − 1} for any complex vector bundle ξ over Y .
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Proof: If dimX ≥ dimY then from the naturality of Chern classes it follows
that chern rank f∗(ξ) ≥ chern rank ξ. Let dimX < dimY . Now if dimX <
chern rank ξ then clearly chern rank f∗(ξ) = dimX if dimX is even and
chern rank f∗(ξ) = dimX − 1 if dimX is odd. Again if dimX ≥ chern rank ξ
then chern rank f∗(ξ) ≥ chern rank ξ. Combining all the above cases we get
chern rank f∗(ξ) ≥ min{chern rank ξ, dimX − 1}. �

Let us consider the projective space FPn where F = C or H, the complex or
quarternionic numbers, respectively. If L and M denote the canonical (complex
and quaternionic) line bundles over CPn and HPn, respectively, then the Chern
classes c1(L) and c2(M) are generators of H∗(CPn) and H∗(HPn), respectively.
Hence we get the following theorem.

Theorem 2.5. If X = CPn or HPn then uch rank (X) = 2n or 4n, respectively.

Now we look at the chern rank of complex vector bundles over spheres. It
follows from Theorem 2.5 that there exist complex vector bundles ξ1 (line bundle)
and ξ2 (2-plane complex bundle) over S2 = CP 1 and S4 = HP 1, respectively, such
that c1(ξ1) and c2(ξ2) are generators of H2(S2) and H4(S4), respectively. Thus
chern rank ξi = 2 or 4 for i = 1 or 2. Consequently uch rank (S2n) = 2n if n = 1
or 2. In this context we want to state Bott integrality theorem which will be used
in the sequel.

Theorem 2.6 (Bott integrality theorem [2], Chapter 20, Corollary 9.8). Let
a ∈ H2n(S2n) be a generator. Then for each complex vector bundle ξ over S2n,
the nth Chern class cn(ξ) is a multiple of (n− 1)! a, and for each m with m ≡ 0

mod (n− 1)! there exists a unique ξ ∈ K̃(S2n) with cn(ξ) = ma.

Now it follows from Theorem 2.6 that if ξ is any complex vector bundle over S2n

where n 6= 1 or 2 then cn(ξ) cannot be a generator of H2n(S2n) and consequently
for any complex vector bundle ξ over S2n (n 6= 1 or 2) chern rank ξ = 2n− 2. We
note that if n is odd then clearly uch rank (Sn) = n− 1. Combining these we get
the following theorem.

Theorem 2.7. If n is odd then uch rank (Sn) = n − 1, uch rank (S2n) = 2n if
n = 1 or 2 and uch rank (S2n) = 2n− 2 if n 6= 1 or 2.

If X and Y are two closed connected smooth orientable manifolds then the
following theorem tells us that under suitable conditions upper chern rank of the
product space X × Y is strictly less than dim(X × Y ).

Theorem 2.8. Let X and Y be closed connected smooth orientable manifolds.

(1) If K̃(X), K̃(Y ) and K̃(X ∧ Y ) are all trivial then

uch rank (X × Y ) < dim(X × Y ).

(2) If K̃O(X), K̃O(Y ) and K̃O(X ∧ Y ) are all trivial then

uch rank (X × Y ) < dim(X × Y ).
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Proof: (1) Let dimX = m and dimY = n. If m+n is odd then it is trivial. So
we assume m+ n is even. We note that as X × Y is orientable smooth manifold
therefore Hm+n−1(X×Y ) becomes torsion free and thus Hm+n(X×Y ) ∼= Z. We
consider the inclusion followed by the quotient mapX∨Y →֒ X×Y → X∧Y . This

yields the exact sequence K̃(X∧Y ) → K̃(X×Y ) → K̃(X∨Y ). Now K̃(X∧Y ) = 0

and again K̃(X) = 0 = K̃(Y ) implies K̃(X ∨ Y ) ∼= K̃(X) ⊕ K̃(Y ) = 0. Thus

K̃(X×Y ) = 0 and consequently every complex vector bundle overX×Y becomes
stably trivial. Thus for any complex vector bundle ξ over X × Y the total Chern
class c(ξ) = 1 while Hm+n(X × Y ) 6= 0 and thus chern rank ξ < dim(X × Y ).

