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Countable compactness of lexi-

cographic products of GO-spaces

NoBUYUKI KEMOTO

Abstract. We characterize the countable compactness of lexicographic products
of GO-spaces. Applying this characterization about lexicographic products, we
see:

o the lexicographic product X? of a countably compact GO-space X need not be count-
ably compact,

o w%,wl Xw, (W+1)X (w1 +1) Xwi Xw, w1 XwXwi,w) XwXw) XwX- -, wp Xw,
w1 X w¥ X (w4 1), wy, wy X (w1 +1) and [],¢,, wn+1 are countably compact,

o wXwi, W+ X (w1 +1)XxwXw, wXwl XwXw: X -, wXwy, w Xw’Xuw,
wf X w, HnEw wn, and Hngw wn+1 are not countably compact,

o [0,1)r X w1, where [0,1)r denotes the half open interval in the real line R, is not
countably compact,

o wi X [0,1)r is countably compact,

o both S X w1 and wy X S are not countably compact,

0 wi X (—wi) is not countably compact, where for a GO-space X = (X,<x,7x), —X
denotes the GO-space (X, >x,Tx).
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1. Introduction

Lexicographic products of LOTS’s were studied in [2] and it was proved:

o a lexicographic product of LOTS’s is compact if and only if all factors are
compact;
o a lexicographic products of paracompact LOTS’s is also paracompact.

Recently, the author defined the notion of the lexicographic product of GO-
spaces and extended the results above for GO-spaces, see [6], [7]. It is also known:

o the usual Tychonoff product of GO-spaces is countably compact if and
only if all factors are countably compact, therefore the usual Tychonoff
product w{ is countably compact for every ordinal v;

o the lexicographic product wy is countably compact, but the lexicographic
product w¥ ™! is not countably compact, see [4].
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In this paper, we will characterize the countable compactness of lexicographic
products of GO-spaces, further we give some applications.

When we consider a product [, . X4, all X, are assumed to have cardinality
at least 2 with v > 2. Set theoretical and topological terminology follow [9]
and [1].

A linearly ordered set (L, <p) has a natural topology Ar, which is called an
interval topology, generated by {(+—,x)r: € L} U {(x,—)r: € L} as a sub-
base, where (z,—)r = {z € L: 2 <p 2z}, (v,y)r = {z € L: v <p z < y},
(x,ylr = {2z € L: z <1, z <1, y} and so on. The triple (L, <p,Ar), which is
simply denoted by L, is called a LOTS.

A triple (X, <x,7x) is said to be a GO-space, which is also simply denoted
by X, if (X, <x) is a linearly ordered set and 7x is a Te-topology on X having
a base consisting of convex sets, where a subset C' of X is convex if for every
xz,y € C with z <x vy, [z,y]x C C holds. For more information on LOTS’s or
GO-spaces, see [10]. Usually <p, (z,y)r, A or 7x are written simply <, (z,y),
A or 7 if contexts are clear.

The symbols w and w; denote the first infinite ordinal and the first uncount-
able ordinal, respectively. Ordinals, which are usually denoted by Greek letters
a, 3,7, -+, are considered to be LOTS’s with the usual interval topologies.

The cofinality of « is denoted by cf a.

For GO-spaces X = (X, <x,7x) and Y = (Y, <y,7y), X is said to be a sub-
space of Y if X C Y, the linear order “<x” is the restriction <y [ X of the order
“<y” and the topology Tx is the subspace topology 7y | X (={UNX:U € 1v})
on X of the topology 7v. So a subset of a GO-space is naturally considered as
a GO-space. For every GO-space X, there is a LOTS X* such that X is a dense
subspace of X* and X* has the property that if L is a LOTS containing X as
a dense subspace, then L also contains the LOTS X* as a subspace, see [11]. Such
a X* is called the minimal d-extension of a GO-space X. The construction of X*
is also shown in [6]. Obviously, we can see:

o if X is a LOTS, then X* = X;

o the space X has a maximal element max X if and only if X* has a maximal
element max X*, in this case, max X = max X* (similarly for minimal
elements).

For every a < v, let Xo be a LOTS and X = [[,_, Xa. Every element
x € X is identified with the sequence (z(a): a < ). For notational convenience,
[1o<, Xa is considered as the trivial one point LOTS {0} whenever v = 0, where
() is considered to be a function whose domain is 0 (= (}). When 0 < 3 < 7,
Yo € [[o<pXa and y1 € [[5<, Xa, yo”y1 denotes the sequence y € [lo<y Xa
defined by

o) — yo(a) if a < B,
y(@) {yl(a) if 8<a.
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In this case, whenever 3 = 0, 0"y, is considered as y;. In case 0 < B < ~,
Yo € [loep Xa, u € X and y1 € [[5., Xa, o™ (u)"y1 denotes the sequence
Yy € [[<, Xa defined by

yola) if a < B,
y(Oé) =\u if a=4,
yi(e) if B<a.

More general cases are similarly defined. The lexicographic order “<x” on X is
defined as follows: for every z,2’ € X,

x <x 2’ if and only if for some a<v, zla=2]a and z(a) <x, 2'(c),

where | @ = (z(8): B < «) (in particular z [ 0 = §) and “<x_” is the
order on X,. Now for every a < v, let X, be a GO-space and X = Ha<v Xa.
The subspace X of the lexicographic product X = 1L, <y X4 1s said to be the
lexicographic product of GO-spaces X, ’s, for more details see [6]. Product [[,.., X;
(Hi<nXi where n € w) is denoted by X x X1 X Xox -+ (Xogx X1 X Xox---xX,,
respEctively). Product ], -, Xa is also denoted by X7 whenever X, = X for all
a <.

