
Comment.Math.Univ.Carolin. 60,3 (2019) 313–322 313

On commutative rings whose maximal ideals are idempotent

Farid Kourki, Rachid Tribak

Abstract. We prove that for a commutative ring R, every noetherian (artinian)
R-module is quasi-injective if and only if every noetherian (artinian) R-module
is quasi-projective if and only if the class of noetherian (artinian) R-modules is
socle-fine if and only if the class of noetherian (artinian) R-modules is radical-fine
if and only if every maximal ideal of R is idempotent.
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1. Introduction

Rings will be associative and commutative with identity and modules will be
unitary. A module is called semiartinian if each nonzero factor module has a sim-
ple submodule. A module M is called S-primary for a simple module S if each
nonzero factor module of M has a simple submodule isomorphic to S. S. E. Dick-
son in [6] calls a ring R a T -ring if each semiartinian R-module decomposes into
a direct sum of its primary components. Examples of a T -ring include any noe-
therian ring and any semilocal ring (see [6, Corollary 2.7]). T. J. Cheatham and
J.R. Smith in [5] used T -rings to characterize rings for which certain modules
are semisimple. In fact, they showed in [5, Theorem 5] that a ring R is a T -ring
such that any maximal ideal of R is idempotent if and only if the class of semi-
artinian R-modules coincides with the class of semisimple R-modules. So it is of
a natural interest to consider the following question: For which rings R, is every
artinian R-module (noetherian R-module, R-module of finite length) semisim-
ple? Recently, we have provided an answer to this question. In fact, we proved
that for a ring R, every artinian R-module (noetherian R-module, R-module of
finite length) is semisimple if and only if every maximal ideal of R is idempo-
tent (Lemma 2.1). It turns out that this result has many interesting applications.
A class C of modules is said to be socle-fine (radical-fine) if for every pair M , N in
C: Soc(M) ∼= Soc(N) ⇔ M ∼= N (M/Rad(M) ∼= N/Rad(N) ⇔ M ∼= N). These
two notions were introduced by A. Idelhadj and A. Kaidi (see [11] and [13]). One
of the interesting problems that can be studied is to characterize rings by some of
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their classes of modules which are socle-fine (radical-fine). In this way D.M. Ba-
quero, A. Idelhadj, C.M. González, A. Kaidi and A. Yahya have proved important
results that can be found in [11], [12], [13], [14] and [15]. Nevertheless, most of
the classes considered have homological properties (as projectivity and injectivity)
and the problem of characterizing rings over which a class of modules satisfying
a chain condition (as the ascending or the descending chain condition or having
a composition series) is socle-fine (radical-fine) seems to be never considered be-
fore. In this article, we show that the class of artinian R-modules (noetherian
R-modules, R-modules of finite length) is socle-fine if and only if this class is
radical-fine if and only if every maximal ideal of R is idempotent (Theorems 3.3
and 3.5). A module M is said to be a C3-module if whenever N and L are direct
summands of M such that N ∩ L = 0, then N ⊕ L is a direct summand of M .
D3-modules can be defined dually. In [1] and [23], I. Amin, Y. Ibrahim and M.F.
Yousif established new characterizations of several well known classes of rings in
terms of C3-modules and D3-modules. However, the study of the question of
characterizing rings over which any module satisfying some kind of chain condi-
tion (as ACC, DCC, having a composition series) is a C3-module (D3-module)
does not appear anywhere. We show that every noetherian R-module (artinian
R-module, R-module of finite length) is a C3-module if and only if every noether-
ian R-module (artinian R-module, R-module of finite length) is a D3-module if
and only if every maximal ideal of R is idempotent (Theorems 4.2 and 4.3).

Throughout this article, R is a commutative ring with unity. Let M be an
R-module. We denote by Rad(M), Soc(M) and E(M) the Jacobson radical, the
socle and the injective hull of M , respectively. We use the notations N ⊆ M
and N ≤ M to denote that N is a subset of M and N is a submodule of M ,
respectively. By Z we denote the ring of integer numbers and Zn denotes Z/nZ.

2. When are noetherian (artinian) R-modules V -modules?

We begin with a result taken from [16, Theorem 2.15]. It is the main motivation
of this work.

Lemma 2.1. The following conditions are equivalent for a ring R:

(i) Any R-module of finite length is semisimple.
(ii) Any artinian R-module is semisimple.
(iii) Any noetherian R-module is semisimple.
(iv) m

2 = m for any maximal ideal m of R.