(2) Let m+ n be even. As before we get K̃O(X × Y ) = 0 and so for any real
vector bundle η over X × Y the total Stiefel–Whitney class w(η) = 1. If possible
uch rank (X × Y ) = m + n, there exists a complex vector bundle ξ over X × Y
such that chern rank(ξ) = m + n. Let a be a generator of Hm+n(X × Y ) ∼= Z

and so a can be expressed as a polynomial of Chern classes ci(ξ). Let a =
P (c1(ξ) · c2(ξ) · · · ct(ξ)), t ≤ (m+ n)/2. Now if

f : H∗(X × Y ;Z) → H∗(X × Y ;Z2)

be the canonical coefficient homomorphism then f(a) becomes the generator of
Hm+n(X × Y ;Z2) ∼= Z2 and again

f(a) = f(P (c1(ξ) · c2(ξ) · · · ct(ξ)))

= P (f(c1(ξ)) · f(c2(ξ)) · · · f(ct(ξ)))

= P (ω2(ξR) · ω4(ξR) · · ·ω2t(ξR)) = 0,

a contradiction. Thus uch rank(X × Y ) < dim(X × Y ). �

If X is a closed connected complex manifold of complex dimension d and ξ is
a complex vector bundle over X then the following theorem tells us that under
certain given conditions chern rank ξ can be predicted.

Theorem 2.9. Let X be a closed connected complex manifold of complex di-
mension d. If rX ≤ d and HrX (X) ∼= Z then for any complex vector bundle ξ
over X , chern rank ξ is either less than 2d− rX or 2d.

Proof: Every complex manifold of complex dimension d is a 2d dimensional
smooth orientable manifold. The triviality of H1(X), H2(X), . . . , HrX−1(X) im-
plies H1(X), H2(X), . . . , HrX−2(X) are all trivial and hence by Poincaré duality
the cohomology groupsH2d−1(X), H2d−2(X), . . . , H2d−rX+2(X) are trivial. Let ξ
be a complex vector bundle overX such that chern rank ξ ≥ 2d−rX , 2d−rX ≥ rX .
We only have to show that any cohomology class of H2d(X) ∼= Z can be expressed
as a polynomial of Chern classes.

As chern rank (ξ) ≥ 2d− rX ≥ rX therefore HrX (X) = 〈crX/2(ξ)〉. Now as X

is a closed connected Z-orientable manifold so there exists some β ∈ H2d−rX (X)
such that crX/2(ξ) · β is a generator of H2d(X), while β can be expressed as
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a polynomial of Chern classes of ξ and consequently crX/2(ξ) ·β can be expressed
as a polynomial of Chern classes of ξ. This completes the proof. �

We recall that CupE(X), the even cup length of X is the largest integer t such
that the cup product x1 ·x2 · · ·xt 6= 0 where each xi is an even degree cohomology
class with deg(xi) ≥ 2. If X is a closed connected d-dimensional complex manifold
then Theorem 1.2 gives a bound for CupE(X). Proofs of Theorems 1.2 and 1.3
are similar to the proofs of Theorem 1.2 and 1.3 of [7], respectively.

Proof of Theorem 1.2: Let CupE(X) = t and x1 ·x2 · · ·xt 6= 0 be a maximal
string of nonzero cup product. We claim that x1 ·x2 · · ·xt ∈ H2d(X). If not then
x1 · x2 · · ·xt ∈ H2d−2l(X) for some l > 0. Now as H2i(X) is torsion free for all i,
therefore the cup product pairing H2d−2l(X) ×H2l(X) → Z is nonsingular and
hence there exists y ∈ H2l(X) (y 6= 0) such that x1 · x2 · · ·xt · y ∈ H2d(X) is
a nonzero element. This contradicts the maximality of x1 · x2 · · ·xt.

Now we rearrange x1 ·x2 · · ·xt as y1 ·y2 · · · ym ·z1 ·z2 · · · zn such that deg(yi) = i,
deg(zj) = j with i ≤ 2k and j ≥ 2k + 2. If possible, suppose

x1 · x2 · · ·xt = y1 · y2 · · · ym.