Let X and Y be LOTS’s. A map f: X — Y is said to be order preserving
or 0-order preserving if f(x) <y f(2') whenever x <x z’. Similarly a map
f: X — Y is said to be order reversing or 1-order preserving if f(x) >y f(a')
whenever © <x z’. Obviously a 0-order preserving map (also 1-order preserving
map) f: X = Y between LOTS’s X and Y, which is onto, is a homeomorphism,
i.e., both f and f~! are continuous. Now let X and Y be GO-spaces. A 0-order
preserving map f: X — Y is said to be a 0-order preserving embedding if f is
a homeomorphism between X and f[X], where f[X] is the subspace of the GO-
space Y. In this case, we identify X with f[X] as a GO-space and write X = f[X]
and X CY.

Let X be a GO-space. A subset A of X is called a 0-segment of X if for every
z, 2’ € X withx <2/, if 2’ € A, then x € A. A 0-segment A is said to be bounded
if X'\ A is nonempty. Similarly the notion of (bounded) 1-segment can be defined.
Both () and X are 0-segments and 1-segments. Obviously if A is a 0-segment of X,
then X \ A is a 1-segment of X.

Let A be a 0-segment of a GO-space X. A subset U of A is unbounded in A if
for every x € A, there is 2’ € U such that © < z’. Let

0-cfx A =min{|U|: U is unbounded in A}.

A set 0-cfx A can be 0,1 or regular infinite cardinals. 0-cfx A = 0 means A = ()
and 0-cfx A = 1 means that A has a maximal element. If contexts are clear,
0-cfx A is denoted by 0-cf A. For cofinality in compact LOTS and linearly or-
dered compactifications, see also [3], [8].
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Remember that a topological space is said to be countably compact if every
infinite subset has a cluster point.

Definition 1.1. A GO-space X is (boundedly) countably 0-compact if for every
(bounded) closed 0-segment A of X, 0-cfx A # w holds. The term “(boundedly)
countably 1-compact” is analogously defined.

Obviously a GO-space X is countably 0-compact if and only if it is boundedly
countably 0-compact and 0- cf X # w. Note that subspaces of ordinals are always
countably 1-compact because they are well-ordered. Also note that ordinals are
boundedly countably 0-compact but in general not countably 0-compact, e.g., w,
N, etc.

We first check:

Lemma 1.2. A GO-space X is countably 0-compact if and only if every 0-order
preserving sequence {x,: n € w} (i.e., m <n — x,, < x,) has a cluster point.

PROOF: Assuming the existence of a 0-order preserving sequence {x,: n € w}
with no cluster points, set A = {z € X: In € w(x < x,)}. Then A is closed
0-segment with 0-cf A = w.

To see the other direction, assuming the existence a closed 0-segment A with
0-cf A = w, by induction, we can construct a 0-order preserving sequence with no
cluster points. O

Using the lemma, we can see that a GO-space is countably compact if and only
if it is both countably 0-compact and countably 1-compact, see also [5].

2. A simple case

In this section, we characterize countable 0-compactness of lexicographic prod-
ucts of two GO-spaces. The following is easy to prove, see also [7, Lemma 3.6 (3a)].

Lemma 2.1. Let X = Xy x X be a lexicographic product of two GO-spaces and
Ao a 0-segment of X with 0-cfx, Ao > w. Then A = A x X1 is also a 0-segment
of X with 0-cfx A = 0-cfx, Ao.

The following lemma will be a useful tool for handling general cases.

Lemma 2.2. Let X = Xy x X3 be a lexicographic product of two GO-spaces.
Then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) the space X is countably 0-compact;
(b) the space X; is boundedly countably 0-compact;
(¢) if Xy has no minimal element or (u, —)x, has no minimal element
(that is, 1- cfx, (u, =) # 1) for some u € Xy, then 0-cfx, X1 # w;
(d) if X1 has no minimal element, then 0-cfx,(+,u) # w for every
u € Xp.
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PROOF: Set X = X x X7.

(1) = (2) Let X be countably 0-compact.

(a) Assuming that X, is not countably 0-compact, take a closed 0-segment A
of Xo with 0- cfx, Ap = w. By the lemma above, A = Ay x X; is a 0-segment of X
with 0-cfx A = w. It suffices to see that A is closed, which contradicts countable
0-compactness of X. Solet z ¢ A, then z(0) ¢ Ag. Since Ay is closed in Xy, there
is u* € X such that u* <x: x(0) and ((u*,—=)x; N Xo) N Ag = 0 (this means
(u*,2(0))xz = 0). Fix w € X; and let 2* = (u*, w) € X. Let U = (z*, =) g NX,
then U is a neighborhood of z. To see U N A = (§, assume a € U N A for some a.
By a(0) € Ag, we can take u € Ay with a(0) < u. Now u* < a(0) < u shows
u € ((u*,—) N Xo) N Ap, a contradiction.

(b) Assuming that X; is not boundedly countably 0-compact, take a bounded
closed 0-segment A; of X7 with 0-cfx, A} = w. Fix u € Xp and let A ={z € X:
Jv € Ai(x <x (u,v))}. Obviously A is a 0-segment of X and {u} x A; is
unbounded in the 0-segment A, so we see 0-cfx A = 0-cfx, A1 = w. It suffices
to see that A is closed, so let x € X \ A. Note u < z(0). Since A; is bounded, fix
v € X1\ A and let y = (u,v). When y < z, U = (y, —)x is a neighborhood of
disjoint from A. So let # < y, then we have 2(0) = v and z(1) ¢ A;. Since A
is closed in X7, take v* € X7 such that v* < 2(1) and ((v*,—=) N X1) N A = 0.
Then U = ({u,v*), =) N X is a neighborhood of z disjoint from A.

(c) First assume that X; has no minimal element. Fix u € X;. Then A =
(¢, u] x X; is a closed 0-segment of X and {u} x X; is unbounded in the 0-
segment A, therefore 0-cfx, X7 =0-cfx A # w.

Next assume that (u,—)x, has no minimal element. Then putting A =
(¢, u] x X1, similarly we see 0-cfx, X # w.