Let M be a module. Following [9], the Krull dimension (denoted K-dim) is
defined as follows: K-dim(M) = −1 when M = 0. Given an ordinal α, and
assuming that the concept K-dim(M) < α is already defined, then K-dim(M)
is defined to be α if K-dim(M) ≮ α and there exists no descending sequence
M = M0 ≥ M1 ≥ · · · of submodules of M with K-dim(Mn−1/Mn) ≮ α for
all n ≥ 1. It is easily seen that K-dim(M) = 0 if and only if M is a nonzero
artinian module. Note that every noetherian module has Krull dimension (see [9,
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Proposition 1.3]). Recall that a module M is called tall if it contains a submod-
ule N such that both M/N and N are non-noetherian. A ring R is called tall

if every non-noetherian R-module is tall (for example, max rings are tall by [18,
Corollary 1.2]). In 1976, B. Sarath showed that the class of rings R for which
every module having Krull dimension is noetherian is exactly that of tall rings
(see [19, Theorem 2.7]). Next, we characterize the class of rings R for which every
R-module with Krull dimension is semisimple.

Proposition 2.2. The following conditions are equivalent for a ring R:

(i) Any R-module with Krull dimension is semisimple.
(ii) m

2 = m for any maximal ideal m of R.

Proof: (i) ⇒ (ii) Let M be a noetherian R-module. By [9, Proposition 1.3],
M has Krull dimension. So M is semisimple. Hence (ii) follows from Lemma 2.1.

(ii) ⇒ (i) Let m be a maximal ideal of R. By hypothesis, we have m
n = m

for every integer n ≥ 1. Therefore R/
⋂

n≥1
m

n = R/m is a tall ring. Applying

[18, Corollary 2.7], it follows that R is a tall ring. Now let M be an R-module
with Krull dimension. By [19, Theorem 2.7], M is a noetherian module. So M is
semisimple by Lemma 2.1. This completes the proof. �

An R-module M is called a V -module (or a cosemisimple module) if every
proper submodule of M is an intersection of maximal submodules. If the R-
module R is a V -module, then the ring R is called a V -ring. It is well known that
the class of V -modules is closed under isomorphic images, submodules, factor
modules and direct sums (see, for example, [2, page 216, Exercise 23] or [10,
Proposition 3.3]). It follows that an R-module M is a V -module if and only if
every cyclic submodule Rx of M is a V -module. Note that for every 0 6= x ∈ M ,
Rx ∼= R/Ann(x) (as R-modules) and the commutative V -rings are exactly the
commutative von Neumann regular rings. Then a nonzero module M is a V -
module if and only if for every 0 6= x ∈ M , R/Ann(x) is a von Neumann regular
ring (see also [3, Theorem 2.3]).

Lemma 2.3. Let M be a V-module. If M is also noetherian (artinian or of finite
length), then M is semisimple.

Proof: Assume that M is a noetherian (an artinian) module. Let 0 6= x ∈ M .
Since M is a V -module, R/Ann(x) is a von Neumann regular ring. By hypoth-
esis, Rx ∼= R/Ann(x) is a noetherian (an artinian) R-module. So R/Ann(x) is
a noetherian (an artinian) ring. This clearly forces that R/Ann(x) is a semisimple
ring. Therefore Rx is a semisimple R-module. Consequently, M is a semisimple
module. �

T. J. Cheatham and J.R. Smith showed in [5, Theorem 6] that a ring R has
all its maximal ideals idempotent if and only if each semiartinian R-module is
a V -module. In the next theorem we show that the result of T. J. Cheatham and
J.R. Smith remains valid if we replace the semiartinian condition by some chain
conditions.
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Theorem 2.4. The following conditions are equivalent for a ring R:

(i) Any R-module of finite length is a V -module.
(ii) Any artinian R-module is a V -module.
(iii) Any noetherian R-module is a V -module.
(iv) Any R-module with Krull dimension is a V -module.
(v) Any semiartinian R-module is a V -module.
(vi) m

2 = m for any maximal ideal m of R.

Proof: (i) ⇔ (ii) ⇔ (iii) ⇔ (vi) These follow from Lemmas 2.1 and 2.3.
(v) ⇔ (vi) By [5, Theorem 6].
(iv) ⇒ (vi) Let M be an R-module with Krull dimension. By assumption, M is

also a V -module. By [22, Theorem 1], M is noetherian. Hence M is semisimple
by Lemma 2.3. Using Proposition 2.2, we conclude that m2 = m for any maximal
ideal m of R.