As i ≤ 2k ≤ chern rank (ξ), therefore, y1 · y2 · · · ym is a polynomial in Chern
classes c1(ξ), · · · , ck(ξ) laying in H2d(X). Hence it is a sum of monomials in
Chern classes each of which is zero and thus y1 · y2 · · · ym = 0. Consequently, the
string z1 · z2 · · · zn must exist.

Let a = y1 · y2 · · · ym and b = z1 · z2 · · · zn. As deg(b) ≥ 2k + 2 therefore
deg(a) ≤ 2d− 2(k + 1) and

CupE(X) = m+ n ≤
deg(a)

rX
+

deg(b)

2k + 2
=

2(k + 1) deg(a) + rX deg(b)

2rX(k + 1)

=
2(k + 1) deg(a) + rX(2d− deg(a))

2rX(k + 1)

=
(2(k + 1)− rX) deg(a) + 2drX

2rX(k + 1)

≤
(2(k + 1)− rX)(d − (k + 1)) + drX

rX(k + 1)

=
rX(k + 1) + 2(k + 1)(d− k − 1)

rX(k + 1)
= 1 +

2(d− k − 1)

rX
.

�

Proof of Theorem 1.3: As uch rank(X) = dimX therefore there exists
a complex vector bundle ξ over X with chern rank ξ = dimX . Let CupE(X) = t
and

x1 · x2 · · ·xi · · ·xt 6= 0
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be a maximal string of nonzero cup product. As chern rank ξ = dimX hence
xi can be expressed as a polynomial of Chern classes of ξ and consequently
x = x1 · x2 · · ·xt can be expressed as a sum of integral multiples of mono-
mials of Chern classes c1(ξ), c2(ξ), · · · , cr(ξ), 2r ≤ maxdeg(xi), each of length
at least t. But as monomials of Chern classes of length greater than t vanish
therefore there must exists a monomial ci1(ξ) · ci2(ξ) · · · cit(ξ) of length t with
ci1(ξ) · ci2(ξ) · · · cit(ξ) 6= 0. �

3. Some computations

In this final section we compute uch rank of some important spaces.

Theorem 3.1. Let X = Sm × Sn.

(1) If m,n are even integers and m < n then

uch rank (X) =





m− 2 if m 6= 2, 4,
n− 2 if m = 2, 4 and n 6= 2, 4,
m+ n if m = 2, n = 4.

(2) If m,n are even integers and m = n then uch rank(X) = m− 2.
(3) If m is odd and n is even then

uch rank (X) =

{
n− 2 if n 6= 2, 4,
m+ n− 1 if n = 2, 4.

(4) If m and n are odd integers and m+n = 2 or 4 then uch rank (X) = m+n.
(5) If m,n ≡ 3 (mod 8) then uch rank(X) = m+ n− 2 and if n ≡ 5 (mod 8)

then uch rank (S1 × Sn) = n− 1.

Proof: (1) We note that H̃i(Sm×Sn) is nontrivial if i = m,n or m+n. We ob-
serve that the inclusion map i : Sm →֒ Sm×Sn and projection p : Sm × Sn → Sm

induces isomorphisms on the mth cohomology groups, respectively. Thus if
m 6= 2, 4 and ξ is a complex vector bundle over Sm × Sn with chern rank ξ ≥ m
then i∗(ξ) becomes a complex vector bundle over Sm and by naturality of Chern
classes chern rank i∗(ξ) ≥ m which is a contradiction as uch rank (Sm) = m− 2 if
m 6= 2, 4 (cf. Theorem 2.7). So it follows that uch rank (Sm × Sn) = m− 2.

If m = 2, 4 and n 6= 2, 4 then by similar argument uch rank (Sm × Sn) ≤
n − 2. By Theorem 2.7, there exists a complex vector bundle γ over Sm with
chern rankγ = m. Again as p∗ : Hm(Sm) → Hm(Sm × Sn) is an isomorphism, it
follows that chern rankp∗(γ) ≥ m. Thus uch rank (Sm × Sn) = n− 2.