(d) Assuming that X; has no minimal element and 0- cfx, (-, ) = w for some
u € Xo, let A= (+,u)x X7. Then A is a closed 0-segment of X with 0-cfx A =
0- cfx,(«,u) by Lemma 2.1. This contradicts countable 0-compactness of X.

(2) = (1) Assuming (2) and that X is not countably 0-compact, take a closed
O-segment A of X with 0-cfx A = w. Let A9 = {u € Xo: Fv € X;((u,v) € A)}.
Since A is a nonempty 0-segment of X, Aj is also a nonempty 0-segment of Xj.
We consider two cases, and in each cases, we will derive a contradiction.

Case 1. The 0-segment Ay has no maximal element, i.e., 0-cf Ag > w.
In this case, we have:
Claim 1. The equality A = Ay x X1 holds.

ProOOF: The inclusion “C” is obvious. Let (u,v) € Ag x X;. Since u € Ag and
Ag has no maximal element, we can take u’ € Ay with u < /. By u’ € Ay, there
is v’ € X7 with (u/,v") € A. Then from (u,v) < (u/,v") € A, we see (u,v) € A,
because A is a 0-segment. O

Lemma 2.1 shows 0-cf Ag = 0-cf A = w. The following claim contradicts the
condition (2a).
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Claim 2. The 0-segment Aq is closed in Xg.

PROOF: Let u € Xp \ Ag. Whenever v/ < u for some v’ € X\ Ao, (v/,—)
is a neighborhood of w disjoint from Ay. So assume the other case, that is,
uw = min(Xp \ Ag). Note Ay = (+,u). If X3 has no minimal element, then
by (2d), we have 0- cf(+—, u) # w, a contradiction. Thus X; has a minimal element,
therefore (u, min X7) = min(X \ A) ¢ A. Since A is closed, there are u* € X and
v* € X7 such that (u*,v*) < (u,min X7) and (((u*,v*), =) NX)NA=0. The
inequality (u*,v*) < (u, min X;) shows u* < u, so (u*, —)N X is a neighborhood
of u disjoint from Ag. O

Case 2. The 0-segment Ay has a maximal element.

In this case, let A1 = {v € X;: (max Ag,v) € A}. Then A; is a nonempty
0-segment of X;. Since {max Ap} x A; is unbounded in the 0-segment A, we see
0-cfx, A1 =0-cfx A = w.

Claim 3. The 0-segment A; is closed in X;.

PRrROOF: Let v € X1\ A4;. Since (max Ao, v) ¢ A and A is closed, there are u* € X
and v* € X{ such that (u*,v*) < (max Ag,v) and (((u*,v*), =) NX)NA=0.
It follows from A; # () that u* = maxAg and so v* < v. Then we see that
(v*,—)x; N X1 is a neighborhood of v disjoint from A;. O

This claim with the condition (2b) shows A; = X5, which says
A = (+,max Ap] x X1,
in particular, we see that X; has no maximal element.

Claim 4. The interval (maX Ag, —>) has no minimal element or X; has no minimal
element.

PROOF: Assume that (max Ay, —) has a minimal element up and X; has a mini-
mal element, then note (ug, min X;) = min(X \ 4). Since A is closed in X, there
are u* € Xg and v* € Xy such that (u*,v*) < (up, min X1) and (((u*,v*), =) N
X)N A = 0. Then we have u* = max Aj. Since X; has no maximal element,
pick v € X with v* < v. Then we see (max Ag,v) € (({(u*,v*), =) NX)NA,
a contradiction. (|

Now the condition (2¢) shows 0-cfx, X1 # w, a contradiction. This completes
the proof of the lemma. O

3. A general case

In this section, using the results in the previous section, we characterize the
countable compactness of lexicographic products of any length of GO-spaces. We
use the following notations.
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Definition 3.1. Let X =[]
Define:

a<y X, be a lexicographic product of GO-spaces.

JT ={a <~v: X, has no maximal element};
J~ ={a <7: X, has no minimal element};

Kt ={a < ~: thereis z € X, such that (z, —)x, is nonempty

e

and has no minimal element};
K~ ={a <~: thereis z € X, such that (+—, x)x_ is nonempty

and has no maximal element};

Lt = {a <~: thereisu € H Xp with 0-cfrp, x5 (6 u) = w};
B<a

L™ = {a < v: thereis u € H X with 1-cf1—[B<aXB(u7 —) = w}.
f<a

For an ordinal «, let

1<a>{0 L Ha<w,

sup{f8 < a: B is limit} if a>w.

Some of the definitions above are introduced in [7]. Note that 0 ¢ Lt U L~
and for an ordinal o > w, I(«) is the largest limit ordinal less than or equal to «,
therefore the half open interval [I(«), @) of ordinals is finite.

We also remark:

Lemma 3.2. Let X = Ha<7 X, be a lexicographic product of GO-spaces. If
w <7, then w € LT N L~ holds.

PROOF: Assume w < 7. For each n € w, fix up(n),u1(n) € X,, with ug(n) <
ui(n). Set y = (ui1(n): n € w). Moreover for each n € w, set y, = (u1(i): i <
n)(ug(i): n <14). Then {y,: n € w} is a 0-order preserving unbounded sequence
in («,y) in ], ., Xn, therefore w € L. The statement w € L~ is similar. O

Theorem 3.3. Let X = Ha<7 X, be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) space X, is boundedly countably 0-compact for every a < ;
(b) if LT # (), then J~ C min L™;
(c) for every e < vy, if any one of the following cases (i)—(iii) holds, then
0-cfx, Xo #w ho]ds
(i) J* N [l(),0) =
(i) JTN[i(), @) 75(2] and (ap, )N J~ # 0, where ag = max(J TN
[[(), @));
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(iii) JtN[i(a),a) #0 and [ag, ) NK™T # 0, where ag = max(J TN
[[(e), @)).

PROOF: Note that (2a)+(2ci) implies that X is countably O-compact. Let X =
Ha<'y X:z

(1) = (2) Assume that X is countably 0-compact.