(vi)⇒ (iv) This follows from Proposition 2.2 and the fact that every semisimple
module is a V -module. �

3. Socle-fine and radical-fine classes of modules

A class C of modules is said to be socle-fine if whenever M,N ∈ C with
Soc(M) ∼= Soc(N) then M ∼= N .

Lemma 3.1. Let C be a class of modules which is closed under submodules.
Then the following statements are equivalent:

(i) The class C is socle-fine.
(ii) Any module belonging to C is semisimple.

Proof: (i) ⇒ (ii) Let M ∈ C. As the class C is closed under submodules,
Soc(M) ∈ C. Since Soc(M) ∼= Soc(Soc(M)) and C is a socle-fine class, we have
M ∼= Soc(M). Hence M is a semisimple module.

(ii) ⇒ (i) It is clear that any class of semisimple modules is socle-fine. �

Lemma 3.2. (i) The class of modules that are noetherian (artinian or of finite
length) is closed under submodules, factor modules and finite direct sums.

(ii) The class of modules with Krull dimension is closed under submodules,
factor modules and finite direct sums.

Proof: (i) is well known and (ii) follows from [9, Lemma 1.1]. �

Combining Lemmas 2.1, 3.1 and 3.2 and Proposition 2.2, we obtain the follow-
ing result.

Theorem 3.3. Let R be a ring. The following conditions are equivalent:

(i) The class of R-modules of finite length is socle-fine.
(ii) The class of artinian R-modules is socle-fine.
(iii) The class of noetherian R-modules is socle-fine.
(iv) The class of R-modules having Krull dimension is socle-fine.
(v) m

2 = m for any maximal ideal m of R.
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Recall that a class C of modules is said to be radical-fine if whenever M,N ∈ C
with M/Rad(M) ∼= N/Rad(N) then M ∼= N .

Lemma 3.4. Let C be a class of modules which is closed under factor modules.
Then the following statements are equivalent:

(i) The class C is radical-fine.
(ii) Any module belonging to C is a V -module.

Proof: (i) ⇒ (ii) Let M ∈ C. Since the class C is closed under factor modules,
M/Rad(M) ∈ C. Note that M/Rad(M) ∼= (M/Rad(M))/Rad(M/Rad(M)).
Since the class C is radical fine, we have M ∼= M/Rad(M). Hence Rad(M) = 0.
Using again the fact that C is closed under factor modules, we see that
Rad(M/N) = 0 for every proper submodule N of M . Therefore M is a V -module.

(ii) ⇒ (i) This follows from the fact that any V -module has zero Jacobson
radical. �

Combining Theorem 2.4 and Lemma 3.4, we get the following result.

Theorem 3.5. Let R be a ring. The following conditions are equivalent:

(i) The class of R-modules of finite length is radical-fine.
(ii) The class of artinian R-modules is radical-fine.
(iii) The class of noetherian R-modules is radical-fine.
(iv) The class of R-modules having Krull dimension is radical-fine.
(v) The class of semiartinian R-modules is radical-fine.
(vi) m

2 = m for any maximal ideal m of R.

Recall that a ring R is called a T-ring if each semiartinian R-module decom-
poses into a direct sum of its primary components (see [6]). From Theorems 3.3
and 3.5 arises the following question: For which rings R is the class of semiartinian
R-modules socle-fine? The following result gives an answer.

Proposition 3.6. Let R be a ring. The following conditions are equivalent:

(i) The class of semiartinian R-modules is socle-fine.
(ii) Any semiartinian R-module is semisimple.
(iii) The ring R is a T-ring and m

2 = m for any maximal ideal m of R.

Proof: (i) ⇔ (ii) Note that the class of semiartinian modules is closed under
submodules (see, for example, [20, Proposition 2.3]). The equivalence follows
from Lemma 3.1.

(ii) ⇔ (iii) By [5, Theorem 5]. �

It is clear that the class of V -modules is radical-fine. Next, we characterize the
class of rings R over which the class of V -modules is socle-fine.

Proposition 3.7. The following conditions are equivalent for a ring R:

(i) The class of V -R-modules is socle-fine.
(ii) Any V -R-module is semisimple.
(iii) The ring R is a T-ring and each V-R-module is semiartinian.
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Proof: (i) ⇔ (ii) This follows from Lemma 3.1 and the fact that the class of
V-modules is closed under submodules.