Finally, let m = 2 and n = 4. Note that there exist complex line bun-
dle γ1 and complex 2-plane bundle γ2 over Sm and Sn, respectively, such that
chern rankγ1 = 2 and chern rankγ2 = 4. Consider the projection maps p1 :
Sm × Sn → Sm and p2 : S

m × Sn → Sn. As p∗1 : H
m(Sm) → Hm(Sm × Sn)

and p∗2 : H
n(Sn) → Hn(Sm × Sn) are isomorphisms so the total Chern class
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c(p∗1(γ1)) = 1 + a and c(p∗2(γ2)) = 1 + b where a and b are generators of
Hm(Sm × Sn) and Hn(Sm × Sn), respectively. Consider the Whitney sum
p∗1(γ1) ⊕ p∗2(γ2) over S

m × Sn which is a 3-plane complex bundle over Sm × Sn.
Again c(p∗1(γ1) ⊕ p∗2(γ2)) = c(p∗1(γ1)) · c(p

∗

2(γ2)) and if a and b are generators of
Hm(Sm × Sn) and Hn(Sm × Sn), respectively, then it follows from the cohomol-
ogy ring structure of H∗(Sm × Sn) that a · b is a generator of Hm+n(Sm × Sn).
Consequently it turns out that chern rank (p∗1(γ1)⊕ p∗2(γ2)) = m+ n.

(2) The first nontrivial reduced integral cohomology group of Sm × Sm is

H̃m(Sm×Sm) which is free abelian of rank 2 and the proof follows from assertion
(4) of Lemma 2.1.

(3) Here we notice that if m is odd and n is even then the only nontrivial even

dimensional reduced integral cohomology group of Sm × Sn is H̃n(Sm × Sn) and
the proof is similar to the case of (1).

(4) As Sm × Sn is a closed connected m + n dimensional smooth orientable
manifold hence there exists a degree 1 map f : Sm × Sn → Sm+n. Thus f∗ :
Hm+n(S

m × Sn) → Hm+n(S
m+n) is an isomorphism and consequently f∗ :

Hom(Hm+n(S
m+n);Z) → Hom(Hm+n(S

m × Sn);Z) is an isomorphism. Again
as Hm+n−1(S

m × Sn) is torsion free (as Sm × Sn is orientable) consequently f∗:
Hm+n(Sm+n) → Hm+n(Sm × Sn) becomes an isomorphism. Now the proof fol-
lows from the fact that uch rank(Sm+n) = m+ n if m+ n = 2 or 4.

(5) If m,n ≡ 3 (mod 8) then K̃O(Sm) = 0 = K̃O(Sn) and again as m+ n ≡

6 (mod 8) therefore K̃O(Sm+n) = K̃O(Sm ∧ Sn) = 0. By assertion (2) of The-
orem 2.8 uch rank (Sm × Sn) < m + n and consequently uch rank (Sm × Sn) =
m + n − 2. If n ≡ 5 (mod 8) then every orientable real vector bundle over
S1 × Sn becomes stably trivial, see [6], Lemma 3.6, therefore there cannot exist
any complex vector bundle ξ over (S1 × Sn) such that c(n+1)/2(ξ) is a generator

of Hn+1(S1 × Sn) and thus uch rank (S1 × Sn) = n− 1. �

We deduce the following corollary from part (4) of Theorem 3.1.

Corollary 3.2. The upper chern rank of S1×S1, S1×S3 are 2 and 4, respectively.

Remark. Note that uch rank(S1×S1) = 2 also follows from the fact that the first
Chern class c1 : Vect

1
C(S

1×S1) → H2(S1×S1) ∼= Z is an isomorphism (Vect1C(X)
denotes the abelian group of isomorphism classes of complex line bundles over X
with respect to tensor product operations).

Theorem 3.3. Let X = Sm ∨ Sn.

(1) If m, n are even integers and m < n then

uch rank (X) =





m− 2 if m 6= 2, 4,
n− 2 if m = 2 or 4 and n 6= 4,
n if m = 2 and n = 4.
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(2) If m is odd and n is even integer then

uch rank (X) =





n− 2 if m < n and n 6= 2, 4,
n if m < n and n = 2 or 4,
n− 2 if m > n and n 6= 2, 4,
m− 1 if m > n and n = 2 or 4.