(a) Let ap < 7. Since X = [[ <., Xa X [[4y<a Xa; see [6, Lemma 1.5],
and X is countably 0-compact, Lemma 2.2 shows that Ha<a0 X, is countably
0-compact. Now by ]_[O(Scm Xo = [laca, Xa X Xa, and Lemma 2.2 again, we see
that X,, is boundedly countably 0-compact.

(b) Assume Lt # () and oy = min L™. Then Lemma 3.2 shows ag < w. From
ag € LT one can take u € [],.,, Xa such that 0- Cfl_[a@o x., (4, u) = w. Now
since X =[], .., Xa ¥ []4,<o Xa is countably 0-compact, Lemma 2.2 (d) shows
that Hao <o Xao has a minimal element. Therefore X, has a minimal element for
every a > «g, which shows J~ C «p.

(c) Let ag <. We will see 0-cfx, X, # w in each case of (i), (ii) and (iii).

Case (i). Le., JT N[l(ap), ) = 0.

Since X is countably 0-compact and X = Hagao Xo % lay<a Xa, Lemma 2.2
shows that [],, <ap Xa 1s also countably 0-compact. When «g = 0, by countable
0-compactness of [ [, <., Xa = Xa,, We see 0-cfx, Xo, # w. So let ag > 0. We
divide into two cases.

Case (i)-1. l(ag) =0, i.e., ap < w.

In this case, since [] X, has a maximal element, which implies that

a<og
(max [Ten, Xar— ) has no minimal element, and []

0-compact, Lemma 2.2 (2c) shows 0-cfx, Xo, # w.

Xa X X4, is countably

a<ag

Case (i)-2. l(ap) > w, 6., ap > w.

In this case, note that for every o € [l(ap),a0), Xo has a maximal ele-
ment. For every a < l(ag), fix zo(a),z1(a) € X, with zo(a) < z1(), and
let y = (wo(a): a < l(ap))(maxX,: l(ap) < a < ag). Moreover for every
B < l(ap), let yg = (xo(a): a < B)) z1(): B < a < l(ap)))(max Xy : U ap) <
a < ap). Then {yg: B < (o)} is 1-order preserving and unbounded in (y, —),
in particular, the interval (y,—) in Ha<a0 X4 has no minimal element. Now
Lemma 2.2 (2c) shows 0-cfx, Xa, # w.

Case (ii). Le., JTN[l(ap), ) # 0 and (a1, ap]NJ~ # 0, where a; = max(J TN

[l(a0), 0))-

Note that «; is well-defined insomuch as [I(ap), ap) is finite. Also let gy =
max((a1, ag]NJ7), then note 0 < I(ap) < a1 < a2 < a, in particular [0, ag) # 0.
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Case (ii)-1. as = ap.

Since [T, ca, Xa X Xao (= [Ia<a, Xa) is countably 0-compact, Lemma 2.2 (2c)
shows 0-cfx, Xa, 7# w. B

Case (ii)-2. a2 < ap.

Note that by the deﬁnition of as, X, has a minimal element for every o €
(a2, ap]. Fixing z € [] X, let y = 2" (max X,: a2 < a < ag), then y €
Ha<a0 Xa.

Claim 1. (y,—)g .. X, is nonempty and has no minimal element.
a<ag

a<ag

PROOF: Because X,, has no maximal element, fix u € X,, with y(a1) < w.
Then (y [ a1)(uw)(y I (a1, a0)) € (y,—), which shows (y, —) # 0. Next assume
Yy <y € [loca, Xa- Since y(a) = max X, for every a € [az,a9), we have
y [ as <y’ | ag. Since X,, has no minimal element, fix u € X,, with u < y'(a2).
Then we have y < (v | a2)(w) (v | (a2,a0)) < v, which shows that (y, —)
has no minimal element. (]

Now because [[, ., Xa X Xa, is countably 0-compact, Lemma 2.2 (2c) and
the claim above shows 0-cfx, Xo, # w.

Case (iii). Le., JTN[l(a0), o) # 0 and [a1, a9) NK T # (), where a; = max(J N
[[(a0), a0)).

Let s = max([a1,9) N K1), then note I(ap) < an < as < ap. Fixing 2z €
[loca, Xo and u € X, satisfying that (u,—) is nonempty and has no minimal
element, let y = 2" (u)(max X, : as < @ < ap). Then obviously y € []
and (y,—) has no minimal element. Since [],_,,
compact, Lemma 2.2 (2c) shows 0-cfx, Xq, # w.

(2) = (1) Assuming (2) and the negation of (1), take a closed 0-segment A
of X with 0-cfx A = w. Modifying the proof of Theorem 4.8 in [7], we consider
3 cases and their subcases. In each case, we will derive a contradiction.

Case 1. A= X.

a<agp "“

Xao X X4, is countable 0-

In this case, since X has no maximal element, we have Jt # 0, so let oy =
minJ*. Then J* N [l(ap),ap) C JT N [0,a0) = 0 and the condition (2ci) shows
0-cfx,, Xa, > wi. Since {(maqu: a < ap)} X Xq, is unbounded in [], ., Xa,
we have 0- cfy, <oy Xa [loca, Xa =0-cfx,, Xa, > wi. Nowby X = Hag;o Xa X
Ha0<a X, Lemma 2.1 shows 0 cfx A=0-cfx X =0- Cfl_la<a0 X, HaSao X, =
0- CfXao Xa, > w1, a contradiction. -

Case 2. A+# X and X \ A has a minimal element.

Let B=X \ A and b = min B. Since A is nonempty closed and B = [b, —),
there is b* € X with b* < b and ((b*, —)¢NX)NA =0, equivalently (b*,b) ¢ = 0.
Note b* ¢ X because A has no maximal element. Let ag = min{a < 7: b*(«a) #

b))}

429
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Claim 2. For every a > g, Xo has a minimal element and b(«) = min X,.