(ii) ⇔ (iii) By [5, Theorem 4]. �

4. Quasi-injective modules, Ci-modules and their duals

Consider the following conditions on a module M :
(C2): If a submodule N of M is isomorphic to a direct summand of M , then

N is a direct summand of M .
(C3): If N and L are direct summands of M such that N ∩L = 0, then N ⊕L

is a direct summand of M .
(C4): If M = N ⊕ L with N,L ≤ M and f : N → L is a monomorphism, then

Im f is a direct summand of L.
A module M is said to be a Ci-module if it satisfies the condition (Ci), i =

2, 3, 4.
We have the following hierarchy (see [17, page 18] and [7]):

injective ⇒ quasi-injective ⇒ (C2) ⇒ (C3) ⇒ (C4).

Dually, consider the following conditions on a module M :
(D2): If N is a submodule of M such that M/N is isomorphic to a direct

summand of M , then N is a direct summand of M .
(D3): If N and L are direct summands of M such that N+L = M , then N ∩L

is a direct summand of M .
(D4): If M = N ⊕ L with N,L ≤ M and f : N → L is an epimorphism, then

Ker f is a direct summand of N .
A module M is called a Di-module if it satisfies the condition (Di), i = 2, 3, 4.
From [17, Lemma 4.6 and Proposition 4.38] and [8, Theorem 2.2], it follows

that the following implications hold:

projective ⇒ quasi-projective ⇒ (D2) ⇒ (D3) ⇒ (D4).

Lemma 4.1. Let C be a class of R-modules which is closed under submodules,
factor modules and finite direct sums. For each i = 2, 3, 4, the following conditions
are equivalent:

(i) Any R-module belonging to C is a Ci-module.
(ii) Any R-module belonging to C is a quasi-injective module.
(iii) Any R-module belonging to C is a Di-module.
(iv) Any R-module belonging to C is a quasi-projective module.
(v) Any R-module belonging to C is semisimple.

Proof: Note that any semisimple module is quasi-injective and quasi-projective.
So any semisimple module is a Ci-module and a Di-module for all i ∈ {2, 3, 4}.
The proof is completed by showing the implications (i) ⇒ (v) and (iii) ⇒ (v) for
i = 4.

(i) ⇒ (v) Suppose that any module in C is a C4-module. Let M ∈ C and let
N be a submodule of M . Since the class C is closed under submodules and finite
direct sums, N ⊕M ∈ C. So N ⊕M is a C4-module. By considering the inclusion
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map i : N → M , we see that N is a direct summand of M . Consequently, M is
a semisimple module.

(iii) ⇒ (v) Assume that any module in C is a D4-module. Let M ∈ C and let N
be a submodule of M . Since the class C is closed under factor modules and finite
direct sums, M⊕M/N ∈ C. Hence M⊕M/N is a D4-module. By considering the
natural epimorphism p : M → M/N , we see that N is a direct summand of M .
Consequently, M is semisimple. �

Applying Proposition 2.2 and Lemmas 2.1, 3.2 and 4.1, we obtain the following
two theorems.

Theorem 4.2. Let R be a ring. For each i = 2, 3, 4, the following conditions are
equivalent:

(i) Any R-module of finite length is a Ci-module.
(ii) Any artinian R-module is a Ci-module.
(iii) Any noetherian R-module is a Ci-module.
(iv) Any R-module having Krull dimension is a Ci-module.
(v) Any R-module of finite length is quasi-injective.
(vi) Any artinian R-module is quasi-injective.
(vii) Any noetherian R-module is quasi-injective.
(viii) Any R-module having Krull dimension is quasi-injective.
(ix) m

2 = m for any maximal ideal m of R.

Theorem 4.3. Let R be a ring. For each i = 2, 3, 4, the following conditions are
equivalent:

(i) Any R-module of finite length is a Di-module.
(ii) Any artinian R-module is a Di-module.
(iii) Any noetherian R-module is a Di-module.
(iv) Any R-module having Krull dimension is a Di-module.
(v) Any R-module of finite length is quasi-projective.
(vi) Any artinian R-module is quasi-projective.
(vii) Any noetherian R-module is quasi-projective.
(viii) Any R-module having Krull dimension is quasi-projective.
(ix) m

2 = m for any maximal ideal m of R.

Next, we characterize a subclass of the class of rings whose maximal ideals are
idempotent in terms of semiartinian modules.

Proposition 4.4. Let R be a ring. For i = 2, 3, 4, the following conditions are
equivalent:

(i) Any semiartinian R-module is a Ci-module.
(ii) Any semiartinian R-module is a Di-module.
(iii) Any semiartinian R-module is quasi-injective.
(iv) Any semiartinian R-module is quasi-projective.
(v) Any semiartinian R-module is semisimple.
(vi) The ring R is a T -ring and m

2 = m for any maximal ideal m of R
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Proof: (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) ⇔ (v) follow by using Lemma 4.1 and the fact
that the class of semiartinian modules is closed under submodules, factor modules
and finite direct sums (see [20, Proposition 2.3]).