(3) If m,n are even integers and m = n then uch rank (X) = m− 2.

Proof: (1) Let i1 : S
m →֒ Sm ∨ Sn, i2 : S

n →֒ Sm ∨ Sn be the inclusions and
r1 : S

m ∨ Sn → Sm, r2 : S
m ∨ Sn → Sn be the retraction maps. We consider

the sequence of maps Sm →֒ Sm ∨ Sn → Sm and Sn →֒ Sm ∨ Sn → Sn.
Clearly i∗1 : H

m(Sm ∨ Sn) → Hm(Sm), i∗2 : H
n(Sm ∨ Sn) → Hn(Sn) and r∗1 :

Hm(Sm) → Hm(Sm ∨Sn), r∗2 : H
n(Sn) → Hn(Sm ∨ Sn) are isomorphisms. Now

uch rank (X) = m− 2 if m 6= 2, 4, and it is equal to n− 2 if m = 2, 4 and n 6= 4,
which follows by similar arguments as in part (1) of Theorem 3.1.

Let m = 2, n = 4 and j : Sm ∨ Sn →֒ Sm × Sn is inclusion and p1, p2 are
the projection maps: p1 : S

m × Sn → Sm, p2 : S
m × Sn → Sn. We consider the

sequence of maps: Sm →֒ Sm ∨ Sn →֒ Sm × Sn → Sm and Sn →֒ Sm ∨ Sn →֒
Sm × Sn → Sn. As (i∗k ◦ j∗) ◦ p∗k is isomorphism, k = 1 or 2, hence i∗1 ◦ j∗ :
Hm(Sm × Sn) → Hm(Sm) and i∗2 ◦ j

∗ : Hn(Sm × Sn) → Hn(Sn) are surjections
and hence isomorphisms. Again as i∗k is an isomorphism, k = 1 or 2, so it follows
that j∗ : Hm(Sm×Sn) → Hm(Sm∨Sn) and j∗ : Hn(Sm×Sn) → Hn(Sm∨Sn) are
isomorphisms. Note that by part (1) of Theorem 3.1 uch rank (Sm×Sn) = m+n
and therefore there exists a complex vector bundle ξ over Sm × Sn such that
chern rank (ξ) = m+ n. Clearly chern rank j∗(ξ) = n.

(2) We note that the only even dimensional nontrivial reduced cohomology

group of Sm ∨ Sn is H̃n(Sm ∨ Sn) ∼= H̃n(Sn) and the arguments are similar to
the first case.

Proof of (3) follows from assertion (4) of Lemma 2.1 as the only even di-

mensional nontrivial reduced cohomology group H̃m(Sm ∨ Sn) is free abelian of
rank 2. �

Lemma 3.4. For any complex vector bundle ξ over RP 2k (or RP 2k+1),
chern rank ξ is either 0 or 2k and

uch rank (RP 2k) = 2k = uch rank (RP 2k+1).

Proof: The graded integral cohomology ring of RP 2k is given by

H∗(RP 2k) ∼= Z[α]/(2α, αk+1), deg(α) = 2.

If ξ is a complex vector bundle over RP 2k with c1(ξ) = 0 then chern rank ξ = 0
(for example we can take any trivial complex vector bundle) as H2(RP 2k) ∼= Z2.
On the contrary if c1(ξ) 6= 0 then H2i(RP 2k) = 〈(c1(ξ))

i〉 ∼= Z2 and consequently
chern rank ξ = 2k. Now as c1 : Vect

1
C(RP

2k) → H2(RP 2k) is an isomorphism
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therefore there exists a complex line bundle ξ over RP 2k with c1(ξ) 6= 0 and thus
uch rank (RP 2k) = 2k.

Again the graded integral cohomology ring of RP 2k+1 is given by

H∗(RP 2k+1) ∼= Z[α, β]/(2α, αk+1, β2, αβ), deg(α) = 2, deg(β) = 2k + 1

and the proof follows in similar fashion. �

Theorem 3.5. (1) If X = RPn × S2m then

uch rank (X) =

{
2(m+ k) if m = 2 and n = 2k or 2k + 1,
2(m− 1) if m 6= 2.