PROOF: Assuming b(a)) > u for some a > ag and u € X,, let o; = min{a > ap:
Ju € Xo(b(a) > u)} and fix u € X,, with b(ag) > u. Then we have b* <
(b1 o) ()] (a1,7)) < b, a contradiction. O

Claim 3. (b*(ao),b(ao))X;O N Xa, = 0.

PROOF: Assume u € (b*(ao),b(ao))X;O N X,, for some uw. Then we have b* <
(b1 ) () (b ] (cvo,7)) < b, a contradiction. O

Claim 4. [b(a0), —)x., ¢ Ax.,, therefore b*(ag) & Xa,-

PRrROOF: It follows from b*(ayg) € (%,b(ao))xgo that (%,b(ao))X% # (). Assume
[b(@0), )X, € Ax,, then for some u € X4, with u < b(ao), (u,b(ap)) = 0
holds. Claim 3 shows b*(ag) = u € Xq,. If there were @ > ap and v € X,
with v > b*(«), then by letting oy = min{a > ap: Jv € X,(v > b*(a))} and
taking v € X,, with v > b*(aq), we have b* < (b* | a1)™(v)"(b* | (@1,7)) < b,
a contradiction. Therefore for every o > g, max X, exists and b*(«) = max X,.
Thus we have b* = (b | ap)™(u)(max X, : ap < a) € X, a contradiction. O

Claims 3 and 4 show that Ay := (+—,b(ay)) is a bounded closed 0-segment
of X4, without a maximal element. Now the condition (2a) shows 0- cf X%AO > wi.
Since {b | ap}x Agx{b [ (g, )} is unbounded in the 0-segment in A (= (+-,b) x),
we have w = 0-cfx A = 0- CfXaU Ap > wq, a contradiction. This completes Case 2.

Case 3. A# X and X \ A has no minimal element.
Let B=X\ A and

I={a<y:3acA FbeB (a|(a+1)=b](a+1)}

Obviously I is a 0-segment of v, so I = ag for some ag < «. For each a < «y, fix
ao € A and by € B with a, [ (@ +1) = bs [ (o +1). By letting Yo =[], ., Xao
and Y1 = [[, <q Xa, define yo € Yy by yo(a) = aa(a) for every a < ag. The
ordinal ag can be 0, then in this case, Yy = {#} and yo = 0.

Claim 5. For every a < ag, yo | (a+1) =aq [ (¢ + 1) = by [ (o + 1) holds.

PROOF: The second equality is obvious. To see the first equality, assuming yo |
(¢ +1) # aq | (@+1) for some a < ap, let a3 = min{a < ag: yo [ (@ +1) #
aq | (+1)}. Moreover let ay = min{a < a1: yo(a) # aq, (@)}. It follows from
yo(a1) = aq, (1) that as < ay. Since Yo | ae = aq, | a2 and yo(az) # aq, (a2)
hold, by the minimality of a;, we have yo | (a2 + 1) = @, | (@2 +1) = by, |
(e +1). When yo(a2) < aq, (a2), we have B 3 b,, < an, € A, a contradiction.
When yo(a2) > aq, (a2), we have B 3 by, < aq, € A, a contradiction. O

Claim 5 remains true when ag = 0, because there is no ordinal o with o < «p.
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Claim 6. o < 7.

PROOF: Assume oy = 7, then note yg € Yy = X = AU B. Assume yy € A.
Since A has no maximal element, one can take a € A with yp < a. Letting
Bo = min{f < v: yo(B) # a(B)}, we see A > a > bg, € B, a contradiction. The
remaining case is similar. (I

Let Ag = {a(ag): a € A, alag=yo} and By ={b(ag): b€ B, b | ay=1yo}.

Claim 7. The following hold:

(1) for every a € A, a | ag < yo holds;
(2) for everyx € X, if x [ g < yo, then = € A.

PROOF: (1) Assume a [ ag > yo for some a € A. Letting Sy = min{f < ap:
a(B) # yo(B)}, we see B 3 bg, < a € A, a contradiction.

(2) Assume z | ap < yo. Letting Sp = min{f8 < ag: z(B) # yo(B)}, we see
x < ag, € A. Since A is a 0-segment, we have z € A. O

Similarly we have:

Claim 8. The following hold:

(1) for every b € B, b [ ag > yo holds;
(2) for everyx € X, if x [ ag > ¥, then x € B.

Claim 9. Aj is a 0-segment of X,, and By = X, \ Ao.

PROOF: To see that Ap is a 0-segment, let v/ < u € Ay. Pick a € A with
al ay =y and u = a(ag). Let @’ = (a | @) W) (a | (a,7)). Since A is
a 0-segment and o’ < a € A, we have ' € A. Now we see v/ = d/(ag) € Ao
because of a’ | ay = yo.

To see By = X, \ Ao, first let u € By. Take b € B with b | g = yo
and b(ag) = u. If u € Ay were true, then by taking a € A with a [ ap = yo
and a(ag) = u, we see a | (g +1) = b [ (g + 1), therefore ag € I = ay,
a contradiction. So we have u € X4, \ Ao. To see the remaining inclusion, let
u € Xop \ Ao- Take x € X with z | (ap + 1) = yo™(u). If z € A were true, then
by = | ap = yo, we have u = z(ag) € Ay, a contradiction. So we have x € B,
therefore u € By. [l

Claim 10. Ag # 0.
PROOF: Assume Ay = (). We prove the following facts.
Fact 1. ((*,yo)yo x Y = A.

PROOF: One inclusion follows from Claim 7 (2). To see the other inclusion, let
a € A. Claim 7 (1) shows a [ ag < yo. If a | ap = yo were true, then we have
alag) € Ao, a contradiction. So we havea | ag < yo therefore a € (+—,yo)xY1. O
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Fact 2. ag > 0 and «g is limit.