(v) ⇔ (vi) By [5, Theorem 5]. �

Replacing “semiartinian” with “V -module” in Proposition 4.4, we get the fol-
lowing result.

Proposition 4.5. Let R be a ring. For each i = 2, 3, 4, the following conditions
are equivalent:

(i) Any V -R-module is a Ci-module.
(ii) Any V -R-module is a Di-module.
(iii) Any V -R-module is quasi-injective.
(iv) Any V -R-module is quasi-projective.
(v) Any V -R-module is semisimple.
(vi) The ring R is a T -ring and every V -R-module is semiartinian.

Proof: The equivalence of (i), (ii), (iii), (iv) and (v) follows by using Lemma 4.1
and the fact that the class of V -modules is closed under submodules, factor mod-
ules and direct sums.

(v) ⇔ (vi) By [5, Theorem 4]. �

Now, by replacing “quasi-injective” with “injective” in both Propositions 4.4
and 4.5, we obtain the next proposition.

Proposition 4.6. The following conditions are equivalent for a ring R:

(i) Any semiartinian R-module is injective.
(ii) Any V -R-module is injective.
(iii) The ring R is a semisimple ring.

Proof: The equivalence of these conditions comes from [4, page 236, Corollary]
and the fact that semisimple modules are V -modules and semiartinian modules.

�

The next proposition is an extension of [16, Proposition 2.7].

Proposition 4.7. The following conditions are equivalent for a ring R:

(i) Any R-module of finite length is injective.
(ii) Any artinian R-module is injective.
(iii) Any noetherian R-module is injective.
(iv) Any R-module having Krull dimension is injective.
(v) The ring R is a von Neumann regular ring.

Proof: The equivalence of (ii), (iii) and (v) is shown in [16, Proposition 2.7].
(iv) ⇒ (iii) Let M be a noetherian R-module. By [9, Proposition 1.3] M has

Krull dimension. So M is injective by (iv).
(iii) ⇒ (i) This is obvious.
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(i) ⇒ (v) Note that R is a commutative ring. The implication comes from the
fact that any simple R-module is of finite length.

(v) ⇒ (iv) Let M be an R-module with Krull dimension. Since R is von
Neumann regular, m2 = m for any maximal ideal m of R. By Proposition 2.2 M is
semisimple. Moreover, M has finite uniform dimension by [9, Proposition 1.4].
Therefore M is a finite direct sum of simple R-modules each of them is injective.
It follows that M is an injective R-module. �

Examples 4.8. (i) Let R be a von Neumann regular ring which is not a T -ring.
For a particular example, we can take the ring S =

∏
n∈N

Fn, where Fn = Z2,
n ≥ 1. Then we consider the subring R of S generated by

⊕
n≥1

Fn and 1S . Of
course, we have

R = {(a1, . . . , an, b, b, b, . . .) : ai ∈ Z2, b ∈ Z2, n ≥ 1}.

It is well known that R is a von Neumann regular ring. But R is not a T -ring by
[6, page 355, Examples].

(1) Noetherian R-modules, artinian R-modules and modules having Krull di-
mension are semisimple injective by Lemma 2.1 and Propositions 2.2 and 4.7.

(2) There exists a V -R-module M which is not quasi-injective by Proposi-
tion 4.5 and there exists a semiartinian R-module which is not quasi-injective by
Proposition 4.4.

(3) By Theorem 3.5 and Proposition 3.6, the class of semiartinian R-modules
is radical-fine but it is not socle-fine.

(4) The class of V -R-modules is radical-fine (see Lemma 3.4), but it is not
socle-fine by Proposition 3.7.

(ii) Let R be a semilocal ring which is not semisimple such that m
2 = m for

every maximal ideal m of R. Then R is a T -ring by [6, Corollary 2.7]. From
Propositions 4.4 and 4.6, it follows that every semiartinian R-module is quasi-
injective and quasi-projective but there exists a semiartinian R-module which is
not injective.

To construct an example of a ring R satisfying the above conditions, let F be
a field and let S = F [X1, X2, . . .] be the polynomial ring with countably many
commuting indeterminates Xi, i ≥ 1. Consider the ring R = S/a, where a is the
ideal of S generated by the set {X2

1
, X2

n −Xn−1 : n ≥ 2}. Let m be the ideal of R
generated by all Xi = Xi + a, i ≥ 1. By [21, page 635], m is the unique maximal
ideal of R and m

2 = m.
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