(2) If X = CPn × S2m then

uch rank (X) =

{
2(m+ n) if m = 2,
2(m− 1) if m 6= 2.

Proof: (1) Let n = 2k. We consider the projection maps

p1 : RP
2k × S2m → RP 2k

and p2 : RP
2k × S2m → S2m. If a and b are generators of H2(RP 2k) and

H2m(S2m), respectively, then the graded integral cohomology ring H∗(RP 2k ×
S2m) ∼= Z[α, β]/(2α, αk+1, β2), deg(α) = 2, deg(β) = 2m where α = p∗1(a) and
β = p∗2(b).

If m = 1 then RP 2k ×S2 ∼= Z⊕Z2 and by (4) of Lemma 2.1 uch rank (X) = 0.
Let m = 2. Now it follows from Lemma 3.4 that there exists a complex line
bundle ξ over RP 2k such that chern rank ξ = 2k and there exists a complex vector
bundle ξ′ over S4 such that chern rank ξ′ = 4 (by Theorem 2.7). Let a = c1(ξ)
and b = c2(ξ

′). Now we take the pull back bundles υ = p∗1(ξ) and η = p∗2(ξ
′)

over X and consider their Whitney sum υ⊕ η. Clearly c1(υ⊕ η) = c1(υ) = α and
c2(υ ⊕ η) = c2(η) = β and consequently chern rank (υ ⊕ η) = 2(m+ k).

Finally let m 6= 1, 2. We note that chern rankυ ≥ 2(m− 1) and as β cannot be
expressed as a product of cohomology classes of H∗(X) with degree lower than
2m so chern rankυ = 2(m−1). Now if uch rank (X) ≥ 2m, there exists a complex
vector bundle γ over X such that chern rankγ ≥ 2m. Let i : S2m →֒ RP 2k × S2m

be the inclusion map. As i∗ ◦ p∗2 = id on H2m(S2m) thus it turns out that
i∗(β) = b. Again as β cannot be expressed as a product of cohomology classes
of H∗(X) with degree lower than 2m therefore cm(γ) must be equal to β and so
cm(i∗(γ)) = i∗cm(γ) = i∗(β) = b. Thus uch rank (S2m) = 2m; which contradicts
uch rank (S2m) = 2m− 2 if m 6= 1, 2 (Theorem 2.7). This completes the proof for
m 6= 1, 2.

If n = 2k + 1 then H∗(RP 2k+1 × S2m) ∼= Z[α, β, λ]/(2α, αk+1, λ2, α · λ, β2)
where deg(α) = 2, deg(β) = 2m, deg(λ) = 2k + 1 and the proof is similar to the
case n = 2k.
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(2) We note that the graded integral cohomology ring H∗(CPn × S2m) ∼=
Z[α, β]/(αn+1, β2) where deg(α) = 2, deg(β) = 2m and also if L is the canonical
complex line bundle over CPn then chern rankL = 2n. Now the proof follows by
arguments as in (1). �

Now we study complex vector bundles over complex Stiefel manifolds Vk(C
n)

which consists of the orthonormal k-frames in Cn.

Theorem 3.6. Let X = Vk(C
n), where 1 < k < n. Then uch rank (X) =

4(n− k) + 2 if n− k is even or n− k 6= 2t − 1, t > 0.

Proof: It is known that for any commutative ring with unit R, H∗(Vk(C
n);R)