PROOF: If oy = 0 were true, then by taking a € A, we have a(ag) € A, a con-
tradiction. Therefore we have ag > 0. Next if ag = By + 1 were true for some
ordinal By, then by 8y € ag and Claim 5, we have yo [ ag = yo | (Bo + 1) =
ag, | (Bo+1) =ag, | oo, thus we have ag,(ag) € Ao, a contradiction. Thus «g
is limit. (I

Now Claim 6 and Fact 2 show w < ag < 7, so Lemma 3.2 shows w € L.
Moreover the condition (2b) shows J~ C min Lt < w < «, in particular, X,, has
a minimal element for every oo > . This means Y; (: Ha0<a Xa) has a minimal
element. Now by Fact 1, we see " minY; = min(X \ A), which contradicts our
case. [l

Next, let Zg =] Xo, 21 = Ha0<a X, and

a<ag
A" ={z€Zo: z ] ap <yo or (2 [ v = Yo, 2(0) € Ao)}.

Note A* = ((+=,y0) X Xao) U ({0} x Ao).

Claim 11. A* is a 0-segment of Zy and A = A* X Z;.

PROOF: Since Ay is a 0-segment of X,,, A* is obviously a 0-segment of Z;. To
see A C A* X Z1,let a € A. Claim 7 (1) shows a | ap < yo. When a | o < o,
obviously we have a [ (ag + 1) € A*. When a | ap = yo, a € A shows a(ag) € Ay
thus a [ (g +1) € A*. To see A D A* X Zy, let a € A* x Z;. Then note
al (ap+1) € A*. When a | ap < yo, letting Sp = min{S < ag: a(8) # yo(B)},
we see a < ag, € A thus a € A. When a | ap = yo and a(ag) € Ay, Claim 9
shows a € A. O

Since {yo} X Ap is unbounded in the 0-segment A*, we see 1 < 0-cfz, A* =
0-cfx,, Ao. We divide Case 3 into two subcases.

Case 3-1. 0-cfz, A* > w.

In this case, Claim 11 and Lemma 2.1 show w = 0-cfx A = 0-cfz, A* =
0- CfXao Ao.

Claim 12. Ay # X,,-

ProOF: Assume Ay = X,,. Then O-CfXaU Xoy = O-CfXaU Ay = w shows
op € Jt. Assume a9 = Sy + 1 for some ordinal By. Then By < ag = I shows
bg, € B. Now from bg, [ ag =bg, [ (Bo+1) =90 [ (Bo+1)=1yo | ap, we have
bg, () € By = Xa, \ Ao, a contradiction. Thus we see that g = 0 or «ag is
limit, that is, [I(ao), ap) = 0. Now the condition (2ci) shows 0-cfx, Xa, # w,
a contradiction. O
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Claim 13. Ay is closed in X,,.

PROOF: When By has no minimal element, obviously Aq is closed. So assume
that By has a minimal element, say © = min By. It suffices to find a neighborhood
of u disjoint from Ay. The facts A* = (+—, 40" (u))z, and 0-cfz, A* = w show
ap + 1 € LT, therefore min LT < ap + 1. The condition (2b) ensures J~ C
min LT < a9+ 1, so J= C [0,0]. Therefore X, has a minimal element for
every a > ap. Let b = yo™(u){min X,: ap < a). Since b € B (= X \ A4)
and A is closed in X, there is b* € X such that b* < b and (b*,0)g NA=10.
Set Bp = min{B < v: b*(8) # b(B)}, then obviously Sy < ag. If By < ap were
true, we have ag, € (b*,b)¢ N A, a contradiction. Thus we have Sy = ag, so
b* | ap = yo and b*(ap) < w. If there were v € (b*(ao),%)xéo N Ay, then
v < u shows yo" (v)(min X, : g < @) € (b*,b) N A, a contradiction. Therefore
(b* (), %)X;U N Xaq, is a neighborhood of u disjoint from Ay. O

These claims above show that Ay is a bounded closed 0-segment of X,,. Now
the condition (2a) shows 0-cfx, Ao # w, a contradiction.

Case 3-1. 0-cfz, A" = 1.

Since A = A* x Zy, A* has a maximal element but A has no maximal ele-
ment, we see that Z; has no maximal element. Therefore X, has no maximal
element for some a > ag, in particular (ap,v) # 0. Let oy = min{a > ag:
X, has no maximal element}. Then we have ag < ag € J* and (ag, aq)NJ T = 0.
As A= A" x7Z; = A" x (Hao<a§a1 Xa X% Ha1<a XO‘) - (A* X Hao<a§a1 X"‘) X
Ha1<a X, and A* x Ha0<a§a1 X, is a O-segment in Hagal X, with no max-
imal element, Lemma 2.1 shows w = 0-cfx A = 0-cf (A* X Ha0<a§a1 Xa) =
0-cfx,, Xa, (that {yo”(max Ag)"(max Xo: ap < @ < 1)} x X, is unbounded
in the 0-segment A* x [] X, witnesses the last equality).

ap<alag
Claim 14. Let l(a1) < ap and J* N [l(a1), 0] # O hold, in particular J= N
[[(en), 1) # 0.

PRrROOF: First assume o < l(a1). Then J* N [l(a1), 1) € JT N (g, 1) = 0
and the condition (2ci) show 0-cfx, Xa, # w, a contradiction. Thus we have
(o) < ap.

Next assume J* N [l(a1), o] = 0, then we have J* N [I(a1), 1) = 0 because
of J* N (ag,a1) = 0. Therefore the condition (2ci) shows 0-cfx, Xa, # w,
a contradiction. Thus J+ N [l(aq), ag] # 0. O

Using the above claim, set ap = max(J" N[l(a1),a1)). Note 0 < l(ag) < as <
ap < ap and JT N (ag,aq) = 0.

Claim 15. By has a minimal element.

PROOF: First we check By # 0, so assume By = 0, i.e., Ay = X,,. The equations
1 = 0-cfz, A* = 0-cfx, Ao = 0-cfx, X, show ag ¢ Jt. Also as < ag and
o € JT show 0 < o < ag. Assume that ag = Sy + 1 for some ordinal 3y, then
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byﬂ0<OZOZI, Wehavebgo EBandeU rOé():bgo [(ﬂ0+1):y0 [(ﬂ0+1):
Yo | ag. Therefore we have bg,(ag) € By, a contradiction. So we have 0 < o and
ayp is limit, therefore oy < (1) < ag, which contradicts ag < ag. We have seen
By # 0.

Next we check that By has a minimal element. Assume that By has no minimal
element, then max Ay witnesses ag € [a2, 1) N K. The definition of gy and the
condition (2ciii) show 0-cfx, Xa, # w, a contradiction. O

Now since B has no minimal element, by the claim above, there is o > ag such
that X, has no minimal element. So let a3 = min{a > «ap: X, has no minimal
element}. Then we have ayp < ag € J~. When w < 7, Lemma 3.2 and the
condition (2b) show J~ C min LT < w. When v < w, obviously J~ C w. So in
any case we have J~ C w. Therefore {(a1) < ap < a3 € w so we have a; € w.

Claim 16. a3 < o.

PROOF: Assume a3 < ag, then X, has a minimal element for every o € (ap, ).
So let y = yo” (min By)" (min X4 : ag < a < ay). Note y € [[,<,, Xo and con-
sider the interval («—, ) in Ha<a1 X,,. The definition of as and as < ag show that
X, has a maximal element for every o € (g, ). Since {yo” (max Ag)" (max X, :
ap < a < a1)} x X,, is unbounded in (+,y), we have 0-cf(+,y) =
0-cfx,, Xo, = w. Thus y witnesses a; +1 € L*. The condition (2b) ensures
J™ Cmin LT < a1 + 1, thus a3 € J~ C [0, 1], a contradiction. Now we have
Qa3 S aq. O

Now a3 € (ag,aq]NJ~ C (a2,a1] NJ ™, ag = max(J" N [l(a1),a1)) and the
condition (2cii) show 0-cfx, Xa, # w, a contradiction. This completes the proof
of the theorem. d

Analogously we can see:

Theorem 3.4. Let X = Ha<7 X. be a lexicographic product of GO-spaces.
Then the following are equivalent:

(1) the product X is countably 1-compact;
(2) the following clauses hold:
(a) X, is boundedly countably 1-compact for every a < 7;
(b) if L= # 0, then J* C min L~ ;
(c) for every a < 7, if any one of the following cases bellow holds; then
1-cfx, Xo # w holds;
(i) J= N [l(e),a) =0;
(i) J~N[l(),a) # 0 and (ag, o] NJT # (), where ag = max(J~ N
(), 0));
(iii) J-N[l(a),a) # 0 and [ag, @) NK ™ # (), where ag = max(J~ N
i(a), ).
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4. Applications

In this section, we apply the theorems in the previous section

Corollary 4.1. Let X =[]
Then the following hold:

(1) if X is countably O-compact, then J~ C w;

(2) if X is countably 1-compact, then J* C w;

(3) if X is countably 0-compact, then for every § < -y, the lexicographic
product Had X, is countably 0-compact, in particular X is countably
0-compact;

(4) if X is countably 1-compact, then for every 6 < +, the lexicographic
product [] X, is countably 1-compact, in particular Xg is countably
1-compact.

a<y X, be a lexicographic product of GO-spaces.

a<d

PROOF: Lemma 3.2 and the condition (2b) in Theorem 3.3 show (1). (3) obviously
follows from Theorem 3.3 or Lemma 2.2 directly. The remaining is similar. O

Corollary 4.2. Let X be a GO-space. Then the lexicographic product X“1! is
countably compact if and only if X is countably compact and has both a minimal
and a maximal element.

ProOF: That X“*! is countably compact implies that X is countably compact
and has both a minimal and a maximal element follows from the corollary above.

The other implication follows from the theorems in the previous section because
of Jt=J" =10. O

Corollary 4.3. Let X = ]_[OK7 X, be a lexicographic product of countably
compact GO-spaces. Then the following are equivalent:

(1) the product X is countably compact;
(2) the following clauses hold:
(a) if LY #0, then J~ C min Lt;
(b) if L~ # 0, then J©™ C minL™.

PROOF: Since all X,,’s are countably compact, (2a)+(2c) in Theorems 3.3 and 3.4
of the previous section are true. Il

Example 4.4. Let [0,1)g denote the unit half open interval in the real line R
with the usual order. Let X be the lexicographic product [0,1)r X w;i. Since
[0, 1)r is not countably 0-compact, Corollary 4.1 shows that X is not countably 0-
compact. Both [0,1)g and w; are countably 1-compact. Considering Xo = [0,1)g
and X7 = wy, wesee 1 € L™ (0 in [0,1)g witnesses this) therefore 1 = min L.
Moreover by 1 € J*, (2b) in Theorem 3.4 does not hold. Therefore X is neither
countably 0-compact nor countably 1-compact. Note that X is not paracompact,
see [7, Example 4.6].
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Example 4.5. Let X be the lexicographic product wy x [0,1)g. Checking all
clauses in the theorems in the previous section, we see that X is countably com-
pact. Since it is not compact, it is not paracompact. The lexicographic product
w1 X [0, 1)R is called the long line of length wy and denoted by L(w:).

Example 4.6. Let S be the Sorgenfrey line, where half open intervals [a, b)r’s are
declared to be open. Then it is known that w; X S is paracompact but S x wy is
not paracompact, see [7]. On the other hand, both lexicographic products wy X S
and S X w; are not countably compact, because S is not boundedly countably
0-compact.

Example 4.7. Let X be the lexicographic product wy X [0, 1)r X w1, and consider
as Xo = w1, X1 = [0,1)r and X5 = w;. Then 1-cf,, «[0,1)((0,0), =) = w shows
2 € L. Since 0,1 ¢ L~, we have min L~ = 2. Now 2 € J* implies J* ¢ min L.
Thus Theorem 3.4 shows that X is not countably (1-)compact. On the other hand,
we will later see that the lexicographic product w; X w X wy is countably compact.