∼=
∧
(x2(n−k)+1, x2(n−k)+3, · · · , x2n−1), that is, the exterior algebra generated by

x2(n−k)+1, x2(n−k)+3, · · · , x2n−1 where xj ∈ Hj(Vk(C
n);R), see [4], Proposi-

tion 5.11. We note that the first nontrivial even dimensional reduced cohomology

group of Vk(C
n) with integer coefficients is H̃4(n−k)+4(Vk(C

n);Z) ∼= Z. Also the
integral cohomology structure of Vk(C

n) implies that the natural coefficient ho-
momorphism H4(n−k)+4(Vk(C

n);Z) → H4(n−k)+4(Vk(C
n);Z2) is an epimorphism

where H4(n−k)+4(Vk(C
n);Z2) ∼= Z2. Again it is well known that for any real vec-

tor bundle ξ over a space B, if wm(ξ), m > 0 is the first nonzero Stiefel–Whitney
class then m must be a power of 2, see [5], Problem 8-B. Now if n−k (> 0) is even
or n−k 6= 2t−1, t > 0, then 4(n−k)+4 cannot be a power of 2 and consequently
for any vector bundle ξ over Vk(C

n), 1 < k < n, w4(n−k)+4(ξ) = 0. Thus for any
complex vector bundle η over Vk(C

n), 1 < k < n; c2(n−k)+2(η) cannot be a gen-

erator of H4(n−k)+4(Vk(C
n);Z) as under the natural coefficient homomorphism

H4(n−k)+4(Vk(C
n);Z) → H4(n−k)+4(Vk(C

n);Z2), which is an epimorphism, the
Chern class c2(n−k)+2(η) is mapped to the Stiefel–Whitney class w4(n−k)+4(ηR)
and hence uch rank (Vk(C

n)) = 4(n− k) + 2. �

Theorem 3.7. If X = CPn/CPm, where m ≥ 1, n ≥ m+ 2 then

uch rank (X) =

{
2m if m 6= 1,
4 if m = 1.

Proof: First we observe that the first nontrivial cohomology group of X is
H2m+2 (X) and if i : S2m+2 →֒ X is the inclusion map then i∗ : H2m+2(X) →
H2m+2(S2m+2) is an isomorphism. Now if m 6= 1 then uch rank (S2m+2) = 2m
(cf. Theorem 2.7) and consequently uch rank (X) = 2m.

Next we consider the case when m = 1. Now CP 3/CP 1 = S4 ∪f1 e6 where
f1 : S

5 → S4 is the attaching map and e6 denotes a 6-cell. It is well known
that π5(S

4) ∼= Z2 and generated by [Σ2f ], where Σ2f denotes the double suspen-
sion of the Hopf map f : S3 → S2. Let α be a generator of H2(CP∞;Z2) where
H∗(CP∞;Z2) ∼= Z2[α]. We note that the action of Steenrod square operation Sq2

on α2 is trivial. Let us consider the quotient map q : CP∞ → CP∞/CP 1. Now it
follows from the naturality of Steenrod squaring operation that Sq2(x) is trivial
where x is the generator of H4(CP∞/CP 1;Z2). Again applying naturality prop-
erty of Steenrod squares with the inclusion map i1 : CP

3/CP 1 →֒ CP∞/CP 1 it
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follows that the action of Sq2 on the generator of H4(CP 3/CP 1;Z2) ∼= Z2 is triv-
ial. Suppose now the attaching map f1 : S

5 → S4 was not null-homotopic. Then
f1 must be homotopic to the double suspension of the Hopf map f : S3 → S2 as
π5(S

4) ∼= Z2. Thus CP 3/CP 1 = CΣ2f = Σ2Cf , where Cf is the associated map-
ping cone of f : S3 → S2. Again as Steenrod square operations are invariant under
suspension it follows that the action of Sq2 on the generator of H4(CP 3/CP 1;Z2)
is nontrivial, a contradiction. Consequently f1 must be null-homotopic. Thus
CP 3/CP 1 ≈ S4 ∨ S6.

Now by Theorem 3.3 (1), uch rank (CP 3/CP 1) = uch rank (S4 ∨ S6) = 4.
Again we consider the inclusion map j : CP 3/CP 1 →֒ CPn/CP 1. As a map j∗:
Hk(CPn/CP 1) → Hk(CP 3/CP 1) induces isomorphisms for k ≤ 6 so it follows

that uch rank(CPn/CP 1) ≤ 4. Finally we note that a map j⋆ : K̃(CPn/CP 1) →

K̃(CP 3/CP 1) induces epimorphism in reduced K-groups, see [1], Theorem 7.2,
and so uch rank (CPn/CP 1) = 4. This completes the proof. �
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