Corollary 4.8. There is a countably compact LOTS X whose lexicographic
square X2 is not countably compact.

PROOF: X = L(wj) is such an example, because L(w1)? = (w1 x [0, 1)r X wy) X
[0, 1)r (use Example 4.7). We will later see that the lexicographic product X = w{
is also such an example. O

In the rest of the paper, we consider countable compactness of lexicographic
products whose all factors have minimal elements. In the following, apply theo-
rems with J— = (.

Corollary 4.9. Let X = Ha<v X, be a lexicographic product of GO-spaces. If
all X, ’s have minimal elements, then the following are equivalent:
(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) X4 is boundedly countably 0-compact for every a < 7;
(b) for every o < ~, if either one of the following cases holds, then
0-cfx, Xo # w holds:
(i) J*Ni(a),e) =0;
(i) JTN[l(a),a) # 0 and [, ) VKT # (), where ap = max(J TN
[[(), @)).
Corollary 4.10. Let X = Ha<7 X, be a lexicographic product of GO-spaces.
If all X, ’s have minimal elements, then the following are equivalent:
(1) the product X is countably 1-compact;
(2) the following clauses hold:

(a) X, is (boundedly) countably 1-compact for every a < ;
(b) if L= # 0, then J© C min L.

Now we consider the case that all factors are subspaces of ordinals. First let X
be a subspace of an ordinal. Since X is well-ordered, the following hold:
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the GO-space X is countably 1-compact;

the GO-space X has a minimal element;

for every w € X with (u,—) # 0, (u,—) has a minimal element;

there is 4 € X such that (+—,u) is nonempty and has no maximal element
if and only if the order type of X is greater than w.

O O O O

Note that a subspace X of w; is countably compact if and only if it is closed
in wy, and also note that the subspace X = {a < wy: cfa < w} is countably
compact but not closed in ws.

Next let X, be a subspace of an ordinal for every @ < v and X = ]_[Ot<7 X
be a lexicographic product. Then using the notation in Section 3, we see:

o JT =10;
o Kt =10
o a € K~ if and only if the order type of X, is greater than w.

Remarking these facts with corollaries above, we see:

Corollary 4.11. Let X = HDL<’Y X, be a lexicographic product. If all X, ’s are
subspaces of ordinals, then the following are equivalent:

(1) the product X is countably 0-compact;
(2) the following clauses hold:
(a) X, is boundedly countably 0-compact for every a < =;
(b) for every a < v with J* N [l(a),a) =0, 0-cfx, Xo # w holds.

Corollary 4.12. Let X = Ha<v X, be a lexicographic product. If all X,’s are
subspaces of ordinals, then the following are equivalent:

(1) the product X is countably 1-compact;
(2) Jt Cw.

PROOF: (1) = (2) Assume that X is countably 1-compact. By Corollary 4.10,
if L= # (), then J™ C minL~. When v > w, because of w € L™, we see
JT Cmin L™ <w. When v < w, obviously we see JT C v < w.

(2) = (1) Assume J* C w. It suffices to check (2a) and (2b) in Corollary 4.10.
(2a) is obvious. To see (2b), let L~ # (. Now assume w N L~ # 0, and take
n € wN L~™. Then we can take u € [],, ., Xm with 1-cf(u, =) = w. But this
is a contradiction, because a lexicographic product of finite length of subspaces
of ordinals are also a subspace of ordinal, see [7, Lemma 4.3]. Therefore we have
wNL™ =0. L™ # () and Lemma 3.2 show J© C w = min L~. O

If X is an ordinal, then it is boundedly countably 0-compact and 0-cfx X =
cf X. Therefore we have:

Corollary 4.13. Let X =]
the following are equivalent:

a<y X, be a lexicographic product of ordinals. Then
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(1) the product X is countably compact;
(2) the following clauses hold:
(a) if JT #0, then cf X, j+ > wi;
(b) Jt Cw.

Corollary 4.14 ([4]). The following clauses hold:

1) the lexicographic product w is countably 0-compact for every ordinal ;
1
(2) the lexicographic product w] is countably (1-)compact if and only if
v <w.

Example 4.15. Using Corollary 4.13, we see:

(1) lexicographic products w?, wq X w, (W+1) X (w1 +1) X w1 X W, W1 X W X w1,
W1 XWXw XwX -, wy XwY, wy Xw X (w+1), wy, w¥ X (w1 +1) and
II,.c., wnt1 are countably compact;

(2) lexicographic products wxwi, (wW+1)x (w1+1) XwxXwi, wWXwy XwXwy X+
WX WY, w1 Xw Xwy, Wy Xw, [[,,e, wn and [, o wnt1 are not countably
compact;

(3) let X = w¥, then the lexicographic product X2 is not countably compact

because of X2 = w¥ x w¢ = wy T, so this shows also Corollary 4.8.

new n<w

For a GO-space X = (X, <x,7x), —X denotes the reverse of X, that is, the
GO-space (X, >x,Tx), see [7]. Note that X and —X are topologically homeo-
morphic.

Example 4.16. As above, the lexicographic product w? was countably compact.
But the lexicographic product w; X (—wi) is not countably compact. Indeed,
let X = w1 X (—w1), Xo = w1 and X7 = —wj. The element w € X, with
0-cfx,(+,w) = cfw = w witnesses 1 € LT, therefore min L™ = 1. On the
other hand —w; has no minimal element, so we have 1 € J~. Therefore (2b) of
Theorem 3.3 does not hold, thus X is not countably (0-)compact.

Also note that (—wq) x (—w1) is countably compact but (—wi) X wy is not
countably compact, because (—w1) X (—w1) and (—w1) X wy are topologically
homeomorphic to w? and w; X (—w;), respectively, see [7].

Moreover wy X (—w) is directly shown not to be countably (1-)compact, because
the 1-order preserving sequence {(0,n): n € w} has no cluster point in wy x (—w).
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